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Abstract: This paper addresses the optimized tracking problem for motion control systems with multiple disturbances by a

nonlinear-disturbance-observer-enhanced continuous-time model predictive control (MPC) method. The core is to predict the

future tracking error and desired control input (including the lumped effects of disturbances/uncertainties) in the receding-horizon

by a higher-order sliding mode disturbance observer, which is designed based upon a rough nominal system. Different from direct

compensation approach in most existing composite MPC methods, disturbance estimates are taken full advantage in the opti-

mization. The explicit relationship between asymptotic stability and weights in the performance index is provided. Simulations on

position control of robot arm system and experiments on speed regulation of permanent magnet synchronous motor (PMSM)

servo system are both presented to demonstrate the workability.

1 Introduction

Model predictive control (MPC) method, as one of few suitable
methods to deal with optimization, constraints and multivariable
plants, has been receiving a great deal of attention in engineerings,
particularly in process control industries, e.g., oil refining, pulp and
paper manufacturing and chemical processing [1–3]. For large-scale
process networks, e.g., reactor-separator, distributed MPC methods
also manage to position themselves due to advantages in decompo-
sition and computational efficiency [4–6]. As its name suggested,
the nominal model plays a fundamental role in the philosophy of
MPC methods, especially in the phase of model prediction. Con-
sequently, in practical applications, efforts on plant modeling have
to be paid for high-precision tracking performance of MPC meth-
ods. For complex nonlinear models, multiple linear ones can be
used to capture the essence of the nonlinear part by fuzzy [7] and
adaptive approaches [8]. Apart from modeling errors, external distur-
bances also inevitably bring barriers to higher-precision prediction,
and eventually generate undesirable influences on the closed-loop
control performance[9–11]. Therefore, how to attenuate the adverse
effects caused by disturbances and uncertainties is always impor-
tant and should be taken into account by most researchers. The
mainstream MPC approaches to handle this problem can be roughly
classified into the following two categories.

The first category approaches are referred to as the integral
MPC (I-MPC) method (see [12] for theoretical guidance and [13–
15] for application cases). I-MPC method applies a performance
index which consists of the tracking error and the control differ-
ence/rate (i.e., u(k)− u(k − 1) in discrete-time domain or u̇(t)
in continuous-time domain). The optimal control difference/rate is
obtained by directly minimizing the performance index. Since an
integral action is naturally embedded in the closed-loop system from
the designed control difference/rate to the control input, I-MPC
method is able to remove the offset caused by constant disturbances.
However, for the system subject to non-constant disturbances, the
steady-state tracking error is generally inevitable. In addition, these
approaches which regulate the steady-state error via integral com-
pensating action will also cause side effects on other dynamic control

performance, e.g., settling time and overshoot [16], which are also
important in motion control systems.

The second category focuses on utilizing the disturbance observer
to improve the robustness and disturbance rejection performance of
MPC methods. Disturbance observer is a kind of special soft sensors
to estimate the lumped effect of system uncertainties and exter-
nal disturbances (see [17–20], and the references therein). These
approaches can also be sketchily classified into the following two
branches:

i) Direct Disturbance Compensation Approaches: In this branch,
disturbance observer totally acts as a “patch”, since the final
composite control law is designed by simply and directly com-
bining the disturbance estimates into the optimal MPC law
designed based upon the nominal plant [7, 21–23]. Disturbance
estimates are employed to cancel the adverse effect caused by
uncertainties and disturbances. Due to the additional disturbance
compensation, the composite control law is actually not optimal
any more and is also possible to break the system constraints
obtained by the original MPC design, especially when large
disturbances appear.

ii) Prediction-precision Enhanced Approaches: This branch uti-
lizes disturbance estimates to improve the precision of the
prediction model [10, 11, 24–26]. Based on the corrected pre-
diction model, the offset-free optimal tracking is obtained by
solving the performance index. Linear and nonlinear discrete-
time MPC methods with constant disturbances are proposed
in [10] and [11], respectively whilst linear discrete-time MPC
method with disturbances generated by a linear exosystem is
proposed in [24]. In [25], continuous-time nonlinear generalized
predictive control (NGPC) method with disturbance observer
designed based on constant disturbance model is proposed for
nonlinear systems. However, the control input weighting is not
explicitly taken into account in the performance index, i.e., J =
1
2

∫T
0 (y(t+ τ )− yd(t+ τ ))2dτ in [25], which spontaneously

makes the controller lose the freedom of penalizing the con-
trol energy. A new performance index integrating control input
weighting is developed for MPC method in [26]. However, the
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steady-state tracking error always exists, even if the plant is free
of disturbances or uncertainties.

In addition, most of the above-mentioned disturbance observer
based MPC approaches mainly focus on removing the offset caused
by constant disturbances. One possible reason is that the dynamics of
process control industries are sufficiently slow, as compared with the
computation rates of processors. In the presence of time-varying dis-
turbances, those approaches could only obtain practical stability but
fail to achieve asymptotic stability, leading to the negligent presence
of MPC methods in motion control systems. In a motion control sys-
tem, whose dynamics is much faster than that of the process control
one, the model of lumped disturbances cannot be simply regarded
as unknown constant in high-performance applications. As reported
in [27], various kinds of disturbances exist in motion control sys-
tems. For example, the effects of non-ideal actuators and sensors in
a permanent magnet synchronous motor (PMSM) servo system can
be regarded as periodic disturbances on the control input (voltage)
whilst the effects of external load/friction torques can be as polyno-
mial ones. The existing multiple kinds of disturbances will largely
restrain the applicability of MPC methods in motion control systems
to achieve high-precision tracking.

