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Key Points

• ZAP-70 enhances a
tonic BCR-signal
exclusively found in
IGHV-unmutated CLL.

• ZAP-70 augments
CCR7-signaling and
cell migration of
unmutated CLL
through activation of
LCP-1.
5/blooda_adv-2022-009557-
Expression of ZAP-70 in a subset of patients with chronic lymphocytic leukemia (CLL)

positively correlates with the absence of immunoglobulin heavy-chain gene (IGHV)

mutations and is indicative of a more active disease and shorter treatment-free survival.

We recently demonstrated that ZAP-70 regulates the constitutive expression of CCL3 and

CCL4, activation of AKT, and expression of MYC in the absence of an overt B-cell receptor

(BCR) signal, bona fide functions of BCR activation. We, here, provide evidence that these

features relate to the presence of a constitutive tonic BCR signal, exclusively found in IGHV-

unmutated CLL and dependent on the ZAP-70–mediated activation of AKT and its

downstream target GSK-3β. These findings are associated with increased steady-state

activation of CD19 and SRC. Notably this tonic BCR signal is not present in IGHV-mutated

CLL cells, discordantly expressing ZAP-70. Results of quantitative mass spectrometry and

phosphoprotein analyses indicate that this ZAP-70–dependent, tonic BCR signal regulates

CLL cell migration through phosphorylation of LCP1 on serine-5. Indeed, we show that

CCL19- and CCL21-induced chemotaxis is regulated by and dependent on the expression of

ZAP-70 through its function to enhance CCR7 signaling to LCP1. Thus, our data demonstrate

that ZAP-70 converges a tonic BCR signal, exclusively present in IGHV-unmutated CLL and

CCR7-mediated chemotaxis.
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Introduction

Two decades ago, the expression of the tyrosine kinase ZAP-70 was identified in a subset of malignant
B cells from patients with chronic lymphocytic leukemia (CLL) and is highly associated with unmutated
IGHV genes.1 Similar to patients carrying unmutated IGHV genes, those with ZAP-70 positive CLL
have a more active disease and require treatment earlier than patients with ZAP-70 negative CLL.2,3

Notably, the association between unmutated IGHV genes and ZAP-70 expression is not perfect, but
~20% of mutated CLL cases also express ZAP-70 at detectable levels above the arbitrary defined flow-
cytometry threshold of 20%.1,3 The spare clinical data available for those “discordant” cases suggest
that ZAP-70 status outperforms mutational status as a prognostic biomarker and that those patients
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despite carrying mutated IGHV genes have an unusual aggressive
clinical course.3 These observations also suggested that ZAP-70
could have a biological role in CLL rather than only being a sur-
rogate marker for genetically defined subgroups. This hypothesis
was further corroborated by several groups describing an associ-
ation of ZAP-70 expression with B-cell receptor (BCR)–signal
strength, cytokine secretion, and cell migration.4-7 However, few
data clarified whether those functions were related to protein
functions or a mere correlation with ZAP-70 expression.

To address this question, we have recently established a method to
downregulate ZAP-70 expression in primary CLL cells using small
interfering RNA (siRNA). Our data indicated that ZAP-70 is
required for the activation of AKT, cytokine expression, and
MYC-expression.8 All these effects, previously attributed to BCR-
activation, did not require activation of the BCR but were consti-
tutively regulated by ZAP-70, suggesting that ZAP-70 could
enhance a constitutive, tonic BCR-signal. Whether these functions
of ZAP-70 are restricted to patients carrying unmutated IGHV or
are also present in “ZAP-70 discordant” cases remained an open
question from our work.

We, here, provide evidence that ZAP-70 augments CD19, SRC,
and AKT-activation only in IGHV-unmutated, but not mutated, CLL
indicating existence of a tonic BCR signal modulated by ZAP-70.
Furthermore, we describe that ZAP-70 directly increases the
migration potential of malignant B cells, associated with an
enhanced signaling response to CCL19 and CCL21 stimulation.
le-pdf/8/5/1167/2216615/blooda_adv-2022-009557-m
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Material and methods

Cell culture

After obtaining informed consent from patients and in accordance
with the Declaration of Helsinki, peripheral blood was obtained from
patients with CLL. Studies were approved by the Cambridgeshire
Research Ethics Committee (07/MRE05/44). Mononuclear cells
were isolated from heparinized blood by centrifuging over a ficoll-
hypaque layer (PAN-Biotech). Cells were harvested and cultured
in RPMI 1640 (Gibco), supplemented with 10% fetal bovine serum,
penicillin/streptomycin 50 U/mL, sodium pyruvate 1 mM, L-glutamine
2 mM, L-asparagine 20 mg/mL, 50 μM 2-mercaptoethanol, 10 mM
HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid), and
minimum essential medium nonessential amino acids (Gibco). ZAP-
70 status was assessed by flow cytometry using intracellular staining
with an anti–ZAP-70 antibody (Becton Dickinson Biosciences).
Samples with >20% positive cells compared with isotype control
were considered positive for ZAP-70.

