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Incomplete penetrance is the rule rather than the exception in Mendelian dis-
ease. In syndromic monogenic disorders, phenotypic variability can be
viewed as the combination of incomplete penetrance for each of multiple
independent clinical features. Within genetically identical individuals,
such as isogenic model organisms, stochastic variation at molecular and cel-
lular levels is the primary cause of incomplete penetrance according to a
genetic threshold model. By defining specific probability distributions of
causal biological readouts and genetic liability values, stochasticity and
incomplete penetrance provide information about threshold values in bio-
logical systems. Ascertainment of threshold values has been achieved by
simultaneous scoring of relatively simple phenotypes and quantitation of
molecular readouts at the level of single cells. However, this is much more
challenging for complex morphological phenotypes using experimental
and reductionist approaches alone, where cause and effect are separated
temporally and across multiple biological modes and scales. Here I consider
how causal inference, which integrates observational data with high confi-
dence causal models, might be used to quantify the relative contribution
of different sources of stochastic variation to phenotypic diversity. Collec-
tively, these approaches could inform disease mechanisms, improve
predictions of clinical outcomes and prioritize gene therapy targets across
modes and scales of gene function.

This article is part of a discussion meeting issue ‘Causes and conse-
quences of stochastic processes in development and disease’.
1. Introduction
The identification of thousands of bona fide Mendelian disease genes represents
one of the most important achievements in biomedical research, providing
novel insights into disease mechanisms and promising to inform treatments
and disease outcomes for patients [1–4]. However, the extensive phenotypic
variability observed in patients with mutations in the same gene—even in
pairs of monozygotic twins—reduces this predictive power and has proven to
be a major limiting factor [5–8]. Given that most treatments represent the ame-
lioration of severe forms of disease rather than being curative per se, it may be
possible to identify new therapeutic targets by studying the mechanisms that
underlie this variability and even to tailor medicines to individuals. Such
work will also provide insight into fundamental genetic principles in the
broad sense, or, as Waddington called it, The Strategy of the Genes [9]. This
includes insight into the role of stochastic processes in biological systems,
which is the focus of this Perspective.
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Embryonic development and adult tissue homeostasis are
exquisitely robust when viewed at macroscopic levels. As
Wolpert discussed, it is bewildering that, for most people,
their left and right arms remain almost identical in length
and overall appearance throughout their lifetime, even
though they have had no means of communicating with
one another ever since the midline barrier was laid down in
the early foetus [10]. This maintenance of mirror-image sym-
metry is also a feature of many other bilateral tissues. Yet
when quantitative molecular and cellular assays are used to
observe biological systems at microscopic levels they can be
seen to be inherently noisy [11,12].

What then are the molecular and cellular sources of this
noise? Stochastic processes can generate variation at the
level of single cells, including intrinsic noise that results
from non-statistical sampling of relatively small numbers of
molecules. (For example, there are only two copies of each
gene promoter located on an autosome.) This is thought to
arise from processes such as transcriptional and translational
bursting events [11–16] and can be ascertained by assessment
of cell-to-cell variation.

By contrast extrinsic noise may arise from environmental
fluctuations, and variability in the response to the environ-
ment may result from the disparity of cell state [17–20]. We
might expect that extrinsic environmental factors such as
temperature or diet are likely to be uniform across a tissue
and generate inter-individual variation rather than noise at
the single-cell level. Therefore, different sources of stochastic
variation may have different signatures at the single mol-
ecule, cellular and tissue/inter-individual levels.

At the transcriptional level, the relative contributions of
intrinsic versus extrinsic noise can be evaluated according
to the correlation of pre-processed transcripts present at
two identical promoters in single cells, such as the two alleles
of an autosomal gene in an isogenic line [11,17,19]. Intrinsic
versus extrinsic noise is indicated by the degree of allelic
imbalance. Stochastic processes of this type have been
demonstrated in a number of systems, and they have been
shown to underlie incomplete penetrance, as will be outlined
in detail below.
2. What is phenotypic variability?
Many Mendelian traits are discrete phenotypes that segregate
with a defined mutation within a family. Variation in the
severity of these phenotypes may involve individuals who
carry the mutation but are unaffected, which is defined as
incomplete penetrance. Alternatively, affected individuals
may vary in severity, known as variable expressivity.

