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Abstract

The tracking control based on output feedback for a category of flexible-joint robot (FJR)
systems is investigated in this brief. Control performance of the systems is inevitably bear-
ing the brunt of various unknown time-varying disturbances, which can be categorized to be
matched and mismatched and generally cover internal parameter uncertainties, couplings, un-
modelled dynamics, and external load or changing operating environments. To cope with these
disturbances, the mismatched disturbances are first transferred to the matched ones by a flat-
ness method, which eliminates the computational cost of estimating mismatched disturbances.
Then, a generalized proportional integral observer (GPIO) is constructed to estimate the un-
available states and disturbances. By integrating the estimated disturbance and states provided
by the GPIO, a novel dynamic sliding surface is constructed. Finally, a continuous sliding
mode control (CSMC)-based output feedback control framework is further designed. The pre-
sented control strategy only requires link position information and is continuous, which can
effectively reduce the chattering driven by the high-frequency switching item in the traditional
SMC method. Asymptotic convergence of output tracking error is guaranteed by theoretical
analysis under some mild conditions. Comparative tests on a two-link FJR verify the claimed
control performance.

Keywords: Continuous sliding mode control (CSMC), mismatched disturbance, generalized
proportional integral observer (GPIO), flexible-joint robot (FJR).

1. Introduction

In the past several decades, flexible-joint robot (FJR) has been abundantly employed in
human-robot interactions since it is designed to provide compliant behavior which guarantees
human safety during human-robot interaction [1, 2]. Nevertheless, a flexible-joint robot (FJR)
is a high-order and underactuated nonlinear system [3–5], which means that its order is twice
that of the rigid one, and its actuator is fewer than the degrees of freedom to be controlled [6].
Meanwhile, an FJR system is often perturbed by all kinds of uncertainties and disturbances
from the link side and actuator side, especially changing operating environments, couplings,
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and uncertainty of parameters [7]. The main motivation of this study is to develop a highly
accurate tracking control scheme for the FJR system under the above intractable constraints.

With the booming growth of integrated circuits and computer technologies in recent years,
it is feasible to design and employ advanced strategies to enhance the performance of mecha-
tronic control systems, including the FJR, in different ways. For this purpose, a massive number
of nonlinear control strategies have been utilized in flexible-joint (FJ) robotic systems, such as
backstepping control [8], adaptive control [9, 10], neural network control [11], singular per-
turbation control [12, 13], passivity-based control [14]. A limitation of these control schemes
is that speed sensors on the link and actuator are in demand. Nevertheless, it is known that
speed measurements are generally eliminated in modern electromechanical devices due to the
current requirements of reducing materials and maintenance costs [15]. Also, it is noted that
the control performance of a system under most nonlinear feedback control methods will be
degraded when severe disturbances are encountered. The reason is that these classic feedback
control strategies are not to mitigate or fight off the undesirable impact of the disturbances on
the control systems actively but to suppress them in a passive way [16–18]. These practical
factors further increase the difficulty of controller design.

Among the existing nonlinear control strategies, sliding mode control (SMC) attracts nu-
merous attention due to its inherent robustness against model errors, parameter uncertainties,
and unknown external perturbations [19–23]. However, it is known that the chattering driven
by switching items that exist in conventional SMC approaches is the main problem impeding
its implementation. Correspondingly, a large variety of research works for chattering attenua-
tion have been submitted to control the FJ robotic systems [24–26], such as high-order SMC
method [27], boundary layer-based SMC approach [25], and observer-based SMC strategy
[28]. Although the SMC scheme based on boundary layer can suppress the chattering behavior
by substituting the saturation function for the switching item, this treatment can only guaran-
tee that SMC is effective outside the boundary layer surrounding the sliding hyperplane, thus
increasing the steady-state tracking error. By dint of adjusting the switching gain to a small
one, the observer-based SMC strategy can reduce the chattering phenomenon to some extent,
but this kind of control law is discontinuous in nature. The high-order SMC method achieves
the purpose of continuity by placing the switching function in higher derivatives of the control
law.

Another key problem with conventional SMC is that it can mitigate matched perturbations
but cannot suppress unmatched perturbations entering the system via diverse channels from the
control inputs [29–31]. To overcome this problem, the authors in [32] presented an adaptive
SMC approach to dispose of mismatched disturbances via the backstepping-like design. Based
on the cascaded structure, the authors in [33] developed an SMC scheme for FJ robotic systems
suffering from mismatched disturbances. A disturbance observer-based SMC approach was
constructed for a category of underactuated robots subject to unmatched disturbances [34].
A novel SMC scheme combined with the iterative learning technique was employed in [35]
to improve the ability to suppress mismatched disturbances. These mentioned methods can
diminish the adverse impact of mismatched perturbations added to FJR systems, but there is still
potential for improving the control performance because the control laws are discontinuous, the
disturbances are handled without an active manner, or the computational burden is increased.