Motivated by above-mentioned challenges, an enhanced continuous-
time MPC approach is proposed to achieve optimized offset-free
tracking for motion control systems with multiple kinds of distur-
bances. The design philosophy of the proposed method is explicitly
demonstrated in the following two phases. First, a higher-order slid-
ing mode disturbance observer [28] is adopted to estimate both states
and disturbances of the tracking error system, and thereafter these
estimates are utilized to predict the future error in the receding-
horizon time interval by virtue of Taylor series expansion. Second,
a modified performance index which consists of both the tracking
error and the control input is proposed, and then, receding-horizon
optimization based on the new performance index is processed to
derive the final control law. Comparing to the previous related
MPC results concerning on the disturbance attenuation, the main
contributions of this paper are summarized by the following two
aspects:

i) Integral Control Optimization: Inspired by the target control
inputs in offset-free MPC methods [10, 11, 24], the control
input weighting is explicitly integrated in the performance index
of continuous-time NGPC method, which provides additional
freedom to penalize the control energy and admits the integral
control optimization of the closed-loop system. Besides, as a
further result of [29], the effects of control input weighting on
the closed-loop stability is explicitly analyzed.

ii) Multiple Disturbance Attenuation: Unlike the conventional lin-
ear disturbance observer based MPC methods [10, 11, 21–26],
the proposed approach does not require an exact disturbance
model to achieve a high-precision estimation due to the robust-
ness property of sliding model method. Offset-free optimized
tracking is then guaranteed for motion control systems with mul-
tiple kinds of disturbances, where only bounded condition is
required on disturbances.

The remainder of this paper is organized as follows. Section 2
describes the design of the proposed enhanced MPC method, includ-
ing the modified performance index, the prediction of both tracking
error and desired control input with corrections by higher-order slid-
ing mode disturbance observer and the receding-horizon optimiza-
tion. Stability analysis of the closed-loop system is also provided in
Section 2, whose proof is collected in Appendix. Simulation studies
on position control of robot arm system is presented at the end of
Section 2 whilst various comparative experimental studies to other
effective MPC methods [12, 26] on a PMSM servo system is given
in Section 3. Section 4 concludes this paper.

Notation: Throughout the paper, symbols R, N and N+ denote
the real number set, the natural number set and the positive integer

set, respectively. Ni:j is defined as Ni:j , {i, i+ 1, · · · , j} for i,
j ∈ N and i ≤ j. ∀M ≥ 0 ∈ Rn×n and x ∈ Rn×1, let ‖x‖2M ,

x⊤Mx and ‖x‖2 , x⊤x. For any smooth enough function f(t),

symbol f (i)(t) denotes the i-th order derivative of f(t) with respect
to variable t.

2 Main Results

In this paper, a class of generalized motion control systems with
external disturbances is considered and depicted by

y(n)(t) = f
(

y(t), y(1)(t), · · · , y(n−1)(t), d(t), t
)

+ b(t)u(t)

(1)
where y(t) ∈ R, u(t) ∈ R, and d(t) ∈ R are the controlled output,

the control input, and the external disturbance, respectively; y(i)(t)
is the i-th derivative of y(t) with respect to t; and b(t) is the control
gain which satisfies b ≤ b(t) ≤ b̄, b and b̄ are both positive constants.
The objective of this paper is to solve an optimized tracking prob-
lem, i.e., design a controller to render the output of the disturbed
system (1) asymptotically track a reference signal yr(t) in terms of
a performance index, which will be given in the next subsection.

For the sake of simplicity, the following transformation (2) is
firstly defined by

e(t) , yr(t)− y(t), xi(t) , e(i−1)(t), i ∈ N+ (2)

where yr(t) is assumed to be piecewise continuous, n-th time dif-
ferentiable and bounded. Note that x1(t) = e(t). The tracking error
dynamics is then obtained as

ẋi(t)= xi+1(t), i ∈ N1:n−1

ẋn+j(t)= −b0u
(j) + znj+1(t) + zj+1(t), j ∈ N

(3)

wherewn(t) , y
(n)
r (t),w(t) , (b0/b(t)− 1) y(n)(t)− b0/b(t)f(·),

znj+1(t) , w
(j)
n (t), zj+1(t) , w(j)(t) and b0 is the nominal value

of b(t).

Remark 1. The function wn(t) contains the known reference signal
whilst the function w(t) represents the lumped effect of the unknown
disturbances and uncertainties.

Remark 2. The considered system (1) is a more generalized model
developed from the practical motion control systems. It is worth
pointing out here that the practical motion systems, from a simple
one- or two-order system [17] to a complicated robot system [30–
32], can be all regarded as one single system (1) or several cascaded
systems generated by (1). And hence, the design of the MPC method
for system (1) to achieve high-performance tracking is fundamental
and significant for motion control systems.