Nucleofection of primary CLL cells

Nucleofector technology (Lonza) was used to deliver siRNA to
primary cells. A total of 5 × 106 CLL cells were resuspended in 100
μL solution-V with 7.5 μL of nonsilencing control siRNA (Thermo-
fisher Scientific 12935300) or 2.5 μL of each ZAP-70 siRNA (Life
technologies HSS187732, HSS187733, and HSS187734). The
cell-siRNA suspension was nucleofected using the Nucleofector
2b device (Lonza) (program cell type-4, X-001). Cell pellets were
collected and resuspended in 3 mL fresh media. siRNA-transfected
CLL cells were cocultured with 5 × 104 stromal cells (plated 24
hours before coculturing CLL cells) per well in a 6-well plate for
7 days.
1168 CHEN et al
Calcium flux

A total of 5 × 106 cells were harvested and resuspended in 500 μL
serum-free media. Two microliter Fluo-4 (Invitrogen) was added
and incubated for 15 minutes at room temperature with protection
from light. Cells were then washed and resuspended in 100 μL
Hanks’ balanced salt solution (Ca2+ free). Cells were then labeled
with 20 μg biotin-SP AffiniPure Fab fragment goat anti-human
immunoglobulin M (IgM) for 20 minutes on ice. Unlabeled anti-
IgM was washed off by pelleting cells and resuspending in 500
μL Hanks’ balanced salt solution, followed by 20-minutes incuba-
tion at 37◦C. 4′,6-diamidino-2-phenylindole was added to identify
dead cells. Samples were analyzed on flow cytometry. Measure-
ment was lasting for 20 seconds to record background Ca2+

signal, then 20 μL streptavidin (1 mg/mL) was added to stimulate
the Ca2+ flow. Measurement was resumed for up to 180 seconds.
Ionomycin was then added to indicate the specific of Ca2+ signal.

Immunoblotting

After the specified treatments, cells were harvested and lysed in
RIPA buffer and a total of 10 to 20 μg protein was separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis, fol-
lowed by blotting to polyvinylidene difluoride membranes (Milli-
pore), and probing with indicated primary antibodies. Protein signal
intensity was measured using Fiji (Image J) for quantification and
statistical analysis.

Migration assay

Cells after treatment were resuspended in media (CLL cells in
RPMI1640; MEC1 cells in Iscove minimal essential medium) with
5% fetal bovine serum. From this 5 × 105 to 1 × 106 cells were
added to the top chamber of a 6.5 mm diameter transwell culture
insert with a pore size of 5 μM. Filters with cells were transferred
into wells containing medium with the chemokines CCL19 (1 μg/
mL) and CCL21 (1 μg/mL) (PeproTech) or media alone. The
chambers were incubated for 3 hours at 37◦C in 5% CO2. After
incubation cells in the lower chamber were thoroughly resus-
pended, stained with CD5 and CD19 antibody and counted using
CountBright Absolute counting beads according to the manufac-
turers protocol (ThermoFisher). The migration index was calculated
as the number of cells transmigrating with chemokine divided by
the number of cells loading onto the transwells.

Establishment of MEC1 tetracycline-regulated

inducible ZAP-70 expression system

To create an inducible ZAP-70 expression system, Life Technolo-
gies’ T-RExTM system was used according to manufacturer’s
instructions. The ZAP-70 gene was cloned into the pcDNA4/TO
vector backbone. MEC1 cells were transfected by Amaxa nucleo-
fection according to manufacturer’s instructions with pcDNA6/TR
vector containing the tet repressor gene. Clones were selected by
single-cell dilution using 5 μg/mL blasticidin. A positive clone
containing the pcDNA6/TR vector was subsequently transfected
with the pcDNA4/TO_ZAP-70 construct (MEC1/ZAP-70) or the
unmodified pcDNA4/TO mock control vector (MEC1/parental) as
described above. After single-cell dilution under double selection
with 5 μg/mL blasticidin and 200 μg/mL zeocin clones were
selected by flow cytometry analysis of ZAP-70 expression after
treatment with 500 ng/mL tetracycline for 24 hours.
12 MARCH 2024 • VOLUME 8, NUMBER 5
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Statistical analyses

All experiments were repeated at least 3 times, and the means ±
standard error of the mean were calculated. The exact sample size
for each experiment, biological or technical repeats are provided in
the figure legends. Statistical analyses of results were performed
using 2-tailed Student paired t tests. For experiments in which >2
groups are compared, statistical analyses were performed using 1-
way analysis of variance followed by 2-tailed Student paired t tests.
Statistical annotations as previously noted were denoted with
asterisks according to the following, **P < .01, *P < .05, and ns
P > .05.