Besides, considering that the control performance of the FJ robotic systems always suffers
from various disturbances, many disturbance observation techniques have been addressed. For
example, extended state observer (ESO) [36] and disturbance observer [37, 38] were proposed
to observe constant disturbances or slow-varying disturbances, respectively. The difference be-
tween these two kinds of observers is that ESO can estimate system states in addition to distur-
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bances, and disturbance observer needs to use the nominal model of the FJR [39]. Generalized
proportional integral observer (GPIO) [7, 40] and finite-time disturbance observer (FTDO) [41]
were developed to reconstruct time-varying perturbations, respectively. The main advantage of
FTDO is that the exact estimates can be obtained in a finite time. However, it should be pointed
out that FTDO is discontinuous, and the utilization of power function terms in FTDO increases
the computational burden [42]. Therefore, considering the observation accuracy and compu-
tation burden, GPIO is an optimal scheme for estimating unmeasured states and time-varying
disturbances.

In this paper, a continuous SMC (CSMC) approach based on output feedback is developed
for the output of FJR systems to track its reference trajectory accurately. Firstly, to decrease the
design burden of the subsequent observer and controller, a simplified model is proposed by a
flatness approach, which transfers all the mismatched uncertainties/disturbances to the matched
ones. Next on, a GPIO is developed to estimate the unmeasured states and total time-varying
disturbance in unison. By introducing the estimated variables of the GPIO into a dynamic
sliding hyperplane, the proposed CSMC scheme based on output feedback is finally devised.
The contributions of our work are described below.

1) From the practical point of view, only a few parameters of the system model (i.e., the
nominal values of inertia matrix of link side, flexible coefficient matrix, and inertia matrix
of actuator side), the order of the system, as well as position measurements are required
for the design of the GPIO and proposed controller;

2) In terms of theoretical innovation, the presented continuous controller can effectively
solve the chattering phenomenon existing in conventional SMC methodology, which may
damage the actuator and stimulate undesirable dynamics of a system, in addition to han-
dling unknown matched/unmatched time-varying uncertainties/perturbations simultane-
ously;

3) Under the presented control method, a detailed theoretical analysis of the closed-loop
stability of the system is given;

4) In comparison with the traditional active disturbance rejection control (ADRC) tech-
nique, test results illustrate that the presented control approach possesses superior control
performance concerning trajectory tracking precision and robustness.

The rest of this note is outlined next. The dynamic of a category of n-link FJR systems and
problem formulation is presented in Section 2. Section 3 introduces the design procedure of
the output feedback control framework, consisting of a GPIO, a dynamic sliding hyperplane,
and a CSMC law, and analyzes the closed-loop stability. Section 4 gives the simulation results
of the proposed scheme and the ADRC scheme. A brief conclusion is in Section 5.

Notations: Throughout this brief, R, Rn, and Rn×n separately represent the real number, n-
vector, and n-matrix spaces; L∞ refers to the space of bound signals; ∥ · ∥ denotes Euclid norm;
sign(·) is a standard signum function; f (i) =

di f
dti .

2. Model description and problem formulation

The dynamic equation of a class of n-link FJ robotic systems is first introduced, and then
problem formulation based on a standard model is presented. Some widely held assumptions
are also detailed.
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2.1. Model description of FJR
Through the Euler-Lagrange equations, the mathematical equation of an n-link underactu-

ated FJR system, consisting of the link- and motor-side dynamics, is depicted by [1]{
M(ql)q̈l + C(ql, q̇l)q̇l + G(ql) = K(qm − ql) + d1,

J q̈m + Bq̇m + K(qm − ql) = τ + d2,
(1)

where ql and qm refer to the link and motor positions, respectively; The Coriolis-centripetal
matrix, inertia matrix, and gravity vector of the rigid link are separately denoted by C(ql, q̇l) ∈
Rn×n, M(ql) ∈ Rn×n, and G(ql) ∈ Rn; B ∈ Rn×n, J ∈ Rn×n, and K ∈ Rn×n denote the natural
damping terms, inertia matrix, and flexible coefficient matrix of the actuator side, respectively;
d1 ∈ Rn and d2 ∈ Rn represent external disturbances separately added to the link and actuator;
τ ∈ Rn is the control input or the motor torque. It is assumed that only ql is measurable in this
work.

Property 1 [12]: M(ql) is positive, symmetric, ∀ql ∈ Rn, and K and J are positive, diago-
nal.

Assumption 1 [43]: The matrices M(ql), K, and J subject to unknown time-varying dis-
ruptions and are expressed as M(ql) = M0(ql) + ∆M(ql), J = J0 + ∆J, and K = K0 + ∆K,
respectively, where M0(ql), J0 and K0 denote the nominal values; ∆M(ql), ∆J and ∆K denote
the unknown time-varying uncertainties.