Most Mendelian diseases are syndromes which are com-
pound phenotypes involving the combination of multiple
independent features affecting a variety of organs or tissues
[4,21–23]. While these diseases do appear to segregate
according to Mendel’s laws when considered as a whole, rela-
tively few such disorders would actually exist without
flexible systems of diagnosis [21–26]. For example, patients
with Bardet-Biedl syndrome (BBS) exhibit a combination of
six major and eight minor clinical features, and a clinical
diagnosis of BBS is accepted only if a patient has four
major criteria, or three major criteria and two or more
secondary criteria [27,28]. For a series of genes causing bra-
chydactylies, such as Robinow syndrome, heterozygous
mutations cause isolated non-syndromic shortening of the
digits while homozygous mutations in the same gene cause
the same phenotype together with other syndromic features
[29]. What seems to be the rule rather than the exception is
that for these syndromes most individual clinical features
are associated with incomplete penetrance when considered
in isolation. For each independent phenotype mutations in
Mendelian disease genes can be viewed as having three key
features such that they are:

(1) rare susceptibility alleles, with;
(2) moderate to high penetrance, and;
(3) pleiotropic effects.

We may therefore consider that clinical variability in syn-
dromic Mendelian disorders reflects incomplete penetrance
combined across a number of independent clinical features.
Incomplete penetrance may also explain variable expressivity
where higher-level phenotypes involve multiple repeating
structures or result from the combination of several constituent
endophenotypes across biological scales. As a hypothetical
example, a quantitative trait such as glomerular filtration rate
may be the product of incomplete penetrance for discrete
effects on each of approximately 106 nephrons within the
kidney. Alternatively, a complex limb malformation might
reflect incomplete penetrance for multiple independent devel-
opmental processes regulating digit number, identity and joint
formation, which are temporally integrated [30].

Within naturally breeding populations, such as humans
with genetic diseases, incomplete penetrance and variable
expressivity are attributed to modifiers owing to genetic
and environmental heterogeneity amongst these individuals.
Stochastic processes also contribute to clinical variability. In
genetically identical experimental organisms in controlled
environments, stochastic processes are the major source of
variation. How stochasticity generates phenotypic variability
is poorly understood, especially for complex morphological
traits. As such, the 6000 or so Mendelian disease genes that
have been identified [4], and the series of mutations found
within them, provide us with many models to investigate
the role of stochastic processes in disease susceptibility.
3. Incomplete penetrance and genetic threshold
effects: stochastic variation informs threshold
values for incompletely penetrant traits

The genetic threshold model was first proposed in 1934 by
Wright [31,32], to explain the appearance of discrete pheno-
types. It was invoked to explain preaxial polydactyly that
was observed with different penetrance values in a number
of strains of guinea pigs. There are several features of this
model and historical aspects to consider. In its original
form, the model was used to explain this discrete morpho-
logical trait in inbred (isogenic) lines of guinea pigs. As for
polydactyly, a wide variety of phenotypes have subsequently
been observed at background levels in isogenic lines of
rodents, with strain-specific penetrance values [33–35]. In
this early era of genetics and developmental biology (or
embryology, as it was then known), Wright especially attrib-
uted this phenotypic variability to environmental variation.
He considered that genetic background predisposed different
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strains to disease, and that these effects were modified by
environmental factors. He was also open to the idea of sto-
chasticity, although he did not use this term. Instead, he
commented on, ‘…irregularities in development due to the
intangible sort of causes to which the word chance is applied’
[36, p. 328]. Wright particularly considered position effects
within the uterus and differences in foetal blood supply as
forms of environmental variation which are quite different
from stochastic molecular processes.

The combination of all genetic and environmental modi-
fiers impacting a particular phenotype in an individual is
defined as the liability. It is important to realise that liability
is an intangible construct that cannot be measured. It is not
possible to define all genetic modifiers [37], not least because
of statistical power considerations and small effect sizes
[38,39], and the sum total of environmental factors are too
complicated to realistically ascertain. By studying isogenic
lines, Wright paved the way to remove genetic modifiers as
a source of variation and greatly simplified the problem.
This provided the basis for an experimentally tractable
approach. We can now use gene-editing to introduce vir-
tually any mutation in isogenic lines to study defined
genetic variation in the context of a variety of fixed genetic
backgrounds. We can therefore take essentially the same
approach as Wright albeit in a molecularly targeted way.