Results

Constitutive AKT-activation is regulated by ZAP-70

exclusively in UM-CLL

Our previously established protocol to deplete the expression of
ZAP-70 in primary CLL cells allowed us to study the functions
of ZAP-70 in primary CLL cells without a simultaneous inhibition of
the closely related SYK-kinase.8 Our data indicated that ZAP-70
constitutively regulates AKT-activation, cytokine production, and
protein synthesis. The effects of ZAP-70 on these BCR-signaling
functions were heterogenous, ranging from moderate to profound
changes. We hypothesized that the observed differences could be
related to differences in the IGHV mutational status of the cells. In
particular, we were interested in understanding whether mutated
IGHV cases, discordantly expressing ZAP-70, were also reliant on
ZAP-70 for a constitutive activation of AKT, similar to IGHV-
unmutated (UM-CLL) (ZAP-70-positive, concordant) cases. In
keeping with our recent data, downregulation of ZAP-70 did not
affect anti-IgM–induced BCR-signaling measured by Ca2+ influx.
Notably, M-CLL cases responded poorly to BCR-ligation
compared with UM-CLL, irrespective of ZAP-70 expression levels
(Figure 1A-B). We previously demonstrated a significant decrease
in the baseline phosphorylation of AKT on threonine 308 but less
so on serine 473 upon ZAP-70 downregulation in UM-CLL
(Figure 1C, left panel, quantification can be found in Chen
et al8). In contrast, in M-CLL, the baseline activation of AKT acti-
vation, assessed by phosphorylation on serine 473 and threonine
308, was unaffected by knockdown of ZAP-70 (Figure 1C-D). To
corroborate the finding that ZAP-70 concordant and discordant
cases responded differently to deletion of endogenous ZAP-70, we
analyzed the activation of GSK-3β, a bona fide target of AKT. AKT
can inhibit constitutively activated GSK-3β through phosphoryla-
tion on serine 9.9 Indeed, we observed a strong induction of
phospho-GSK-3β (serine 9) after anti-IgM–mediated activation of
the BCR in UM-CLL, but not in M-CLL (Figure 1E), in keeping with
the known attenuated BCR-signaling capacity of anergic M-CLL.10

Notably, depletion of ZAP-70 decreased the baseline phosphory-
lation of GSK-3β only in UM-CLL, but not in M-CLL, indicating that
the constitutive inhibition of GSK-3β was enhanced by ZAP-70 in
the former subgroup (Figure 1E-F). These ZAP-70–dependent
effects on AKT and GSK-3β were associated with improved cell
survival, predominantly and significantly only in IGHV-unmutated
CLL (Figure 1G). Notably, reduced survival of UM-CLL cells
depleted of ZAP-70 expressed significantly lower levels of the anti-
apoptotic protein MCL1, which is a downstream target of and
destabilized by active GSK-3β (Figure 1H-I).
12 MARCH 2024 • VOLUME 8, NUMBER 5
In summary, ZAP-70 promotes the constitutive activation of AKT in
UM but not M-CLL. This activation is associated with an inhibition
of GSK-3β and stabilization of MCL1, promoting cell survival.

ZAP-70 augments a tonic BCR signal in IGVH-UM but

not M-CLL

Our data suggested that ZAP-70 augments a tonic BCR signal
exclusively in UM-CLL but not in M-CLL discordantly expressing
ZAP-70. To provide further evidence for this hypothesis, we
analyzed the activation of CD19. Signaling through the BCR acti-
vates the coreceptor CD19, which amplifies the signal by recruiting
phosphatidylinositol 3-kinase (PI3K) to the plasma membrane.11

Depletion of ZAP-70 slightly, but significantly, reduced the consti-
tutive phosphorylation of CD19, which was not affected under
conditions of BCR-stimulation using anti-IgM beads. These effects
were only observed in UM-CLL (Figure 2A-B), but not in M-CLL
discordantly expressing ZAP-70 (Figure 2C-D). The tyrosine pro-
tein kinase LYN is a member of the Src-family kinases and operates
upstream of CD19 and is involved in the BCR-mediated phos-
phorylation of CD79A, CD79B, and SYK. Similar to CD19, but
overall more pronounced, we observed that depletion of ZAP-70
inhibited the constitutive phosphorylation of members of Src-
family kinases on tyrosine 416, which increases kinase activity by
locking the activation loop in a substrate-binding permissive
configuration. In contrast, the ZAP-70–dependent constitutive
tyrosine phosphorylation of Src was not observed in ZAP-70–
positive M-CLL (Figure 2A-D).