Assumption 2 [7]: Suppose that q(i)
r (i = 0, 1, · · · .4) is of L∞, where qr = [qr1, qr2, · · · ,

qrn] ∈ Rn represent a given reference trajectory.

2.2. Problem formulation
Defining x1 = ql, x2 = q̇l, x3 = qm, and x4 = q̇m, we rearrange dynamic model (1) as

ẋ1 = x2,

ẋ2 = M−1(x1)(K(x3 − x1) − C(x1, x2)x2

− G(x1) + d1),
ẋ3 = x4,

ẋ4 = J−1(τ − Bx4 − K(x3 − x1) + d2).

(2)

which is a differentially flat system [44], and ql is the flat output which is redefined asΛ. Hence,
we can formulate all the variables containing state xi and control input τ by

x1 = Λ, x2 = Λ̇,

x3 = K−1
(
M(Λ)Λ̈ + C(Λ, Λ̇)Λ̇

+KΛ + G(Λ) − d1) ,

x4 = K−1
(
M (Λ)Λ(3) + Ṁ (Λ) Λ̈+ C

(
Λ, Λ̇
)
Λ̈

+ Ċ
(
Λ, Λ̇
)
Λ̇ + ΛΛ̇ +Ġ (Λ) − ḋ1

)
,

τ =
J M(Λ)

K
Λ(4) + Γ

(
Λ(3), Λ̈, Λ̇,Λ, M̈(Λ), Ṁ(Λ),

M(Λ), C̈(Λ, Λ̇), Ċ(Λ, Λ̇),C(Λ, Λ̇), G̈(Λ),

Ġ(Λ),G(Λ), K, J, B, d̈1, ḋ1, d1, d2

)
,

(3)

where C(Λ, Ḟ), M(Λ), G(Λ), B, Λ, K, J, d1, d2, and corresponding time derivatives are argu-
ments of function Γ(·), and a detailed expression for τ is provided in Appendix for readability.
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Recall Assumption 1, dynamic (3) is governed by the following simplified form

Λ(4) = ατ + ξ(t), (4)

where α = K0/(M0(Λ)J0), ξ(t) =
(
K/(M(Λ)J) − K0/(M0(Λ)J0)

)
τ −
(
K/(M(Λ) J)

)
Γ(·) is

deemed to be a lumped time-varying disturbance covering parameter variations, varying oper-
ating environment, and unmodelled dynamics.

Assumption 3: Disturbance ξ(t) in system (4) is bounded and m times differentiable, where
limt→∞ ∥ξ

(m)(t)∥ = 0.
Remark 1: Assumption 3 indicates that disturbance and its rate of change are invariably

finite in the real world. It is a broad internal model solution held by the higher-order disturbance
estimation technique [7, 45]. Besides, order m of ξ(t) should be selected based on the character
of the disturbances. To express the diverse forms of disturbances, for example, constant, ramp,
parabolic, and their combinations, we can set order m = 1, 2, and 3, respectively. Generally
speaking, choosing a larger m value can obtain a higher observation accuracy, but this treatment
will correspondingly bring the computational burden. Therefore, in practical application, a
tradeoff between observation precision and computational costs should be considered.

The ultimate goal of this note is to develop a concise control scheme for the underactuated
FJ robotic system (1) such that output trajectory ql follows its reference trajectory qr well in
the existence of total disturbance ξ(t).

3. Main results

The robust output feedback control scheme divided into several steps is provided. First, an
augmented state-space model is presented for the subsequent observer and controller design.
Second, we construct a GPIO for estimating the unmeasurable states as well as the lumped dis-
turbance. Third, with the estimates provided by the GPIO, a concise output feedback controller
is designed by introducing a CSMC technique. Finally, a theoretical analysis of the closed-loop
stability analysis is provided.

3.1. Controller design
Recalling Assumption 3, we can define the following set of auxiliary variables

ξ0 = ξ(t), ξ1 = ξ̇(t), · · · , ξm−1 = ξ
(m−1)(t).

Based on system (4), we can obtain the augmented state-space system:
Λ̇i = Λi+1, i = 0, 1, 2

Λ̇3 = ξ0 + ατ,

ξ̇ j = ξ j+1, j = 0, 1, · · · ,m − 2,

ξ̇m−1 = ξ
(m)(t),

(5)

where Λ0 = Λ, Λ1 = Λ̇, Λ2 = Λ̈, Λ3 = Λ
(3).