A central difficulty for the theory of evolution was to
understand the connection between particulate inheritance
and quantitative phenotypic variation. In seminal work,
Fisher demonstrated that quantitative traits could arise from
particulate inheritance of multiple susceptibility alleles with
small effect sizes across many different loci, i.e. oligogenic
traits. In this model, the liability in populations of genetically
heterogenous individuals in varied environments is taken to
be normally distributed [40–42]. Later, and presumably
taking inspiration from Wright’s work, Carter, in his con-
sideration of the inheritance of pyloric stenosis was the first
to combine this concept with the threshold model such that
individuals carrying a greater number of modifiers than a
threshold liability value exhibit the trait [43,44]. Falconer sub-
sequently did much to extend this model and understand its
implications [45]. This is a model that permeates genetics
because it helps us to think about the intersection between
genes and environment, quantitative variation and discrete
phenotypes, i.e. diseases. However, by being based on the
concept of liability it is not particularly useful.

While Fisher’s work was ground-breaking for evolution-
ary theory, its application in complex genetics placed the
emphasis on heterogenous populations and oligogenic traits
which forms the basis for the genetic threshold model typi-
cally seen in textbooks. This side-lined Wright’s approach
which had focused on isogenic models as experimentally
tractable systems. Conscious of this, we can now build on
Wright’s model in the post-genomic era by considering the
distribution of liability values for a defined genotype on a
specific genetic background (with genotype refrerring to the
Mendelian trait locus). In this situation, stochastic processes
account for most of the variation in liability values. We
must therefore redefine liability to include naturally occurring
molecular and cellular variation. In this form, liability constitu-
tes the functional effects of experimentally controlled genetic
and environmental factors as well as stochastic variation in
the form of tangible readouts such as gene product abun-
dance (e.g. RNA and protein abundance) or activity (e.g.
transcription factor binding to a promoter or a signalling
output such as protein phosphorylation). The key is that
such readouts can be measured, at least in principle. At the
level of individuals, the liability value would fall below the
threshold for unaffected individuals and above this threshold
for those individuals that are affected. As will be discussed in
the next section, these are not only readouts in the sense that
is widely used in biomedical research, such as luciferase
reporter assays or other bioreporters that are surrogate corre-
lates of gene activity. They must be a node or combination of
nodes on the causal path linking genotype to phenotype and
capture the total stochastic variation within the wider net-
work that impacts upon the phenotype (see below for a
consideration of how this might be practically implemented
using current technologies).

This leads us to several important features of the molecu-
larly targeted genetic threshold model. Firstly, incomplete
penetrance is the result of stochastic variation in liability
values under experimentally controlled conditions for iso-
genic models—without this variation, all individuals would
either be affected or unaffected. Incomplete penetrance
means that the threshold liability value is located within
the range of stochastic variation for a defined genotype in a
particular strain. As we shall see in the next section, the pene-
trance value is exactly equal to the area under this curve that
falls above the threshold liability value.

In the case of incomplete penetrance, stochastic variation
therefore carries information about the threshold value in the
form of its probability distribution function and the exact
penetrance value for a particular trait.
4. Threshold effects demonstrated by
simultaneous assessment of phenotype and
readout in single cells

A genetic threshold is an exact value that relates phenotype
penetrance to the distribution of liability values for a speci-
fied genotype (figure 1). Where the liability values for a
series of genotypes on an isogenic background are described
by the same type of statistical distribution (normal, Poisson,
gamma, etc) with the same variance, differing only in their
population means, the penetrance values across a series of
genotypes will be described by the cumulative distribution
function (CDF) of liability values (figure 1c). (Note: this is
an idealized model for illustration. Empirically, mutations
are typically found to be associated with greater stochastic
variation. Furthermore, different mutations may be associ-
ated with different variances according to their mechanism
of pathogenesis and different buffering mechanisms that
may modulate their effects (splicing, nonsense-mediated
mRNA decay, chaperones/protein folding etc.). Nonetheless,
phenotype penetrance is given by the CDF for a particular
genotype if the appropriate readout(s) is ascertained.)