In conclusion, these data provide further evidence that ZAP-70
augments a constitutive, tonic BCR signal exclusively in UM-CLL.

ZAP-70 binds to cytoskeletal proteins and regulates

LCP1-activation

We previously demonstrated an enhanced binding of ZAP-70 to
ribosomal proteins after activation of the BCR.8 For this, we had
generated the human Burkitt-like lymphoma cell line (BJAB)
(BJABcontrol) overexpressing a BirA-tagged ZAP-70 (BJABZAP-70),
allowing for the in vivo biotinylation of ZAP-70 and immunoprecipi-
tation without anti–ZAP-70 antibodies. In addition, we isolated ZAP-
70 immunocomplexes from double-crossed linked primary CLL
cells.8 To identify binding partners to ZAP-70, constitutively bound in
the absence of an induced BCR-signal, we reanalyzed the data to
identify ZAP-70–binding proteins in unstimulated primary CLL and
BJAB cells, and we excluded all proteins that were not present in
both experiments to reduce false-positive nonspecific hits
(Figure 3A). With this approach we identified 71 unique proteins
bound to ZAP-70 in the absence of anti-IgM treatment (P < .01;
log2 fold-change >1). Gene ontology enrichment analysis identified
only 1 cluster, named “cell junction” (Figure 3A). By further
restricting our analysis to greater than twofold changes (compared
with BJABcontrol or IgG, respectively) we identified a cluster of pro-
teins important for cell adhesion and migration (Figure 3B-C). These
included the actin binding proteins Coronin A1 (CORO1A1),
lymphocyte-specific protein 1, Wiskott-Aldrich syndrome protein
(WASP), switch-associated protein 70, and lymphocyte cytosolic
protein 1 (LCP1). Next, we overlayed our data to recently published
ZAP-70 interactome-data obtained from a human B-cell acute
lymphoblastic leukemia cell line.12 This analysis further revealed
conserved binding of ZAP-70 to protein tyrosine phosphatase
ZAP-70 ENHANCES TONIC BCR AND CCR7 SIGNALING 1169
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Figure 1. ZAP-70 contributes to the constitutive phosphorylation of AKT and GSK3β in IGHV–unmutated CLL cells. (A) Representative kinetic blots show the calcium

flux of IGHV–unmutated (UM-CLL) or IGHV–mutated (M-CLL) CLL cells with NSC or ZAP-70 siRNA transfection. CLL cells were harvested and labeled with Fluo-4 (fluorescein

isothiocyanate). BCR-signaling was activated with anti-IgM beads, triggered 20 to 30 seconds after flow cytometric measurement started. (B) Quantification of calcium flux

response of CLL samples (n = 4 for both UM-CLL and M-CLL) transfected with NSC or ZAP-70 siRNA. The Ca2+ ratios were calculated by using kinetic blots and divided peak

Fluo-4 (FITC-A) mean intensity upon anti-IgM activation by baseline. (C) Phospho-AKT (T308), phospho-AKT (S473), total AKT, ZAP-70, and β-actin immunoblots of primary M-

CLL cells monocultured for 24 hours after nonspecific control siRNA or ZAP-70 siRNA transfection. For anti-IgM stimulated samples, CLL cells were treated with beads-bound

anti-IgM for 20 minutes. (D) Phosphorylated protein levels of AKT (relative to total AKT levels) 24 hours after siRNA transfection in M-CLL samples. For anti-IgM stimulated

samples, monocultured M-CLL cells were treated with beads-bound anti-IgM for 20 minutes (n = 4 for pi-AKT [T-308] and n = 3 for pi-AKT [S473]). (E) Phospho-GSK-3β (S9),

total GSK-3β, ZAP-70, and β-actin immunoblots of primary UM-CLL or M-CLL cells monocultured for 24 hours after nonspecific control siRNA or ZAP-70 siRNA transfection. For

anti-IgM stimulated samples, monocultured CLL cells were treated with beads-bound anti-IgM for 20 minutes. (F) Phosphorylated GSK-3β levels (relative to total GSK-3β levels)

24 hours after siRNA transfection in UM-CLL and M-CLL samples. For anti-IgM stimulated samples, monocultured CLL cells were treated with beads-bound anti-IgM for