The GPIO presented by [7] is an effective way for estimating time-varying perturbation and
unmeasured states in (5), where Λi and ξ j are estimated by

˙̂Λi = Λ̂i+1 − Lm+3−i(Λ̂0 − Λ0),
˙̂Λ3 = ξ̂0 + ατ − Lm(Λ̂0 − Λ0),
˙̂ξ j = ξ̂ j+1 − Lm−1− j(Λ̂0 − Λ0),
˙̂ξm−1 = −L0(Λ̂0 − Λ0),

(6)
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where Λ̂0, Λ̂1, Λ̂2, Λ̂3 are the estimates of Λ0, Λ1, Λ2, Λ3, respectively; ξ̂0, ξ̂1, · · · , ξ̂m−1 are the
estimates of ξ0, ξ1, · · · , ξm−1, respectively; Li = diag(Li1, Li2, · · · , Lin), Li1, Li2, · · · , Lin > 0, (i =
0, 1, · · · ,m + 3), are observer coefficients, which can be determined such that the polynomials

sm+4 + L(m+3)ks3 + L(m+2)ks2 + · · · + L1ks + L0k, (k = 1, 2, · · · , n)

are Hurwitz stable.
The observer estimation errors of (5) and (6) are denoted by

ĖΛi = EΛi+1 − Lm+3−iEΛ0 ,

ĖΛ3 = Eξ0 − LmEΛ0 ,

Ėξ j = Eξ j+1 − Lm−1− jEΛ0 ,

Ėξm−1 = −ξ
(m)(t) − L0EΛ0 ,

(7)

where EΛi = Λ̂i − Λi, (i = 0, 1, 2, 3), Eξ j = ξ̂ j − ξ j, ( j = 0, 1, · · · ,m − 1). Letting E =
[ET
Λ0
, · · · , ET

Λ3
, ET
ξ0

, · · · , ET
ξm−1

]T , we have

Ė = AE + Bξm(t), (8)

where

A =


−Lm+3 I 0 · · · 0
−Lm+2 0 I · · · 0
...

...
...
. . .
...

−L1 0 0 0 I
−L0 0 0 0 0


, B =


0
0
...
0
−I


.

Notice that A is Hurwitz. Then, there exists a positive symmetric matrix P such that the equa-
tion AT P + PA = −I holds. We choose a quadratic Lyapunov function Ve(E) = ET PE that
implies the property Ve(E)/λmax(P) ≤ ∥E∥2 ≤ Ve(E)/λmin(P), where λmin(P) and λmax(P) re-
spectively represent the minimum and maximum eigenvalues of matrix P.

Taking the derivative of Ve(E) gives

V̇e(E) ≤ − ∥E∥2 + 2λmax(P)∥E∥ ∥ξ(m)(t)∥

≤ − ∥E∥2 + λmax(P) ∥E∥2 + λmax(P)∥ξ(m)(t)∥2

≤ −(1 − λmax(P)) ∥E∥2 + λmax(P)∥ξ(m)(t)∥2

≤ −(
1

λmax(P)
− 1)V(E) + λmax(P)∥ξ(m)(t)∥2.

(9)

From formula (9), we obtain

Ve(E) ≤
λ2

max(P)∥ξ(m)(t)∥2

1 − λmax(P)
+ (Ve(E(0)) −

λ2
max(P)∥ξ(m)(t)∥2

1 − λmax(P)
)e−[ 1

λmax(P)−1]t, (10)

and the convergence region (denoted as B) of error E can be further deduced by

B =

{
E
∣∣∣∣∣ ∥E∥2 ≤ λ2

max(P)∥ξ(m)(t)∥2

λmin(P)(1 − λmax(P))

}
, (11)

which means E will converge to the bounded region B in an exponential manner. Since the
disturbance ξ(t) in system (4) satisfies Assumption 3, it follows from formula (11) that the
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states of GPIO (6) can track its real states in (5) asymptotically by configuring appropriate
coefficient Li [46], that is limt→∞ EΛi(t) = 0, limt→∞ Eξ j(t) = 0.

With the estimations given by the GPIO, a novel dynamic sliding surface is constructed by

S = [S 1, · · · , S n]T = Λ(4)
r − (ατ + ξ̂0) +

3∑
i=1

Hi(Λ(i)
r − Λ̂i) + H0(Λr − Λ0), (12)

where Λr = qr stands for a given reference trajectory, Hi = diag(Hi1,Hi2, · · · ,Hin), Hi1, Hi2,
· · · , Hin > 0, (i = 0, 1, 2, 3) are the coefficients, which can be selected such that the polynomials

s4 + H3ks3 + H2ks2 + H1ks + H0k, (k = 1, 2, · · · , n)

are Hurwitz stable.
Next on, a proposed output feedback control law is designed by integrating the CSMC

technique [47] and disturbance observations (6), which is formulated by
τ = α−1(τeq + τv),

τeq = Λ
(4)
r +

3∑
i=1

Hi(Λ(i)
r − Λ̂i) + H0(Λr − Λ0) − ξ̂0,

τ̇v = λsign(S),

(13)

with λ = diag(λ1, λ2, · · · , λn) the control gain.
The block diagram of the FJ robotic system under the presented control scheme is illus-

trated in Fig. 1, which mainly includes model transformation and controller design. Model
transformation converts mismatched disturbances in formula (1) to a lumped matched distur-
bance as shown in formula (5). For controller design, observer (6) is first constructed based on
formula (5), and then sliding mode surface (12) and CSMC law (13) are developed based on
the observation results.