Given the intangibility of liability, this term might reason-
ably be replaced with change in gene function, as discussed
above. Gene function may correspond to RNA or protein
abundance at lower levels of gene function, or any other
higher-level effect of a mutation on the casual path to a phe-
notype, such as a dynamical signal transduction readout
within a tissue. In the same way that the classical definition
of liability is the sum total of genetic and environmental
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Figure 1. Genetic threshold model. (a) Basic model showing how the penetrance value for a trait is directly derived from the probability distribution function (pdf )
of liability values in relation to a genetic threshold value—incomplete penetrance occurs when the threshold value falls within the pdf associated with a mutation.
(b) Cartoon of pdfs for different mutations (M1, M2) on different genetic backgrounds showing that liability is the result of genetic background, mutational effect
and stochastic variation. Different penetrance values for different genotypes are defined exactly by these pdfs in relation to the genetic threshold value (T, dashed
line). (c) Disease penetrance relates to mean liability values for pdfs defined by genetic background, mutation and stochastic processes in (b) according to cumulative
distribution functions (black line). The red line illustrates the cumulative distribution function for the same set of distributions in (b), but with higher levels of
stochastic variation (note where the mean equals the threshold value, penetrance is 50% regardless of variance). The threshold value that can be ascertained
by simultaneous ascertainment in single cells (T’) is a function of the genetic threshold value (T). Note that penetrance values increase above this threshold
more rapidly where the variance is greater, reflecting the broader pdfs for genotypes below the threshold value (see text for further discussion).
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risk factors for a particular phenotype, the penetrance value
of a discrete phenotype would reflect the average change in
gene function AND stochastic variation combined across all
functional nodes within a network that converge on a pheno-
type. While liability, according to its classical definition, can
be considered to be all genetic and environmental inputs
into a system that define disease risk, the equivalent change
in gene function is the highest-level readout(s) of biological
function that causes a specific phenotype, and is the equival-
ent output derived from the input liability.

(We can see why we require such a high-level readout and
its associated variation to capture all information about the
genetic threshold value, and vice versa, as follows. A mutation
that affects RNA abundance for instance will in turn influ-
ence protein abundance. As such, measurements of protein
abundance will capture both the average mutational effect
and associated noise at the RNA level as well as variation
at the level of messenger RNA (mRNA) translation. In gen-
eral, a higher-level readout will capture all of the
mutational effects and variation at lower levels that feed
into that particular node, as illustrated in figure 2. Therefore,
only a readout at a level that is ‘proximal’ to a discrete phe-
notype of interest will accurately reflect the genetic
threshold value.)

This high-level readout of gene function is the combined
statistical distribution across all such nodes. In principle, this
would allow for a parametric approach to calculate the gen-
etic threshold value based on measurements of the relevant
nodes within such a network. However, our limited under-
standing of the convoluted causal path linking functional
readouts with phenotypes over time and biological scales
precludes such an approach. The search for these predictive
high-level readouts constitutes biomarker discovery, where
a biomarker is a functional readout(s) that is either causally
related to a phenotype or is correlated with a causal readout,
and will be discussed further below.

In the absence of precise and detailed biological models
such a parametric approach is not currently possible, and so
the previous discussion of genetic threshold values was
mainly illustrative. An alternative procedure that some
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Figure 2. Relationships between mutations, pathways, networks and phenotypes. In the centre, we focus on a specific node—in this case a protein-protein inter-
action (PPI) complex—into which linear pathways relating to the synthesis of two components, A and B, feed (left). A reductionistic approach can be taken whereby
the average mutational effects and associated variance in RNA, protein and PPI abundance and function can be measured. Downstream of ‘PPI’ a series of steps
eventually lead to a discrete phenotype. Although represented as linear, these components and functions form part of the wider network and the precise average
values and stochastic variation associated with these components are influenced by these factors (arrows). By measuring ‘PPI’ we have no information about these
values; however, the phenotype penetrance is influenced by all of these factors.

(a) (b)
skn-1

(variable expression)

(bimodal expression)

threshold effect

end-1

elt-2

Figure 3. Simplified scheme of intestinal cell fate specification, adapted from
[13].
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researchers have used is to simultaneously score the penetrance
of a discrete trait and to quantify a biochemical readout(s) for
simple phenotypes that are apparent at the level of single
cells. This removes the need for temporal separation of each
assay and can be done at scale to include large numbers of indi-
vidual cells collected in bulk. This simultaneous ascertainment
approach removes the requirement for a detailed biological
model linking readout and phenotype over time.

An example of this is an analysis of threshold cyclin-
dependent kinase activity in the regulation of cell division
during mitosis and cell division in Schizosaccharomyces
pombe [46,47]. Multiple cyclin-cyclin dependent kinase
(CDK) complexes regulate cell cycle progression in fission
yeast, and earlier work had suggested that quantitative
changes in total CDK activity led to the orderly initiation of
S phase and mitosis. By using genetic simplification of the
CDK network [48] in mutants expressing only a single
cyclin-CDK chimera in place of the four cyclin-CDK com-
plexes usually present, Swaffer et al. [46] demonstrated a
progressive increase in a range of phosphorylation substrates
until the end of the cell cycle. Initiation of phosphorylation of
several substrates at different stages of the cell cycle was
related to different cyclin-CDK affinities, suggesting that a
causal relationship between CDK activity thresholds, differ-
ential substrate phosphorylation and initiation of G1-to-S
and G2-to-M transitions.