20 minutes (n = 3 for both UM-CLL and M-CLL). (G) Cell viability of primary CLL cells assessed using annexin-V/propidium iodide staining, 9 days after siRNA transfection. Cells

were monocultured for 48 hours after nonspecific control siRNA or ZAP-70 siRNA transfection for 7 days on stromal cells. (H) MCL1 and β-actin immunoblots of primary UM-CLL

cells cultured under identical conditions as described in panel G. (I) Relative MCL1 protein level (compared to with β-actin levels) 24 hours after siRNA transfection in UM-CLL
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(PTPN6) and several cytoskeletal proteins (Figure 3D) and thus
suggested that ZAP-70 is functionally important for actin-remodeling
in B cells with different maturation status.

Among these interacting proteins, LCP1 was demonstrated to
function as a regulatory switch for assembling actin-rich structures
required for cell migration. By cross linking actin filaments into tight
bundles LCP1 can regulate T- and B-cell chemotaxis.13,14 Because
these functions also require calcium binding, we hypothesized that
BCR-activation may further increase binding of ZAP-70 to LCP1.
Contrary to this hypothesis, we did not observe increased binding
of the 2 proteins in an immunoprecipitation assay (supplemental
Figure 1A). Notably, knockdown of ZAP-70 did not decrease the
total abundancy of LCP1 in CLL cells (supplemental Figure 1B),
indicating that expression levels of total LCP1 are not regulated by
ZAP-70 and its stimulatory effects on protein synthesis.8

Importantly, the avidity of LCP1 for intracellular actin is also regu-
lated by posttranslational protein modifications and serine(5)-
phosphorylation was shown to positively regulate migration and
invasion of epithelial cancer cells.15 Notably, PI3K is a known
upstream regulator of this phosphorylation site.16 We, therefore,
hypothesized that serine(5) on LCP1 may also be regulated by a
tonic BCR-signal in malignant B cells (Figure 3E). Indeed, in the
absence of an induced BCR-signal, ZAP-70 levels correlated with
phospho-Ser(5)-LCP1 levels (Figure 3F-G), indicating that a ZAP-
70–dependent, constitutive signal contributes to the baseline
activation of LCP1 in UM-CLL cells. Crosslinking of IgM induced a
strong phosphorylation of LCP1 on Ser(5), which was not further
modulated by ZAP-70.

In summary, our data indicate that a tonic BCR-signaling is
enhanced by ZAP-70, which physically associates with cytoskeletal
proteins and promotes the phosphorylation and activation of LCP1
in UM-CLL cells.

ZAP-70 promotes CCR7-signaling and chemokine-

induced activation of LCP1

Our data suggested that ZAP-70 can directly and positively regu-
late CLL-cell migration. To test this hypothesis, we performed
migration assays on IGHV–unmutated CLL cells, using transwells
against a gradient of CCL19 and CCL21. Although spontaneous
migration of cells in the absence of chemokines was minimal, the
siRNA-mediated decrease in ZAP-70 expression significantly
reduced the migration capacity of primary CLL cells toward both
chemokines. Migration was enhanced toward CCL19 compared
with CCL21 (Figure 4A). Both, CCL19 and CCL21, signal through
CCR7 expressed on CLL cells. To assess whether the impaired
migration toward these chemokines was related to reduced
receptor expression after siRNA-mediated knock down of ZAP-70,
we analyzed CCR7 expression on ZAP-70 modulated CLL cells.
Importantly, knockdown of ZAP-70 did not alter CCR7 surface
expression, which was overall readily detectable (Figure 4B). To
corroborate our findings and to exclude off-target effects from the
siRNAs, possibly contributing to these results, we engineered
MEC1 cells with an inducible, tetracycline-regulated ZAP-70
expression vector. Although endogenous ZAP-70 levels in MEC1
Figure 1 (continued) samples (n = 3). Statistical significance between samples was asses

ns, not significant; NSC, non-specific control; SE, short exposure.
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cells were low, ectopic expression can be induced in these cells
simply by adding doxycycline. Notably, we observed a leakiness of
the system, which caused higher expression of baseline ZAP-70
compared with the parental MEC1 clone in the absence of doxy-
cycline (Figure 4C). Migration assays of genetically modified MEC1
cells showed a strong correlation between ZAP-70 expression and
cell mobility induced by CCL19. The minimal migration of the
parental MEC1 cells was significantly enhanced by a moderate
expression of ZAP-70 in the leaky clone, which was further
increased by doxycycline-induced expression of high levels of ZAP-
70 (Figure 4D). Contrary to primary CLL cells, genetically modified
MEC1 cells responded poorly to stimulation with CCL21 (not
shown). These data confirm that ZAP-70 is not only associated
with higher migration potential of CLL cells but showed that it is
directly involved in chemotaxis.