Controller: The proposed robust output feedback controller
based on the CSMC and GPIO techniques

Transformation: The mismatched disturbances
are transferred to the matched ones via a flatness method

Λ
(i)
r , (i = 0, · · · , 4)

Λ
(i)
r , (i = 0, · · · , 4)

CSMC
τ = α−1(τeq + τv),

τeq = Λ
(4)
r +

3∑
i=1

Hi(Λ
(i)
r − Λ̂i) + H0(Λr − Λ0) − ξ̂0,

τ̇v = λsign(S).

n-link Flexible-Joint Robot

τ {M(ql)q̈l + C(ql, q̇l)q̇l + G(ql) = K(qm − ql) + d1,

J q̈m + Bq̇m + K(qm − ql) = τ + d2.



Λ̇i = Λi+1, i = 0, 1, 2

Λ̇3 = ξ0 + ατ,

ξ̇ j = ξ j+1, j = 0, 1, · · · ,m − 2,

ξ̇m−1 = ξ
(m)(t).

Augmented System

Λ0

GPIO

˙̂Λi = Λ̂i+1 − Lm+3−i(Λ̂0 − Λ0),
˙̂Λ3 = ξ̂0 + ατ − Lm(Λ̂0 − Λ0),
˙̂ξ j = ξ̂ j+1 − Lm−1− j(Λ̂0 − Λ0),
˙̂ξm−1 = −L0(Λ̂0 − Λ0).

Λ0, ξ̂0, Λ̂k , (k = 1, 2, 3)

S = Λ(4)
r − (ατ + ξ̂0) +

3∑
i=1

Hi(Λ
(i)
r − Λ̂i) + H0(Λr − Λ0).

SSliding Surface

Figure 1: Block diagram of the presented output feedback control approach based on the CSMC, GPIO, and
flatness techniques
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3.2. Stability analysis
Lemma 1 [48]: Inequality (|γ1| + |γ2| + · · · + |γn|)α ≤ |γ1|

α + |γ2|
α + · · · + |γn|

α holds for
γi(i = 1, 2, · · · , n) ∈ R and 0 < α ≤ 1 a constant.

Lemma 2 [49]: Suppose that a system ẋ = f (x, υ(t)) is input-to-state stable (ISS). If condi-
tion limt→∞ υ(t) = 0 is satisfied, it yields limt→∞ x(t) = 0.

Theorem 1: For FJ robotic system (1), Assumptions 1-3 are satisfied, and parameter un-
certainties and time-varying disturbances are unknown. With the appropriate coefficients {L0,
L1, · · · , Lm+3} and {H0, H1, H2, H3}, the proposed control method including the observer (6),
sliding mode surface (12), and control law (13) ensures that link position ql of the system
asymptotically converges to the reference trajectory qr if the gain λi > 0.

Proof: Substituting (13) into (12), yields

S = Λ(4)
r − (τeq + τv + ξ̂0)

+

3∑
i=1

Hi(Λ(i)
r − Λ̂i) + H0(Λr − Λ0)

= −τv,

(14)

and then taking the derivative of S, yields

Ṡ = −λsign(S). (15)

A Lyapunov function can be defined as

V(S) = (1/2)ST S =
n∑

i=1

Vi(S i) =
n∑

i=1

(1/2)S 2
i , (16)

Recalling Lemma 1, we can obtain the time derivative of V(S) as

V̇(S) = ST Ṡ = −
n∑

i=1

(λi|S i|)

= −
√

2λM

n∑
i=1

V
1
2

i (S i)

≤ −
√

2λM
( n∑

i=1

Vi(S i)
) 1

2

= −
√

2λMV
1
2 (S),

(17)

where λM = min(λi). If λi > 0, it is concluded according to (17) that in finite time, states of the
system will arrive at sliding hyperplane S = 0. Then, we obtain the sliding motion formulated
by

S = Λ(4)
r − (ατ + ξ0) − (ξ̂0 − ξ0) +

3∑
i=1

Hi(Λ(i)
r − Λi)

−

3∑
i=1

Hi(Λ̂i − Λi) + H0(Λr − Λ0)

= 0.