To ascertain these threshold values, Patterson et al. [47]
developed a CDK activity biosensor which permitted the in
vivo single-cell assessment of CDK activity and mitotic cell
division. Fluorescence imaging allowed hundreds of individ-
ual cells to be simultaneously scored in bulk for cell division
status, and their level of CDK activity to be quantified. By
plotting CDK activity against the rate of division, a threshold
of CDK could be seen directly. Below this threshold there was
no cell division, but there was an exponential increase in the
proportion of divided cells above this value. This is reminis-
cent of the exponential phase of a CDF that relates stochastic
variation to phenotype penetrance (figure 1c).

A second study analysed threshold values within a gene
regulatory network that specifies intestinal stem cell identities
in Caenorhabditis elegans [13]. This network involves the
maternal deposition of skn-1 transcripts that induce expression
of end-1, which in turn activates expression of elt-2. There is
also a parallel path in the network whereby skn-1 transcript
regulates expression of elt-2 via other transcription factors
also activated by skn-1 (figure 3a). Using single molecule fluor-
escence in situ hybridization (FISH), the authors were able to
quantify processed transcript abundance for each of these
components within intestinal cells, demonstrating a continu-
ous distribution of stochastic variation in the expression
levels of end-1 in skn-1 mutants, ranging from complete loss
to normal expression at the level of single cells. By contrast,
end-1 expression was never zero in wild-types at the appropri-
ate stage of development and demonstrated much less
variability. Downstream of end-1, elt-2 demonstrated a bimodal
distribution of expression in individual cells either falling
within the normal range or with no detectable expression
(figure 3b).

To test the hypothesis that elt-2 expression only occurs if
stochastic variation in end-1 transcript levels exceed a certain
threshold value during a critical time-window, the levels of
end-1 and elt-2 were simultaneously quantified in single
cells. As for the CDK example outlined previously, this
demonstrated a range of end-1 values for which no elt-2
expression was observed. A threshold value was defined as
the maximum end-1 value above which elt-2 transcripts
were non-zero in simultaneous quantification (figure 3b).
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These studies offer additional layers of insight into
threshold effects. In the CDK study, the same analysis was
performed on both a wild-type and a CDK mutant strain,
which suggested that the threshold value was the same for
both. However, once the threshold had been reached, the phe-
notype penetrance (probability of cell division) increased
more sharply with increasing CDK activity in the mutant
versus wild-type strain. This is consistent with a CDF repre-
senting a greater level of stochastic variation in the mutant. In
the intestinal specification study, the threshold value for two
high penetrance skn-1 alleles were the same, whereas for a
weaker mutation, the threshold was lower. In this case it
was suggested that skn-1 may partially activate the parallel
pathway, thereby changing the topology of the network
and redefining the threshold for end-1 activity. In this case,
ascertainment of threshold values therefore had the added
advantage of revealing a systems level property of the gene
regulatory network.

This leads to two fundamental aspects of stochasticity.
Firstly, while the average effects on gene function may
differ for different genotypes, threshold values are properties
of wider network topology: they are independent of geno-
type and remain constant for a given genetic background.
In dynamical systems modelling, similar emergent properties
of signalling pathways have been uncovered including dis-
tributed robustness and bifurcation points that determine
cell fate decisions [49,50]. Second, stochastic noise is almost
always greater in networks carrying a defined mutation (or
any other specific perturbation) (figure 1c). This may relate
to buffering mechanisms and localized network properties
that confer robustness.

(This note addresses two points that were raised in
review. It was stated in the previous paragraph that the
threshold value is invariant for a given genetic background.
This requires some justification as Wright does indeed
assume constant threshold values across genetic backgrounds
[31,32]. It is relevant for us to consider if this is correct. In
Waddington’s view [9], the epigenetic landscape constitutes
the wider network consisting of the biophysical parameters
that define the nodes and edges within a dynamical system
(such as a large collection of ordinary differential equations).
If the threshold value is a property of this wider network,
rather than the mechanisms that modulate effects of a specific
mutation (i.e. proximal to the mutation), then it would be
invariant for a given genetic background in a controlled
environment. It is also important to note that the threshold
value is not ‘picked’ arbitrarily (i.e. scaled and shifted appro-
priately to reflect both the liability values and the penetrance
of the mutation). Rather, it reflects network properties and is
not peculiar to a particular mutation.)
5. Could genetic threshold values be determined
for complex (morphological) phenotypes?