2.1 Modified Performance Index

Inspired by the target control inputs in offset-free MPC methods
[10, 11, 24], a modified and generalized performance index with
explicit control input weighting is introduced for continuous-time
NGPC method, as follows

J(t) =
1

2

∫T
0

(

‖yr(t+ τ )− y(t+ τ )‖2Q

+ ‖ur(t+ τ )− u(t+ τ )‖2R

)

dτ

(4)

where T > 0 is the predictive period; ur(t) is the desired steady-

state control input, denoted as ur(t) , (wn(t) + w(t)) /b0; and
Q > 0 is the weight on the tracking error and R > 0 is the weight
on the control input.

Remark 3. In the conventional NGPC method [25, 29, 33, 34],
only the tracking error is considered in the performance index and
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the control energy only can be implicitly penalized by increasing
the predictive period. Besides, the control input weighting approach

adopted here is different from that in [26] (i.e., 1/2
∫T
0 ‖u(t+

τ )‖2Rdτ ). Since each part in the performance index tends to zero in
the process of optimization, in general, zero control input and zero
tracking error are contradictory, especially in the presence of distur-
bances/uncertainties. This implies that the control input weighting
in [26] will usually cause offset tracking error in the presence of
non-vanishing disturbances, which will be demonstrated by the later
PMSM experimental case studies.

2.2 Disturbance Correction Based Prediction

The future tracking error e(t+ τ ) within the predictive period (i.e.,
0 ≤ τ ≤ T ) is predicted using Taylor series expansion and given by

e(t+ τ )
∣

∣

(2)
≈ e(t) + τe(1)(t) + · · ·+

τn−1

(n− 1)!
e(n−1)(t)

+
τn

n!
e(n)(t) + · · ·+

τn+r

(n+ r)!
e(n+r)(t)

= x1(t) + τx2(t) + · · ·+
τn−1

(n− 1)!
xn(t)

+
τn

n!
xn+1(t) + · · ·+

τn+r

(n+ r)!
xn+1+r(t)

(5)

where r ∈ N is named as the control order (detailedly defined in
[29]).

For briefness, estimates of the variables are denoted by the hat-
ted symbol (̂·) whilst predictions of the variables within a receding
horizon time interval are denoted by the barred symbol (̄·). To this
end, by utilizing estimates raised by the disturbance observer, i.e.,
x̂i(t), i ∈ N2:n+1+r , the predicted tracking error is presented as

ē(t+ τ )= x1(t) + τ x̂2(t) + · · ·+
τn−1

(n− 1)!
x̂n(t)

+
τn

n!
x̂n+1(t) + · · ·+

τn+r

(n+ r)!
x̂n+1+r(t).

(6)

Letting the control sequence as

U(t) , [ u(t) u(1)(t) · · · u(r)(t) ]⊤,

the predicted tracking error ē(t+ τ ) is then expressed by the
following compact form

ē(t+ τ )
∣

∣

(3)
= [ T̄ (τ ) T̃ (τ ) ]

[

Ē(t)
Ẽ(t)

]

(7)

where

T̄ (τ ) , [ 1 τ · · · τn−1

(n−1)!
]

T̃ (τ ) , [ τn

n!
τn+1

(n+1)! · · · τn+r

(n+r)!
]

Ē(t) , [ x1(t) x̂2(t) · · · x̂n(t) ]⊤

Ẽ(t) , [ x̂n+1(t) x̂n+2(t) · · · x̂n+1+r(t) ]⊤

= −b0U(t) +Wn(t) +W(t)

Wn(t) , [ zn1 (t) zn2 (t) · · · znr+1(t) ]⊤

W(t) , [ ẑ1(t) ẑ2(t) · · · ẑr+1(t) ]⊤.

It is worth noting that the vector W(t) is a correction for the conven-
tional prediction based on Taylor series expansion due to the existing

disturbances and uncertainties. Similarly, the future control input and
the desired control input are written as

ū(t+ τ ) = T̂ (τ )U(t) (8)

ūr(t+ τ ) =
1

b0
T̂ (τ ) (Wn(t) +W(t)) (9)

where T̂ (τ ) , [ 1 τ · · · τr

r!
].

2.3 Receding-Horizon Optimization

With (7), (8) and (9) in mind, the performance index (4) is predicted
as

J̄(t) =
1

2

∫T
0

(

Qē(t+ τ )⊤ē(t+ τ )

+R (ū(t+ τ )− ūr(t+ τ ))⊤ (ū(t+ τ )− ūr(t+ τ ))
)

dτ

=
1

2
QĒ⊤T1Ē − b0QĒ⊤T2

(

U −
1

b0
(Wn +W)

)

+
1

2

(

U −
1

b0
(Wn +W)

)⊤
(

b20QT3 +RT4
)

×

(

U −
1

b0
(Wn +W)

)

(10)

where T1 ,
∫T
0 T̄ ⊤T̄ dτ , T2 ,

∫T
0 T̄ ⊤T̃ dτ , T3 ,

∫T
0 T̃ ⊤T̃ dτ and

T4 ,
∫T
0 T̂ ⊤T̂ dτ .