(18)
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Letting E0 = Λr − Λ0, Ei = Λ
(i)
r − Λi, (i = 1, 2, 3), yields,

Λ(4)
r − (ατ + ξ0) + H3E3 + H2E2 + H1E1 + H0E0

=

3∑
i=1

HiEΛi + Eξ0 .
(19)

Combining (19) with system dynamics (5) yields

E(4)
0 + H3E(3)

0 + H2Ë0 + H1Ė0 + H0E0

=

3∑
i=1

HiEΛi + Eξ0 .
(20)

Under the given conditions, it can be certified that system A is stable. Under the given condi-
tions that Hi1,Hi2, · · · ,Hin > 0, it can be certified that system

E(4)
0 + H3E(3)

0 + H2Ë0 + H1Ė0 + H0E0 = 0, (21)

achieves exponential stability. One step further, it is deduced according to Lemma 5.5 in
[49] that system (20) features ISS. Based on the results of observer estimation dynamics (7),
limt→∞ EΛi(t) = 0, limt→∞ Eξ j(t) = 0. Hence, it can be concluded based on Lemma 2 that
the state of system (20) satisfies limt→∞ E0(t) = limt→∞(qr(t) − ql(t)) = 0. This suggests that
link position ql will converge to the reference trajectory qr in an asymptotic manner under the
presented control approach. The proof is thus ended.

Remark 2: Compared with the traditional SMC method, the presented approach is con-
tinuous and can effectively attenuate the chattering phenomenon attributable to the presence of
the high-frequency switching item. Different from the existing CSMC [47], the proposed con-
trol method has two obvious advantages: 1) The improved dynamic sliding surface simplifies
the computational burden caused by the existence of a derivative term in the original sliding
surface; 2) The introduction of time-varying disturbance estimation actively enhances the dis-
turbance suppression ability of the system; 3) It can be known from the above proof process
that the recommended method only needs control gain λi > 0, rather than requiring λi to be
greater than the upper limit of the time derivative of the perturbation [47]. Therefore, owing to
the intrinsic structural merits, the recommended control strategy features the FJR systems with
high-accuracy tracking and strong disturbance rejection capacity.

Remark 3: The coefficients of the recommended control approach can be easily configured.
The method consists of two sets of control coefficients Hi and Li (Hi in controller (13) and Li

in observer (6)), and a control gain λ. According to the given parameter configuration rules, Hi

and Li can be determined separately, which can also be illustrated by the following simulation
examples. For λ, it satisfies λi > 0.

4. Simulation results

In order to substantiate the merits of the presented control approach, a comparative test
between our presented control method and the well-known ADRC scheme is performed on a
two-link FJR employing MATLAB/Simulink with a fixed-step solver, and its sampling period
is set as 0.1ms. The ADRC method is designed as [50]

τ = α−1(Λ(4)
r +

3∑
i=1

Hi(Λ(i)
r − Λ̂i) + H0(Λr − Λ0) − ξ̂0), (22)
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and the corresponding observer called ESO is formulated as
˙̂Λi = Λ̂i+1 − L4−i(Λ̂0 − Λ0), i =, 0, 1, 2,
˙̂Λ3 = ξ̂0 + ατ − L1(Λ̂0 − Λ0),
˙̂ξ0 = −L0(Λ̂0 − Λ0).

(23)

1m

2m

1l

2l

g

1K

2K

1J

2J 2B

1B

1mq

2mq

1lq

2lq

Figure 2: Two-link FJ manipulator

Fig. 2 depicts the two-link FJ manipulator. The parameters for the dynamics in the form of
(1) are listed as

M(ql) =
[

(m1 + m2)l2
1 m1l1l2(s1s2 + h1h2)

m1l1l2(s1s2 + h1h2) m2l2
2

]
,

C(ql, q̇l) = m2l1l2(h1s2 − s1h2)
[

0 −q̇l2

−q̇l1 0

]
,

G(ql) =
[
−(m1 + m2)l2

1
−m2l2gs2

]
, J =

[
J1 0
0 J2

]
, B =

[
B1 0
0 B2

]
, K =

[
K1 0
0 K2

]
, τ =

[
τ1

τ2

]
,

where h1 = cos(ql1), s1 = sin(ql1), h2 = cos(ql2), s2 = sin(ql2). Table 1 gives the nominal
parameter values of the two-link FJR employed in the tests.