These examples of simultaneous ascertainment demonstrate
the possibility of determining threshold values for relatively
simple cellular phenotypes. Could this be possible for com-
plex phenotypes at the level of whole tissues occurring late
in the process of development? It was stated above that a
molecularly targeted genetic threshold model requires assess-
ment of a combination of nodes that capture the total
stochastic variation within the wider network that impacts
upon the phenotype. A potential pushback on this idea is
that this is an unknowable causal graph, and the strictly
sufficient measurements (e.g. every protein molecule concen-
tration, modification state, and location in every cell) are
unrealistic to obtain without some strong casual assump-
tions. Is such a high-level readout that captures all relevant
functional variation just as intractable as the classical
definition of liability?

A great deal of work will be necessary to answer this
question definitively, but it is illustrative to consider a practi-
cal scheme using single cell RNA-sequencing (scRNAseq)
and spatial transcriptomic technologies. In his epigenetic
landscape model, Waddington [9] proposed that only a lim-
ited set of discrete cellular and tissue-level fates can be
arrived at over the course of developmental time in an indi-
vidual animal (i.e. amongst groups of genetically identical
cells). Each path within the landscape reflects its tolerance
to stochastic variation and resistance to changes in cell fate.
His idea also encapsulated tissue transplantations, thereby
traversing all tissues within an embryo and reflecting the con-
cepts of specification and determination in experimental
embryology. Although less famous than his epigenetic land-
scape diagram, Waddington also considered a ‘phase-space
box diagram’ consisting of three dimensions. One dimension
was time, and the other two functioned to define clusters of
cellular identities. These clusters overlapped and each iden-
tity mapped onto future clusters, representing specification
and differentiation over time.

While this diagram was entirely theoretical and heuristic
at the time, it bears remarkable similarity to what we are very
familiar with from scRNAseq datasets where different cell
types are revealed as clusters following dimensionality
reduction. scRNAseq is necessarily destructive of the samples
analysed and thereby strictly prohibiting temporal analyses
(although trajectory analyses are possible given certain
assumptions). However, it is possible to conceive of a simul-
taneous ascertainment approach, firstly using clustering to
define discrete cellular phenotypes at the single cell level,
and then using a form of principal component analysis to
define quantitative stochastic variation that correlates with
these cell types. In essence, this would serve to define both
the high-level quantitative readout and associated variation
that was discussed previously and suggests that this form
of liability is ascertainable. In terms of higher-level pheno-
types, more ambitious and exploratory models that relate
these single cell phenotypes within a tissue to the penetrance
of higher-level phenotypes would be required. Possible
models include the number of each cell type (total/differen-
tiated/proliferative) with or without weightings according
to location or developmental time. Alternative models
could be scrutinised by evaluating a variety of interventions
using do-calculus.

While speculative, this illustrates how such a molecularly
targeted liability model based on stochasticity might be
possible.
6. Comparing experimental approaches to
threshold determination with causal inference

The simultaneous ascertainment of thresholds described
above is based on a direct comparison of the values for a par-
ticular readout of gene function in cells with or without a
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phenotype. Both ‘affected’ and ‘unaffected’ cells come from a
mixed group that demonstrate stochastic variation in the
values of the readout and incomplete penetrance for the
trait. This approach is based on observational data alone.
The stochasticity is useful in generating a distribution of
values for a biological variable that would be difficult to
achieve experimentally without artefact. It also captures natu-
ral biological variation.

Controlled experiment is the gold-standard for demon-
strating causality. This is because correlations between
parameters could arise from covariance of two readouts
with a third confounding variable and not only through a
causal relationship between them. In analysing hetero-
geneous human populations, it is not possible to control for
all confounders, and in this case randomized control trials
(RCTs; also invented by Fisher) are the gold-standard for
establishing causality. Here, confounders are controlled for
by random assignment of patients to different treatment
groups. In analogy, stochasticity can also be used to achieve
a form of random assignment to infer causal relationships.