Taking partial derivative of J̄ in (10) with respect to

U gives ∂J̄/∂U = −b0QT ⊤
2 Ē +

(

b20QT3 +RT4
)

(U − (Wn +

W)/b0). Note that the matrix b20QT3 +RT4 is positive defi-

nite. Letting ∂J̄/∂U = 0 and ∂2J̄/∂U2 > 0, the optimized control
sequence U∗(t) is obtained and given by

U∗(t) =
1

b0

(

(

T3 +
1

b20

R

Q
T4

)−1

T ⊤
2 Ē +Wn +W

)

. (11)

Taking the first row of the control sequence (11), the implementable
MPC law is given by

u∗(t) =
1

b0

(

k1x1(t) + k2x̂2(t) + · · ·+ knx̂n(t)

+ wn(t) + ŵ(t)
)

(12)

where the control gains in (12) are calculated from

[ k1 k2 · · · kn ] = I(T3 + hT4)
−1T ⊤

2

with I , [ 1 0 · · · 0 ] and h , R/(b20Q).
For the purpose of practical implementation, estimates x̂2(t), · · · ,

x̂n(t) and ŵ(t) should be generated by an observer. Before con-
structing the higher-order sliding mode observe, Assumption 1 has
to be satisfied.

Assumption 1 ([28]). There exist known constants L ≥ 0 and m ∈

N+ such that

∣

∣

∣
w(m)(t)

∣

∣

∣
≤ L.

As for motion control systems, the constant, slope and sine/cosine
load torques are quite common in practice [35], and all of them
are the special cases of Assumption 1. In this paper, a higher-order
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sliding mode observe is designed as follows

˙̂xi(t) = x̂i+1(t) + vi(t), i ∈ N1:n−1

˙̂xn(t) = −b0u
∗(t) + wn(t) + ẑ1(t) + vn(t)

˙̂zj(t) = ẑj+1(t) + vn+j(t), j ∈ N1:m−1

˙̂zm(t) = vn+m(t)

(13)

where v1(t) , −λ1L
1

n+m |ẑ1(t)− z1(t)|
n+m−1

n+m sign (ẑ1(t)− z1(t)),

vk(t) , λkL
1

n+m+1−k |vk−1(t)|
n+m−k

n+m+1−k sign (vk−1(t)),
k ∈ N2:n+m and λl > 0, l ∈ N1:n+m are the tunable observer
gains. The block diagram on the implementation of the proposed
method is shown in Fig. 1.

Observer

Eq.(13)

Tracking 

Error 

Prediction

Eq.(7)

Desired

Input 

Prediction

Eq.(9)

Dynamic

Optimization

Eqs.(10) to (12)

ESTIMATION

PREDICTION
OPTIMIZATION

Disturbed System

Eq.(1)

 r(!)  (!) 

"#(!)

$(!) 
Input 

Prediction

Eq.(8)

 (! + ")

#$(! + ")

#$%(! + ")

Fig. 1: Block diagram of the proposed method: Estimation, predic-
tion and optimization

2.4 Performance Analysis

The main result on performance analysis is given by the following
theorem.

Theorem 1. Under Assumption 1, the closed-loop system (3)-(12)-
(13) is asymptotically stable if and only if the control parameters of
the proposed continuous-time MPC method are chosen such that the

polynomial p(s) = sn + kns
n−1 + · · ·+ k1 is Hurwitz.

Proof: See the Appendix A. �

In what follows, the direct relationship between the control
parameters (the weighing matrices, Q and R, predictive period T
and control order r) and the closed-loop system stability will be dis-
cussed. As a further result of [29], the concise description on stability
conditions is shown in Table 1, which are discussed in details as the
following three cases:

i) If system (1) has a low relative degree (1 or 2), the closed-
loop system is always asymptotically stable no matter what
parameters (Q, R, r and T ) are chosen.

ii) If the relative degree of system (1) is 3 or 4, in the case when
R > 0, the stability is ensured by assigning sufficiently large
predictive period T ; while in the case when R = 0, it will be
always stable.

iii) If the relative degree of system (1) is higher (n ≥ 5), the closed-
loop system is unstable if r is too low; and if r has been properly
chosen, the stability of the closed-loop system is the same as 2).

According to Theorem 1 and Table 1, the proposed method is able
to achieve offset-free optimized tracking for the considered system

Table 1 Stability of the closed-loop system

n 1 2 3 4 5 6 7 8 9 10

r = 0 +⋆ +⋆ + + − − − − − −

r = 1 +⋆ +⋆ + + + − − − − −

r = 2 +⋆ +⋆ + + + + + − − −

r = 3 +⋆ +⋆ + + + + + + − −

r = 4 +⋆ +⋆ + + + + + + + −

r = 5 +⋆ +⋆ + + + + + + + +

r = 6 +⋆ +⋆ + + + + + + + +

r = 7 +⋆ +⋆ + + + + + + + +

r = 8 +⋆ +⋆ + + + + + + + +

r = 9 +⋆ +⋆ + + + + + + + +

+⋆: The closed-loop system is stable for any admissible control parameters.

+: If R > 0, the stability is ensured by assigning sufficiently large predictive

period T ; else if R = 0, the closed-loop system is always stable.

−: The closed-loop system is unstable.

with the presence of multiple kinds of disturbances and uncertainties
by choosing appropriate parameters.