To further investigate the mechanisms underlying the hyper-
responsiveness of ZAP-70–positive CLL cells toward CCL19- and
CCL21-induced migration, we investigated whether ZAP-70 had a
direct effect on the activation of AKT, which is a bona fide target
downstream of PI3K and CCR7.17 To define a timepoint for the
optimal assessment of CCL-induced AKT-activation, we first
analyzed the kinetics of AKT-activation after stimulation with
CCL21. Our data indicated that CCR7-activation causes a rapid
and readily detectable phosphorylation of AKT which peaked after
5 minutes, followed by a rapid dephosphorylation within 1 hour
(supplemental Figure 1C). Notably, the signal change amplitude on
AKT was higher for serine 473 compared with threonine 308. We
then investigated whether modification of ZAP-70 expression in
primary CLL cells affected CCL19 and CCL21-induced signal-
transduction. Unexpectedly, reduced expression of ZAP-70
strongly mitigated CCL19-dependent phosphorylation of serine
473 on AKT. Similar, though less pronounced effects were
observed for CCL21–induced AKT activation. Here, phosphoryla-
tion of AKT at threonine 308 was also reduced by downregulation
of AKT, but these effects were more subtle and only seen for
CCL19 but not CCL21 (Figure 4E-F).

Lastly, to test whether these signal-modulations also affected
the activation of LCP1, we assessed the expression of Ser(5)-
LCP1 in chemokine-activated cells, which were either wild-type
(nonsilencing) or expressed low levels of ZAP-70 (siZAP-70).
Downregulation of ZAP-70 significantly decreased phospho-
Ser(5)-LCP1 levels induced by CCL19 and CCL21 (Figure 4G).

Conclusively, our data provide evidence that ZAP-70 augments
CCR7 signaling and activation of the PI3K pathway, which pro-
motes AKT- and LCP1-activation and enhances chemotaxis of CLL
cells.

Discussion

The oncogenic addiction of CLL cells on BCR-signals has been
recognized for >2 decades and instigated the clinical development
of kinase inhibitors, which have impressively transformed treatment
of patients with CLL and some other indolent B-cell lymphoma.18

Prosurvival signals can be transmitted through the BCR through
distinct mechanisms, differing in their developmental requirement
sed by paired 2-tailed Student t tests. *P < 5 × 10−2, ***P < 10−4. LE, long exposure;
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and signal strength. In CLL, 3 types of BCR signals have been
identified, namely ligand-dependent, tonic, and cell-autonomous
BCR signaling. Although the cell-autonomous BCR signaling is a
peculiar finding in CLL and relies on the interaction between
HCDR3-region and an internal epitope within the BCR,19 tonic,
and ligand-dependent BCR-signals are essential for the survival of
normal and malignant B cells. The existence of a tonic BCR signal
in CLL cells was proposed and supported by the presence of
constitutively active BCR-signaling molecules, including PI3K,20

ERK,21 and LYN22 in the absence of an overt antigen-stimulus.
More recently, the concept of tonic BCR-signaling in CLL has
been further corroborated by experiments using single-cell prote-
omic analyses and super-resolution microscopy, demonstrating
that CLL-derived BCR forms dimers and oligomers in the absence
of an antigen.23,24 Notably, to our knowledge, no differences in the
signal strength of a tonic BCR signal have been reported between
IGHV-mutated and -unmutated CLL or other common prognostic
markers. Our data provide more granularity on the molecular
mechanism driving tonic BCR signaling by identifying that ZAP-70
acts as a signal enhancer for a constitutive, tonic BCR signal.
These data corroborate recently published data from the Müschen
group. In a set of elegant experiments, they demonstrated that
ZAP-70 diverted BCR-signals toward a PI3K-dependent survival
signal to the expense of nuclear factor of activated T cells activa-
tion and impaired negative-selection.12 Importantly in this context,
in our previous work, we have not detected ZAP-70 dependent
effects on the phosphorylation of Bruton’s tyrosine kinase (BTK) or
B-cell linker, which are signal-mediators of an autonomous BCR-
signal.19,25 Therefore, and in keeping with the original data that
autonomous BCR-signaling is not restricted to either M- or UM-
CLL cells,19 we conclude that ZAP-70 regulates a tonic BCR
signal, which is different from an autonomous BCR-signal that is
not modulated by the constitutive expression of ZAP-70 in subsets
of CLL cells.