In genetics, the stochastic nature of chromosomal segre-
gation and crossing over provides a form of randomization
by which causation can be inferred. Linkage analysis has
been used to identify thousands of Mendelian disease
genes [1–4,51,52]. The premise for this analytical approach
is to first establish the mode of inheritance for a particular
trait (e.g. dominant or recessive) and to genotype poly-
morphic genetic markers throughout the genome.
Segregation and independent assortment of these variants
occurs randomly with respect to disease status in regions of
the genome that are not linked to the disease such that a par-
ticular autosomal allele has a 50% chance of passing from a
parent to their offspring. As in RCTs, Mendelian inheritance
serves as randomization with precisely defined ratios for the
assignment of different regions of the genome to case
(affected) and control (unaffected) groups. Deviation from
this baseline value indicates linkage to a causative mutation.
A special form of this causal analysis for quantitative traits is
the transmission-disequilibrium test [53–56]. Another major
area of causal inference is known as Mendelian randomiz-
ation whereby genetic susceptibility variants for a specific
phenotype are used as instrumental variables, and control for
confounding of a risk factor under study [57,58]. Observa-
tional data with randomization through stochastic processes
therefore allows causal mechanisms to be inferred.

We saw from the previous examples of threshold determi-
nation through simultaneous assessment of single cells that
stochastic variation in biological networks can provide
causal information. Specifically, for a mutant exhibiting a dis-
crete phenotype, stochastic variation in a causative readout
will exhibit a discontinuous correlation with this phenotype,
i.e. there will be a correlation only above a threshold value
relating to the truncated distribution in excess of the
threshold (i.e. the line above blue shading in figure 1a). Fur-
thermore, while the correlation coefficient may differ
between strains with different mutations, the threshold
value is constant for a particular isogenic strain where a
high-level functional liability readout is quantified. Here,
the randomization afforded by stochastic processes together
with the concept of an invariant threshold value for a discrete
trait and a uniform genetic background could provide a
means to infer causal relationships in complex biological
datasets. This concept of discontinuous correlation has
parallels with an approach that is frequently used in the
social sciences and econometrics known as regression
discontinuity [59].
7. Structural equation models in causal inference
and stochasticity

Causal inference (CI) is a statistical approach which allows
sources of variation within a causal model to be quantified
in relation to a variable outcome [60,61]. The causal model
will have been derived from experimental evidence and/or
will constitute a hypothesis relating to causation. As such,
causal inference can only be applied relatively late within
the discovery timeline of a research question, whereby exten-
sive prior research has established high confidence causal
relationships between various components. As will be
described, it has several uses. CI can accommodate unknown
confounders thereby allowing incomplete biological models
to be analysed. It can quantify the relative contribution of
different sources of variation to variable (phenotypic) out-
comes in an unbiased way, and it can be used to infer these
values even for variables that cannot be measured directly.

In CI a causal model is represented by a structural
equation model (SEM) whereby nodes represent components
within the system and edges are represented as arrows that
depict causal relationships between these components. The
purpose of CI is then to calculate weights for these edges
that correspond to the proportion of variation in a particular
outcome (such as a phenotype) that is accounted for by vari-
ation in a particular node. The weights for each edge are
determined by calculating correlations between the values
of different nodes (figure 4).

A feature of SEMs that are amenable to CI is that they are
directed acyclic graphs (DAGs). This means that there is a
path of causation following a series of nodes to a specified
outcome without forming a closed loop. This form of path-
way analysis was first proposed by Wright in 1920 [36],
where he applied it to breeding experiments that he had per-
formed in various strains of guinea pigs that demonstrated
differences in coat coloration, and later generalized in 1921
[62]. By formulating a scoring system to quantify this vari-
ation and normalizing the data, he was able to calculate the
linear correlations between coat coloration in parents and
their offspring, and between offspring within the same
litter. He considered an SEM whereby fertilized zygotes
gave rise to each of the parents’ coat coloration phenotype
as well as the parents’ gametes (figure 4). Through the precise
statistical ratios of Mendelian inheritance, the gametes from
each parent combined to generate the zygotes that generated
the subsequent generation. In both generations, the observed
coat colour phenotypes of both the parents and the offspring
were defined by genetic and environmental variables, as well
as a third term which Wright coined ‘development’ to account
for the ‘ontogenetic irregularities’, i.e. stochastic processes.

By incorporating correlations between parents and sib-
lings, and between siblings within the same litter into the
SEM, it was possible to quantify the contribution of genetics,
environment and development to variation in phenotypic
outcomes. In this way this statistical approach was able to
infer and quantify the contribution of variation in these other-
wise intractable parameters to variation in coat colour. As a
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form of sanity check, Wright showed that environmental
variation made the same contribution to phenotypic variabil-
ity in both an isogenic line and an outbred strain of guinea
pigs. By contrast, his calculation showed that genetic vari-
ation contributed significantly to phenotypic variability in
the outbred strain but made no contribution to variability
in the isogenic line.