Remark 4 (Extension to Constraint Systems). The proposed MPC
method can be extended for systems with input constraints by
quadratic programming. For instance, the optimization problem (4)
under the constraints Umin ≤ U ≤ Umax can be transformed as
follows

min
1

2
U⊤EU + U⊤F

s.t. MU ≤ γ
(14)

where

U , U −
1

b0
(Wn +W), E , b20QT3 +RT4

F , −b0QT ⊤
2 Ē , M , [I,−I]⊤

γ ,

[

Umax +
1

b0
(Wn +W), −Umin −

1

b0
(Wn +W)

]⊤

with I is an identity matrix. Notice that γ is associated with the
original constraints on U and the values of Wn and W . (14) is a

standard quadratic programming problem and has been extensively
studied in literature (see [12, Chapter 2.4, Numerical Solutions
Using Quadratic Programming] for more details). With numerical
solutions of quadratic programming, it is straightforward to deal
with system constraints by the proposed method.

Remark 5 (Extension to Multivariable Systems). The proposed
MPC method can be also extended for a class of multivariable non-
linear systems with well-defined relative degrees, even if they are
different, i.e., [ρ1, ρ2, · · · , ρk] where k ∈ N+ is the number of the
outputs/inputs. The basic idea is introduced in [36], i.e., to predict
each output in receding-horizon by Taylor series expansion up to the
orders [r + ρ1, r + ρ2, · · · , r + ρk].

2.5 Numerical Simulation

A single-link robot arm system, as shown in Fig. 2, can be modeled
as follows [37, Chapter 4.10]

J1q̈1 + F1q̇1 +
K

N
(q2 −

q1
N

) = u

J2q̈2 + F2q̇2 +K(q2 −
q1
N

) +mgl cos q2 + d = 0
(15)

where u is the driving torque produced at the actuator axis; d is the
disturbance torque at the link axis; q1 and q2 represent angular posi-
tions of the actuator shaft and of the link, respectively. The meanings
and nominal values of robot arm parameters are listed in Table 2.
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 1  2

torsional 

spring

disturbancegearbox

Fig. 2: A single-link robot arm

Table 2 Parameters of robot arm

Parameter Meaning Value Unit

J1 Inertia of actuator 0.0111 kg · m2

F1 Frictional coefficient of actuator 4.5 N · m · s/rad

J2 Inertia of link 0.2304185 kg · m2

F2 Frictional coefficient of link 0.084 N · m · s/rad

K Elasticity constant of spring 0.070364 kg · m2

N Transmission gear ratio 100 N · m · s/rad

m Mass of link 1 kg

g Acceleration of gravity 9.8 m/s2

l Position of link center 0.3493 m

In the simulation, the control objective is to render the link
of the robot arm to asymptotically track the reference q2r under
the unknown external disturbance d. It is worth noting that the
disturbance is mismatched from the control input channel and
even its type is totally unknown. The control parameters are
chosen as q2r = 0.5(rad), d = 0.5 sin(t)(N·m), n = 4, m = 2,
[q2(0), q̇2(0), q1(0), q̇1(0); x̂1(0), x̂2(0), x̂3(0), x̂4(0); ẑ1(0), ẑ2(0)]
= [0, 0, 0, 0; 0.5, 0, 0, 0; 0, 0], h = 0, T = 0.02, r = 0,
[λ1, λ2, λ3, λ4, λ5, λ6;L] = [25, 15, 10, 3, 1.5, 0.8; 800]. Besides,
a saturation from −500(N·m) to 500(N·m) is added on the control
input for safety.

To make the simulation more challenging, parameter perturba-
tions are artificially added in the robot arm system (15). The response
curves of the angular positions of the actuator shaft and of the link,
estimate of the lumped disturbance and driving torque are given in
Fig. 3. To be more specific, the red dash lines and dot lines mean
that all the system parameters have -30% and 30% uncertainties,
respectively; the blue dash lines and dot lines mean that all the sys-
tem parameters have -20% and 20% uncertainties, respectively; the
green dash lines and dot lines mean that all the system parameters
have -10% and 10% uncertainties, respectively; the black full lines
means that the system parameters are the same with those in Table
2. Observed from the curves of the link q2, one can arrive at that the
asymptotic tacking can be achieved even under system uncertainties
and external disturbances.

3 Application to a PMSM Servo System

In this section, experimental studies of a PMSM servo system are
implemented to validate the feasibility and effectiveness of the
proposed method. PMSMs are extensively applied to plenty of indus-
trial applications, e.g., power generations, robotics, and aerospace
[23, 27, 38]. Speed regulation of PMSM, regarded as a benchmark
of the motion control problem here, is respectively solved by the
proposed method and other effective MPC methods [12, 26]. One of
the central control tasks of the motion control problem is to track
the reference signal with satisfactory dynamic and steady-state per-
formance, and to recover desired tracking performance even in the
presence of large load torques.