Suppose that the FJR system is perturbed by external disturbances and parameter varia-
tions. Uncertainties of K, J, and M(ql) are ∆K1 = ∆K2 = 5cos(0.5t) N·m/rad, ∆J1 = ∆J2 =

0.2sin(0.2t) kg·m2, and ∆m1 = ∆m2 = 0.2sin(0.5t) kg, respectively. The external disturbances
d1, d2 are set separately as

d1 =

[
d11

d12

]
=


[2; 2], 10 ≤ t < 20,
[2d; 2d], 20 ≤ t < 30,
0, else,

d2 =

[
d21

d22

]
=


[7; 7], 30 ≤ t < 40,
[7d; 7d], 40 ≤ t < 50,
0, else,

where d = e−sin2(10t)cos2(5t) (This formula refers to the expression of disturbances in literature
[7] and [40] ).
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Table 1: Nominal parameters of two-link FJR

Parameter Description Values Unit

m1 mass of link 1 2 kg
m2 mass of link 2 3 kg
l1 length of link 1 1 m
l2 length of link 2 1 m
J1 joint flexibility 1 kg·m2

J2 joint flexibility 1 kg·m2

B1 damping coefficient 0.9 N·m·s/rad
B2 damping coefficient 0.9 N·m·s/rad
K1 joint stiffness 100 N·m/rad
K2 joint stiffness 100 N·m/rad
g gravitational constant 9.8 m/s2
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Figure 3: Response curves of two-link FJR under the ADRC approach: (a) Desired trajectories, qr1, qr2, and link
positions, ql1, ql2; (b) Tracking errors, qr1 − ql1, qr2 − ql2; (c) Control torques, τ1, τ2.
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Figure 4: Response curves of two-link FJR under the presented control approach: (a) Desired trajectories, qr1, qr2,
and link positions, ql1, ql2; (b) Tracking errors, qr1 − ql1, qr2 − ql2; (c) Control torques, τ1, τ2.

Table 2: Trajectory tracking performance comparisons

Control approach Time period IAEql1 IAEql2 IT AEql1 IT AEql2

ADRC
0-10 seconds 0.4808 0.5389 2.2037 2.1948
10-30 seconds 0.7354 0.8552 7.7594 8.6446
30-50 seconds 0.7428 0.8588 7.3013 8.5130

Proposed scheme
0-10 seconds 0.0839 0.1003 0.0335 0.0390
10-30 seconds 0.0075 0.0754 0.0789 1.0548
30-50 seconds 0.0032 0.0146 0.0212 0.1145
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Figure 5: Estimate curves of two-link FJR under the ADRC approach: (a) Link positions, Λ01,Λ02, and its esti-
mates, Λ̂01, Λ̂02; (b) Estimated states, Λ̂11, Λ̂12; (c) Estimated states, Λ̂21, Λ̂22; (d) Estimated states, Λ̂31, Λ̂32; (e)
Estimated disturbances, ξ̂01, ξ̂02.
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Figure 6: Estimate curves of two-link FJR under the presented control approach: (a) Link positions, Λ01,Λ02, and
its estimates, Λ̂01, Λ̂02; (b) Estimated states, Λ̂11, Λ̂12; (c) Estimated states, Λ̂21, Λ̂22; (d) Estimated states, Λ̂31, Λ̂32;
(e) Estimated disturbances, ξ̂01, ξ̂02.
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Let the desired trajectories be

qr1 = sin(t),
qr2 = 0.5sin(t) + 0.5sin(1.5t).

Choosing m in (6) as m = 5, the observer coefficients and controller gains of the proposed
control method in (6) and (13) are designed as

L0 = diag(ω9
o, ω

9
o), L1 = diag(9ω8

o, 9ω
8
o),

L2 = diag(36ω7
o, 36ω7

o), L3 = diag(84ω6
o, 84ω6

o),
L4 = diag(126ω5

o, 126ω5
o), L5 = diag(126ω4

o, 126ω4
o),

L6 = diag(84ω3
o, 84ω3

o), L7 = diag(36ω2
o, 36ω2

o),
L8 = diag(9ωo, 9ωo), λ = diag(2500, 2500),
H0 = diag(ω4

c , ω
4
c), H1 = diag(4ω3

c , 4ω
3
c),

H2 = diag(6ω2
c , 6ω

2
c), H3 = diag(4ωc, 4ωc),

where ωc = 9, ωo = 40. In the interest of an equitable comparison, coefficients of the ADRC
scheme are set to: Hi in (22) is identical to that in (13), the observer bandwidth of ESO is also
set as ωo = 40, and thus Li in (23) is configured as

L0 = diag(ω5
o, ω

5
o), L1 = diag(5ω4

o, 5ω
4
o),

L2 = diag(10ω3
o, 10ω3

o), L3 = diag(10ω2
o, 10ω2

o),
L4 = diag(5ωo, 5ωo).

The saturated limits of control input τ is set to τi ∈ [−100,+100] for both methods.
There are three groups of tests that we performed to evaluate the robustness and tracking

performance of the two-link FJR system under ADRC and proposed robust control schemes.
The test results of these two approaches are displayed in Figs.3-6, respectively, where Λ̂i1 and
Λ̂i2 are the components of Λ̂i, (i = 0, 1, 2, 3), respectively, and ξ̂01 and ξ̂02 are the components
of ξ̂0.