The ZAP-70–mediated effects, cumulating in improved cell survival,
were largely absent in IGHV-mutated CLL, raising the question what
other factors determine these opposing effects. We considered that
the abundancy of surface IgM and the known decreased expression
of membrane bound IgM in mutated CLL10 may be a contributing
factor. However, although the average surface expression of IgM is
lower in mutated than in unmutated CLL,10 this is not the case for
mutated CLL cells discordantly expressing ZAP-70 (supplemental
Figure 1D; Rassenti et al3) and hence largely exclude this as an
underlying mechanism. Alternatively, posttranslational modifications
on IgM also affect the signal capacity and may contribute to a tonic
BCR-signal.26 Other factors to be considered relate to differences in
the protein abundancies of other BCR-signaling molecules, which
do not necessarily correlate with genetic markers.27 It, therefore, is
Figure 3 (continued) y-axis, identified in BJAB cell line MS. Colors indicate the subgrou

functions. (C) Heat map of proteins presented in panel B (primary CLL cells MS and BJAB c

protein abundance, respectively. Each condition analyzed depicts 3 (primary CLL cells) or

average log2FC combine primary CLL cells MS and BJAB cell line MS. (D) Venn diagram co

using ZAP-70–specific antibody pull down, in unactivated BJAB cell lines using biotinylate

proximity dependent biotinylation strategy (Sadras et al12) (log2FC >2, adj P < .01). (E) Pro

CLL. Created with BioRender.com. (F) Phospho-LCP1 (S5) and total LCP1 immunoblots o

ZAP-70 siRNA transfection. For anti-IgM–stimulated samples, monocultured CLL cells wer

(relative to total LCP1 levels) 24 hours after siRNA transfection in UM-CLL samples (n = 3

tests. **P < 10−3. ns, not significant.
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important to assess in future work whether binding of ZAP-70 to
BCR signaling molecules is quantitatively and/or qualitatively
different between UM- and M-CLL.

By experimentally decreasing the expression of ZAP-70 in primary
CLL cells, we identified that it predominantly regulates steady-state
functions of CLL, including chemokine secretion, protein synthesis,
and chemotaxis. These ZAP-70–dependent functions were over-
written by a strong BCR-signal, mimicking binding of a putative
antigen. This suggests that ZAP-70 promotes disease progression
only in the absence of a coexisting autonomous or ligand-
dependent BCR signal. Although the latter is likely to be depen-
dent on cell migration and influenced by the presence of antigen in
different microenvironments in vivo, cell-autonomous signaling
seems unlikely to be affected by this, questioning why we have not
observed ZAP-70–mediated effects in anti-IgM stimulated cells. In
fact, the Kipps’ group reported that ectopic expression of ZAP-70
enhanced anti-IgM–induced BCR signaling, notably only IGHV-
mutated CLL were investigated.28 To experimentally address this
conundrum, a careful downtitration of the anti-IgM signal would be
needed to assess whether ZAP-70 also enhances ligand-
dependent BCR signaling below a defined threshold. The prog-
nostic impact of ZAP-70 expression on the natural course of the
disease certainly suggests that its disease promoting functions
extend to different types of BCR stimulations and are not restricted
to the enhancement of a tonic BCR signal only.

Applying proximity ligation assays and proteomic analyses, we
identified that ZAP-70 is constitutively bound to cytoskeletal pro-
teins, suggesting that its tonic BCR signal-enhancing function may
be directly related to and the consequence of actin-remodeling.
Notably, the upstream mechanisms of BCR activation involve clus-
tering of BCRs in lipid rafts to assemble a signaling complex in which
immunoreceptor tyrosine-based activation motifs are phosphory-
lated.29 This process is associated and dependent on a transient
disassembly and reassembly of cortical actin network, which
increases BCR lateral mobility.30,31 These dynamic changes in
cortical actin enhance BCR signaling, which is further amplified by
the activation of BCR-associated kinases, such as Btk.32 Proposed
mechanisms of how BCR-kinase regulate actin-remodeling include
activation of GTPases Cdc42 and Rac,33,34 which themselves
modulate actin polymerization. This intimate interplay between actin
remodeling and BCR signaling is best illustrated by increased levels
of autoantibodies derived from B cells lacking the actin-nucleation–
promoting factor WASP.35 In T cells, ZAP-70 has been implicated in
remodeling the actin network after T-cell receptor-activation, a pro-
cess involving the RhoGTPase Cdc4236 and Vav137 in addition to
activation of the Cdc42-associated WASP.38 Importantly, our mass
spectrometry data identified the entire complex associated with
ZAP-70, strongly suggesting that ZAP-70 remodels the actin
ped functions of the proteins. Dots in gray are the proteins involved in other cellular

ell line MS, log2FC >2, adj P < .01). Purple and orange indicate relative high and low