Table 3 Parameters of PMSM servo system

Parameter Meaning Value Unit

np Number of poles-pairs 4 −
R Stator resistance 9.7 Ω
L Stator inductance 26 mH

ψf Magnetic flux linkage 0.084 Wb

J Moment of inertial 1.35 × 10−4 kg · m2

Bv Frictional coefficient 7.4 × 10−5 N · m · s/rad

3.1 Dynamic Model Description

The dynamic model of a surface-mounted PMSM servo system is
given in the rotor reference frame as [27]

did
dt

=
1

L
(ud −Rid + npLωiq)

diq
dt

=
1

L
(uq −Riq − npLωid − npψfω)

dω

dt
=

1

J

(

3

2
npψf iq −Bvω − TL

)

(16)

where ω is the rotor angular velocity; id and iq are d- and q-axis sta-
tor currents, respectively; ud and uq are d- and q-axis stator voltages,
respectively; and TL is the load torque. The meanings and nominal
values of PMSM parameters are listed in Table 3.

3.2 Design of Different MPC Methods

For speed regulation, system (16) is firstly rewritten as the consid-
ered standard one

ẋ1 = x2, ẋ2 = −b0uq + wn + w (17)

where

x1 , ωr − ω, b0 , 3npψf/(2LJ), ε , −npωid

wn , ω
(2)
r + (R/L+Bv/J)ω

(1)
r

+
(

RBv/(LJ) + 3n2pψ
2
f/(2LJ)

)

ωr

−
(

RBv/(LJ) + 3n2pψ
2
f/(2LJ)

)

x1

− 3npψfε/(2J)

w , RTL/(LJ) + T
(1)
L /J − (R/L+Bv/J)x2

ωr is the reference speed. The control laws of the considered three
MPC methods are presented as follows

i) The proposed method with performance index J(t) =
1

2

∫T
0

(

‖e(t+ τ )‖2Q + ‖ur(t+ τ )− uq(t+ τ )‖2R

)

dτ :

Controller:

[

u∗q =
1

b0
(k1x1 + k2x̂2 + wn + ŵ)

Observer:























˙̂x1 = x̂2 + v1

˙̂x2 = −b0u
∗
q + wn + ŵ + v2

˙̂w = v3

v1 = −λ0L
1
3 |x̂1 − x1|

2
3 sign(x̂1 − x1)

vi = λiL
1

4−i |vi−1|
3−i
4−i sign(vi−1), i ∈ N2:3

where k1 and k2 are the optimized gains with zero control order,

deduced as, k1 = 10T 2/(3T 4 + 60h) and k2 = 5T 3/(2T 4 +
40h).
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Fig. 3: System response of the robot arm under the proposed method

ii) The MPC method in [12] with performance index J(t) =
1

2

∫T
0

(

‖e(t+ τ )‖2Q + ‖u̇q(t+ τ )‖2R

)

dτ :

Controller:









u∗q =

∫ t
0
u̇∗q(τ )dτ + u∗q(0)

u̇∗q =
1

b0
(k1x1 + k2x̂2 + k3x̂3)

Observer:















˙̂x1 = x̂2 + v1

˙̂x2 = x̂3 + v2

˙̂x3 = −b0u̇
∗
q + v3

vi(t) = −λi(x̂1 − x1), i ∈ N1:3

where k1, k2 and k3 are the optimized gains with zero

control order, deduced as, k1 = 21T 3/(2T 6 + 504h), k2 =
42T 4/(5T 6 + 1260h) and k3 = 7T 5/(2T 6 + 504h).

iii) The MPC method in [26] with performance index J(t) =
1

2

∫T
0

(

‖e(t+ τ )‖2Q + ‖uq(t+ τ )‖2R

)

dτ :

Controller:

[

u∗q =
1

b0
(k1x1 + k2x̂2 + kwwn + kwŵ)

Observer:















˙̂x1 = x̂2 + v1

˙̂x2 = −b0u
∗
q +wn + ŵ + v2

˙̂w = v3

vi = −λi(x̂1 − x1), i ∈ N1:3

where k1, k2 and kw are the optimized gains with zero

control order, deduced as, k1 = 10T 2/(3T 4 + 60h), k2 =
5T 3/(2T 4 + 40h) and kw = T 4/(T 4 + 20h).

Control parameters of these three approaches are chosen as T =
0.002, R/Q = 0.0002, λ1 = 4.1, λ2 = 3.5, λ3 = 2.0 and L =
7.2× 1011 for the proposed method; T = 0.002, R/Q = 0.0005,

λ1 = 120, λ2 = 1.5× 105 and λ3 = 8× 106 for the MPC method
in [12]; and T = 0.002, R/Q = 0.0002, λ1 = 100, λ2 = 6× 104

and λ3 = 3× 106 for the MPC method in [26].

Remark 6. Note that the current id does not directly affect the speed
ω and the control objective of d-axis current loop is relatively simple.
Therefore, for the sake of simplicity, the conventional proportional-
integral (PI) controller with decoupling is adopted as the d-axis
controller, i.e.,

ud = kp(−id) + ki

∫ t
0
(−id)dt− npLωiq

where kp and ki are the proportional and the integral gains, respec-
tively. In the experiments, the proportional and integral gains of
d-axis voltage of different MPC methods are all chosen as kp = 120
and ki = 500, respectively.

Remark 7. Compared with the conventional MPC methods, the

main deficiency is the difficulty in parameter tuning of the higher-
order sliding mode disturbance observer. The parameter configura-
tion for the higher-order sliding mode observer has certain restric-
tions, e.g., the fractional power should be strictly determined by the
observer order. Besides, to the best of authors’ knowledge, most pub-
lished papers only focus on the stability, rather than the estimation
performance of this kind of nonlinear observer. In the experimental
application, trial and error approach based on the guideline in [39,
Chapter 6.7, Arbitrary-Order Robust Exact Differentiation] has then
been used to achieve desired performance.