Response profiles of desired trajectories qr1, qr2, real-time trajectories ql1, ql2, tracking er-
rors qr1 − ql1, qr2 − ql2, and control torques τ1, τ2 of link 1 and link 2 of the two-link FJR, are
shown in Fig. 3 and Fig. 4. Corresponding to Fig. 3 and Fig. 4, estimate curves of link position
estimates Λ̂01, Λ̂02, estimated states Λ̂11, Λ̂12, Λ̂21, Λ̂22, Λ̂31, Λ̂32, and estimated disturbances
ξ̂01, ξ̂02 are respectively provided in Fig. 5 and Fig. 6.

The first comparative tests are shown in Figs.3-6 for 0-10 seconds, where parameter un-
certainties ∆mi, ∆Ji, ∆Ki are considered. As observed in Fig. 3(b) and Fig. 4(b), when the
ADRC and recommended continuous output feedback control methods are respectively em-
ployed to the two-link FJR, the system under the ADRC scheme possesses larger tracking errors
compared with the proposed control method. These curves indicate that the presented control
method has higher precision tracking performance and can suppress parameter uncertainties.
During 10-20 seconds, the second comparative test is conducted to verify the robustness against
mismatched disturbance d1, which perturbs the link of the two-link FJR. It is displayed from
Fig. 4(b) that the presented control method obtains a stronger ability to suppress mismatched
disturbance. The third comparative test is conducted in 20-30 seconds to examine the capacity
of the system to handle matched disturbance d2. From the results of Fig. 3(b) and Fig. 4(b),
we can observe that the proposed output feedback controller possesses a smaller tracking er-
ror, which indicates that the system under the proposed approach has the ability to suppress
matched disturbance. To quantify the tracking performance of the system, integral absolute
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error (IAE) and integral time-weighted absolute error (ITAE) are introduced, which are defined
as IAEqli =

∫ t

t0
|qri − qli|dτ, (i = 1, 2), IT AEql j =

∫ t

t0
(τ − t0)|qr j − ql j|dτ, ( j = 1, 2). According

to Figs 3-4, the comparison of performance indexes on the ADRC and proposed strategies at
diverse conditions are revealed in Table 2. It can be concluded that the presented control strat-
egy achieves excellent high-precision tracking performance and strong disturbance rejection
capacity.

5. Conclusions

This paper has addressed the tracking control issue of generic underactuated FJR systems
bearing the brunt of unknown unmatched/matched time-varying disturbances, covering param-
eter uncertainties, changing operating circumstances, etc. To eliminate the adverse effects of
these disturbances on control performance, a GPIO is firstly devised based on a simplified
model where the mismatched disturbances are transferred to the matched ones by the means
of the flatness technique. Then, an output feedback control framework using the CSMC tech-
nique is developed with the aid of the estimated perturbation and states provided by the GPIO.
The proposed control approach ensures that system output asymptotically converges its de-
sired trajectory and keeps a continuous control behavior. Besides, only the position measure-
ments of the link side are employed for the design of the developed GPIO and control law.
Moreover, the comparative results on the two-link FJR have shown that overall the proposed
robust control method outperforms the conventional ADRC scheme in the existence of vari-
ous matched/unmatched perturbations. Due to the complete theoretic guarantee and the simple
control structure of the presented control approach, it can be easily extended to other similar
disturbed systems with mild modification.
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Appendix

The expression of τ in (3) is governed by

τ = J ẋ4 + Bx4 + K (x3 − x1) − d2

=
J
K

(
M (Λ)Λ(4) + 2Ṁ (Λ)Λ(3)+ M̈ (Λ) Λ̈

+ C(Λ, Λ̇)Λ(3) + 2Ċ(Λ, Λ̇)Λ̈ + C̈(Λ, Λ̇)Λ̇ + KΛ̈

+ G̈ (Λ) − d̈1

)
+

B
K

(
M (Λ)Λ(3) + Ṁ (Λ) Λ̈

+ C(Λ, Λ̇)Λ̈ + Ċ(Λ, Λ̇)Λ̇ + KΛ̇ + Ġ (Λ) − ḋ1

)
+ M (Λ) Λ̈ + C(Λ, Λ̇)Λ̇ + G (Λ) − d1 − d2

=
J M (Λ)

K
Λ(4) +

2J Ṁ(Λ) + BM(Λ) + JC(Λ, Λ̇)
K

Λ(3)

+
( J M̈(Λ) + 2JĊ(Λ, Λ̇)

K
+

BṀ (Λ) + BC(Λ, Λ̇)
K

+ M(Λ) + J
)
Λ̈ +
( JC̈(Λ, Λ̇)

K
+

BĊ(Λ, Λ̇)
K

+ C(Λ, Λ̇) + B
)
Λ̇ +

J
K

(
G̈ (Λ) − d̈1

)
+

B
K

(
Ġ (Λ) − ḋ1

)
+ G (Λ) − d1 − d2.
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