Since Wright, CI was largely forgotten in the biomedical
sciences, especially because of work by his contemporaries
such as Galton/Pearson and Fisher who developed statistical
methods for linear regression in genetics and RCTs, respect-
ively. They established the mantra ‘correlation not causation’
(reviewed in [63]). They asserted that causal relationships
could not be deduced from correlations within population-
based datasets and could only be derived from RCTs, and
this notion predominated. However, Wright had shown that
correlations could reflect causation where a high confidence
SEM is available.

CI based on SEMs has undergone extensive development.
As stated by Meinshausen et al. [64, p. 7361], an SEM consists
of: ’(a) an underlying true causal influence diagram for
random variables that are represented by nodes within the
DAG, and; (b) a function that relates each variable to their
parental variables and an error term. This so-called ‘do-oper-
ator’ sets a particular variable to a deterministic value
according to the SEM that relates the variable to its parental
node, and can be applied to several variables simultaneously.
This is a conditional probability of the kind – ‘what is the
probability of a specified outcome given that I assign a par-
ticular value to a specified variable (i.e. an intervention)’’
[60,64,65].

What might the use of CI in understanding stochastic pro-
cesses be? It might seem that, if a causal SEM is known, then
there is no need for CI. However, CI would allow for a causal
relationship to be defined in an SEM that subsequently turns
out to have a weighting of zero. In other words, it may turn
out that a parameter which exhibits some degree of variabil-
ity and is thought to contribute variation to a phenotypic
outcome might actually make no contribution at all. I
began this Perspective by defining different sources of stochas-
tic variation. Another use of CI could be to apply weights to
these different sources of variation, thereby highlighting the
importance of one or other form of stochastic variation
associated with a particular combination of mutation, genetic
background and environment. The complexities of the network
that constitutes an SEM may unexpectedly render the
system robust to variation in a particular node. In dynamical
systems modelling, similar emergent properties of signall-
ing pathways have been uncovered including distributed
robustness and bifurcation points that determine cell fate
decisions [49,50].
8. Conclusion and perspectives
In this Perspective, I have considered how stochastic processes
could provide insight into mechanisms of pathogenesis. In
isogenic model systems, stochastic variation is the major
source of phenotypic variability and provides information
about genetic threshold values where incomplete penetrance
is observed. This is because there is an exact parametric
relationship between phenotype penetrance and the prob-
ability distribution of stochastic variation. However, in
order to make such a calculation, the sum total of average
mutational effects and stochastic variation must be quantified
across all nodes within a biological network that converge on
a trait of interest. This has been achieved for relatively simple
phenotypes by simultaneous quantification of a continuous
biological readout and phenotype penetrance. However,
this is unlikely to be possible for complex morphological
traits where mechanisms of pathogenesis for such high-
level traits are not well understood.

CI may provide an alternative means to harness this infor-
mation that is afforded by stochastic processes. It may be
possible to determine the degree to which different sources
of stochastic variation within a network contribute to overall
phenotypic variability. The main use of CI is to quantify the
degree to which different sources of stochastic variation
within a network contribute to overall phenotypic variability.
This approach focuses on high-confidence causal relation-
ships established through controlled experiments whereby
SEMs can be drawn. An advantage of CI is that large gaps
in the causal diagram can be tolerated by treating them as
unknown confounders, and so a partial analysis of known
causal mechanisms could be undertaken. By calculating cor-
relations between different nodes within such a model, the
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extent to which variation in each node contributes to overall
phenotypic variability can be estimated. It also allows infer-
ences to be made for nodes that cannot be measured (but
which are known) through these indirect calculations. In
this way, unexpected and non-trivial weights can be given
to known components in a causal framework.

This could help to disregard molecular and cellular mech-
anisms that seem intuitively to be causally related to a
phenotype, potentially revealing novel mechanisms of buffer-
ing and robustness. It could also help to prioritize molecular
targets for therapy. Genetic therapies are designed to target
high-confidence causal mechanisms within the central
dogma of molecular biology and many mutations affect mul-
tiple modes of gene function (RNA, protein etc). Weighting
the relative contributions of different modes of gene function
to phenotypic variability may therefore help to prioritize
therapeutic targets. By making precise statistical statements
for different causal relationships, CI may allow quantitative
statements regarding the effectiveness of a particular therapy
to be made. Similarly, it may permit the design of adjunct or
combined therapies, targeted to a particular mode, where
residual disease risk is present. In future, it may also be
possible to make quantitative predictions about disease
outcomes for individual patients undergoing a particular
therapy. This would require disease models that represent a
patient’s total genetic constitution in which disease outcomes
can be predicted (e.g. organoids, assembloids etc).
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