3.3 Experimental Results

To evaluate the performance of the proposed method, the experimen-
tal test setup is built as shown in Fig. 4. All the control algorithms
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Table 4 Dynamic and steady-state tracking performance

Index The proposed method The MPC method in [12] The MPC method in [26]

Settling time (ms) 46.6 62.4 56.5

Overshoot (%) 2.9 9.7 6.5

Offset error (rpm) 0.0 0.1 -25.7

Ripple range (rpm) 7.8 16.2 15.4
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Fig. 4: Experimental system
a Configuration

b Setup

are done by dSPACE DS1104 control board, which is a completely
real-time control system based on a 603 Power PC floating-point
processor running at 250 MHz and includes a four-channel 16-bit
(multiplexed) ADC and four 12-bit ADC units. The power driving
circuit is composed of IGBT inverter, single-phase of diode bridge
rectifier, and large capacitor filter, etc. Both the control and sample
periods are 100 µs. The dead time and the switching frequency of
IGBTs is 3 µs and 10 kHz. The signals of voltages and currents can
be measured by Hall sensors whilst the position is obtained by an
incremental encoder with 2500 lines. The speed single is calculated
from low pass filter of position differential.

3.3.1 Dynamic/Steady-State Tracking Performance Tests:
In this subsection, dynamic performance and tracking precision in
steady states of a PMSM servo system under the proposed method,
the MPC methods in [12] and [26] are thoroughly compared and
studied. Response curves of speed ω and voltage uq under all the
three methods are demonstrated in Figs. 5 and 6.

Case I–Dynamic Tracking performance.
As shown by Fig. 5, the PMSM under the proposed method

presents a shortest settling time (46.6ms) and a smallest overshoot
(2.9%) during the transient dynamics, and no offset error in the
steady state. Even the PMSM under the MPC method in [26] has
similar performance in the dynamic phase, it cannot track the ref-
erence offset-free. The reason for this phenomenon can be found in
its eventual expression of controller, i.e., the compensation gain kw
of the MPC in [26] is always less than 1, which results in the offset
error between the control input and the desired one in the steady state
and is finally reflected in the speed tracking. In addition, although
offset-free property is guaranteed by the MPC in [12], its dynamic
performanceperformance is the worst, e.g., the longest settling time
(62.4ms) and the largest overshoot (9.7%).

Case II–Steady-State Tracking performance.
As shown by Fig. 6, there exist steady-state fluctuations for all

the three controllers, while the proposed method shows the smallest
fluctuations (7.8rpm) in the steady state. It is observed from Fig.
5 (d) that fluctuations of the PMSM with the proposed method are
reduced by 50.1% and 48.1% compared to the MPC methods in [12]
and [26], respectively. Detailed quantitative data for dynamic and
steady-state performance comparisons of Cases I and II are given in
Table 4.

3.3.2 Disturbance Rejection Performance Tests: This case
is designed to verify the robustness of the three controllers against
external load disturbances. Both constant and time-varying loads are
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Fig. 5: Case I–Dynamic tracking performance of the PMSM servo
system
a The proposed method

b The MPC method in [12]

c The MPC method in [26]

imposed on the motor as follows

TL(N · m) =







0 0s ≤ t < 0.5s
1 0.5s ≤ t < 1s
1 + 0.5 sin(50πt + π/3) t ≥ 1s.

Case III–Constant Load Torque Rejection.
Response curves of the speed ω and the voltage uq when a step

load (from 0N · m to 1N · m at 0.5s) is imposed on the motor under
all the three methods are demonstrated in Fig. 7. It is revealed that
performance of the proposed method is much better than the other
two in the sense that it has the shortest recovery time (85.6ms),
the smallest speed drop (43.5rpm), and presents offset-free track-
ing behavior. Similar with Case II, the robust MPC method in [26]
cannot completely compensate the effect of constant load, and then,
the speed cannot recover to its desired reference, as shown in the red
line of Fig. 7.

Case IV –Time-Varying Load Torque Rejection.
To further compare disturbance rejection performanceperfor-

mance, periodic load torque is considered in this case. As shown
in Fig. 8, the tracking precision is substantially improved by the
proposed method. Compared to the MPC methods in [12] and [26],
the fluctuations of the proposed method are reduced by 74.4% and
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Table 5 Load torque rejection performance

Index The proposed method The MPC method in [12] The MPC method in [26]

Recovery time (ms) 85.6 123.2 106.5

Maximum speed drop (rpm) 43.5 129.2 99.8

Offset error (rpm) 0.3 -0.7 -85.5

Ripple range (rpm) 25.7 98.8 62.0
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Fig. 6: Case II–Steady-state tracking performance of the PMSM
servo system
a The proposed method

b The MPC method in [12]

c The MPC method in [26]

59.0%, respectively. More detailed quantitative performance index
comparisons of Cases III and IV are provided in Table 5.

On the basis of the above experimental results and analyses, it
is concluded that the proposed method possesses a better dynamic
performance and a higher tracking precision, even in the presence of
multiple kinds of disturbances and uncertainties.