2 (BJAB cell line) technical replicates. Proteins were ranked from top to bottom by

mparing ZAP-70–binding proteins identified from MS in unactivated primary CLL cells

d–ZAP-70 streptavidin pull down and in unactivated Kasumi-2 cells using a ZAP-70

posed model for tonic BCR signal regulating LCP1 serine(5) phosphorylation in UM-
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network in leukemic B cells similar to that in activated T cells. In
addition, we found a physical association between ZAP-70 and
LCP1, an actin-bundling protein required for actin polymerization
and the formation of immune-synapses in T cells and recently
characterized as an abundantly expressed antigen in CLL and
required for niche residency.39 Peculiarly, a recent single-cell
sequencing study identified subclonal mutations of LCP1 in CLL
and its association with an impaired DNA-damage response.40

Whether binding of wild-type LCP1 to ZAP-70 phenocopies these
functions of mutated LCP1 remains a possibility and to be experi-
mentally addressed. In conclusion, it seems very reasonable to
speculate that the signal-enhancing effects of ZAP-70 are pre-
dominantly driven by its actin-modulating functions, which improve
the assembly of BCR signalosomes in the absence of antigen.

In addition to the BCR-related functions of ZAP-70, cell migration
remains an additional mechanism how ZAP-70 favors CLL-
microenvironment interactions and disease progression.41 Indeed,
enhanced migration of ZAP-70–positive CLL cells toward the CCR7
ligands, CCL19 and CCL21 has previously been reported, though it
remained unknown from these studies whether this was a direct
consequence of ZAP-70 or a mere correlation.5,7,42 Furthermore,
published data indicate that differences in CCR7 expression
contribute to this phenotype.7 Notably, we have not observed a
decrease in CCR7 protein abundance in primary CLL cells depleted
of ZAP-70. Unexpectedly, we observed that ZAP-70 not only
enhances a tonic BCR-signal, but also CCL19- and CCL21-induced
activation and phosphorylation of AKT and LCP1. CCR7-signaling
has been extensively investigated in dendritic cells and there it
engages MAPK-pathway43 and regulates actin polymerization
through RhoA,43 in addition to the aforementioned activation of
PI3K/AKT. Indeed, it was previously shown that the latter arm of the
CCR7 signaling pathway mediates antiapoptotic signals also in CLL
cells,44 in keeping with other’s observations.20 Integrating these and
our data, we hypothesize that 2 signaling pathways, BCR and
CCR7, converge on PI3K, which in the absence of antigen remains
in a poised activation state because of the presence of a tonic BCR-
signal. Under this condition, a CCR7-mediated signal is then
augmented, leading to enhanced cell migration of ZAP-70–positive
UM-CLL cells. Whether complex formation of PI3 subunits, ZAP-70
and LCP1 is required for this, remains still unanswered. This also
relates to the open question whether the observed effects are
dependent on ZAP-70’s kinase function or not. In support of the
latter, the Kipps and Efremov groups identified that the signal-
enhancing effects of ZAP-70 were not dependent on its kinase
activity and suggest that it can act as a chaperon molecule facili-
tating assembly of larger signaling complexes.28,45 Addressing these
questions remains challenging from a technical point because it
would require replacing endogenous ZAP-70 with a kinase-dead
protein in primary cells to avoid issues related to nonspecific bind-
ing of ZAP-70, expressed at supraphysiological levels, to other
proteins. However, our recently developed methods to genetically
1176 CHEN et al
manipulate primary human malignant B cells46,47 now allow to
address these questions in the future.

In summary, our data demonstrate that a tonic BCR- and CCR7-
signaling converge in a subset of patients with CLL through the
expression of ZAP-70 and activation of LCP1. Because both sig-
nals share common downstream pathways, the presence of a
positive feedback loop between BCR- and CCR7-signaling
appears to be a possible mechanism for this. Activation of either
pathway improves cellular fitness and cell migration and is likely to
improve T-cell support and to drive disease progression. The
constitutive activation of these pathways suggests that ZAP-70–
positive patients may benefit from early intervention with BCR-
inhibitors, a concept that was trialed in the CLL-12 study.
Although a subgroup analysis based on ZAP-70 expression was
not reported in this trial, patients with IGHV-unmutated CLL had a
marked benefit from ibrutinib- vs placebo-treated patients
compared with mutated CLL,48 suggesting that interference with a
tonic BCR signal can delay disease progression, particularly for
ZAP-70–positive patients.
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