4 Conclusion

A nonlinear-disturbance-observer-enhanced continuous-time MPC
approach has been proposed to achieve optimized offset-free track-
ing for motion control systems with multiple kinds of disturbances
in this paper. A new performance index that integrating the desired
steady-state control input has been proposed, which leads to the
offset-free tracking property and provides additional freedom on
penalizing the control input. The stability of the closed-loop sys-
tem has been rigorously developed. A PMSM servo system has
been conducted to illustrate the feasibility and efficacy of the pro-
posed method. It has been shown that the proposed control approach
exhibits remarkable tracking and anti-disturbance performances as
compared with other two robust MPC methods.
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Fig. 7: Case III–Constant load torque rejection of the PMSM servo
system
a The proposed method

b The MPC method in [12]

c The MPC method in [26]
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6 Appendices

The following lemma plays an important role in the proof of
Theorem 1.

Lemma 1 (Schur Decomposition Bound, [40]). The inequality

‖exp(At)‖ ≤ exp (α(A)t)
∑n−1
k=0 ‖Nt‖2/k! holds forA ∈ Rn×n,

where α(A) ∈ R is the maximum real part of eigenvalues of A and
N ∈ Rn×n is the Schur decomposition matrix of A.

Proof: It is divided into two steps. The first step is to prove that
the estimates in the observer (13) will respectively converge to their
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Fig. 8: Case IV–Time-varying load torque rejection of the PMSM
servo system
a The proposed method

b The MPC method in [12]

c The MPC method in [26]

truth-values within finite time. The second step is to prove that the
closed-loop system (3)-(12)-(13) is asymptotically stable.
1) First Step:

Let the estimation errors as σi , x̂i(t)− xi(t), i ∈ N1:n and

σn+j , ẑj(t)− zj(t), j ∈ N1:m. The error dynamics is then gov-
erned by

σ̇1 = −λ1L
1

n+m |σ1|
n+m−1

n+m sign(σ1) + σ2

σ̇i = −λiL
1

n+m+1−i |σi − σ̇i−1|
n+m−i

n+m+1−i sign(σi − σ̇i−1)

+ σi+1, i ∈ N2:n+m−1

σ̇n+m ∈ −λn+mLsign(σn+m − σ̇n+m−1) + [−L, L].
(18)

It follows from [28] that the estimation error system (18) is finite
time stable, i.e., there exists a finite time instant 0 < tf <∞ such
that σj(t), j ∈ N1:n+m are bounded if 0 ≤ t < tf and σj(t) ≡ 0
else if t ≥ tf .
2) Second Step:

With the observer error dynamics (18) in mind, inserting the MPC
law (12) into the output tracking error system (3) gives

e(n)(t) + kne
(n−1)(t) + · · ·+ k1e(t) + g(t) = 0 (19)

where g(t) , k2σ2 + · · ·+ knσn + σn+1. Since ki, i ∈ N1:n are
bounded, it follows from the result in First Step that g(t) is bounded
for 0 ≤ t < tf and g(t) ≡ 0 for t ≥ tf . Rewrite system (19) in the
following compact form

Ė(t) = AE(t) + Bg(t) (20)

where

E , [ x1(t) x2(t) · · · xn(t) ]⊤

A ,

[

O I
−k1 β

]

β , [ −k2 −k3 · · · −kn ]

B , [ 0 0 · · · −1 ]⊤

with I and O are identity matrix and zero matrix.
The solution E(t) of (20) is represented as E(t) = exp(At)E(0) +∫ t

0
exp (A(t− τ ))Bg(τ )dτ. It follows from the above equality that

‖E(t)‖ ≤ ‖ exp(At)E(0)‖+

∫ t
0
‖exp (A(t− τ ))‖ · |g(τ )|dτ. Let-

ting the upper bound of |g(t)| as γ ≥ 0, i.e., ∀t ≥ 0, |g(t)| ≤ γ, one
have the following inequality

‖E(t)‖ ≤ ‖exp(At)‖ · ‖E(0)‖+ γ

∫ t
0
‖exp(Aτ )‖dτ.

With the help of Lemma 1, in the case when α(A) 6= 0, one arrives
at that

‖E(t)‖ ≤ δt2 exp (α(A)t) ‖E(0)‖

+
δγ

α(A)3

((

α(A)2t2 − 2α(A)t + 2
)

exp (α(A)t)− 2
)

and in the case when α(A) = 0, one arrives at that

‖E(t)‖ ≤ δt2‖E(0)‖+
δγ

3
t3

where δ ,
∑n−1
k=0 ‖N‖2/k! ≥ 0 and N is the Schur decomposition

matrix of A.
Since the upper-bound function of ‖E(t)‖ is elementary with-

out any singular point, it can be concluded that within any finite
time interval (e.g., 0 ≤ t < tf ), ‖E(t)‖ is bounded whether A is
Hurwitz or not. Furthermore, if t ≥ tf , system (20) is reduced

to Ė(t) = AE(t). Note that the characteristic polynomial of A is

deduced as p(s) = sn + kns
n−1 + · · ·+ k1. Therefore, the suffi-

cient and necessary condition of asymptotic stability is that p(s) is
Hurwitz. This completes the proof. �
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