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A B S T R A C T

Structural changes to microvascular networks are increasingly highlighted as markers of pathogenesis in a
wide range of disease, e.g. Alzheimer’s disease, vascular dementia and tumour growth. This has motivated
the development of dedicated 3D imaging techniques, alongside the creation of computational modelling
frameworks capable of using 3D reconstructed networks to simulate functional behaviours such as blood flow
or transport processes. Extraction of 3D networks from imaging data broadly consists of two image processing
steps: segmentation followed by skeletonisation. Much research effort has been devoted to segmentation field,
and there are standard and widely-applied methodologies for creating and assessing gold standards or ground
truths produced by manual annotation or automated algorithms.

The Skeletonisation field, however, lacks widely applied, simple to compute metrics for the validation
or optimisation of the numerous algorithms that exist to extract skeletons from binary images. This is
particularly problematic as 3D imaging datasets increase in size and visual inspection becomes an insufficient
validation approach. In this work, we first demonstrate the extent of the problem by applying 4 widely-used
skeletonisation algorithms to 3 different imaging datasets. In doing so we show significant variability between
reconstructed skeletons of the same segmented imaging dataset. Moreover, we show that such a structural
variability propagates to simulated metrics such as blood flow. To mitigate this variability we introduce a new,
fast and easy to compute super metric that compares the volume, connectivity, medialness, bifurcation point
identification and homology of the reconstructed skeletons to the original segmented data. We then show that
such a metric can be used to select the best performing skeletonisation algorithm for a given dataset, as well as
to optimise its parameters. Finally, we demonstrate that the super metric can also be used to quickly identify
how a particular skeletonisation algorithm could be improved, becoming a powerful tool in understanding the
complex implication of small structural changes in a network.
1. Introduction

Vascular networks are complex, interlinked, three-dimensional
structures, which play a fundamental role in homeostasis and can
be biomarkers of disease. A range of imaging techniques and image
processing methods have been developed to image and quantitatively
analyse them including magnetic resonance imaging (MRI), X-ray com-
puted tomography (CT) and ultrasound [1–3] for larger vessels, and
multi-photon microscopy, ultra fast ultrasound and photoacoustic imag-
ing for the smaller microvasculature [3,4]. Recently, entire blood
vessel networks in large tissue samples have been reconstructed using
three-dimensional microscopy methods such as lightsheet microscopy,
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optical projection tomography (OPT), Multi-fluorescent high-resolution
episcopic microscopy (MF-HREM) and Hierarchical Phase-Contrast To-
mography (HiP-CT) [5–9]. Each of these imaging techniques generates
images with contrast of blood vessel location, alongside other structures
and measurement noise. In order to utilise these data the vascular
network must be digitised from the images requiring a two stage
process: (1) Segmentation - distinguishing voxels within a blood vessel
from the background or noise, (2) Skeletonisation - reducing the 3D
voxel representation to a skeleton representation of segments, with
each segment defined by start and end nodes, length, radius and the
connections to other segments.
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Abbreviations and parameter definitions

𝜒 Local Euler characteristic
𝜒𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 Classical Euler characteristic
𝜇 blood effective viscosity
𝜏𝑖𝑗 Tortuosity of a segment
𝜃 Branching angle
AS Auto Skeleton
𝐵 Bifurcation point DICE score
BC Set of terminal nodes at which boundary

conditions will be set
𝑐𝑐 Number of connected components
CL Centreline Tree
𝑐𝑙 Centreline sensitivity
CT Computed Tomography
DTHO Distance Transformed Homotopic Ordering
FN False negative
FP False positive
𝐺𝑠 conductance of subsegment
𝐻 Hausdorff distance
𝐻𝑑 Haematocrit
�̌� Directed Hausdorff distance
HiP-CT Hierarchical Phase Contrast Microscopy
ICM Inflection count metric
IVD Intervessel distance
𝐿𝑠 Length sub-segment
LDR Length to diameter ratio
LS LS174T
𝑀𝑆 Super metric for algorithm S
MOST Micro Optical sectioning tomography
MR-HREM Multi-fluorescent High Resolution Episcopic

Microscopy
MRI Magnetic resonance imaging
OPT Optical projection tomography
𝑃𝑖 Pressure at node i
𝑄𝑠 Flow rate in a subsegment
𝑅𝑠 Radius sub-segment
𝑠 Sub-segment
SOAM Sum of angle metric
STAPLE Simultaneous truth and performance level

estimation
TEASAR Tree structure extraction algorithm
TP True positive
𝑉 Volume
𝑉𝑐 Volume consensus segmentation
𝑉𝑡 Volume of test segmentation
VV VesselVio

These image processing steps are pivotal to understanding the link
etween structure and function for microvascular networks in health
nd disease: a link that is often subtle and hard to fully characterise.
or example, Alzheimer’s Disease (AD) is know to have associated
ascular dysfunction [10,11], but the role that vascular changes play
n the progression of the disease is widely debated [12,13]. Likewise,
hallmark of tumours is chaotic blood vessel growth [14], leading to

eaky microvessels that severely hinder drug delivery, whilst promoting
ancerous cell migration [15].

While reconstructed networks are critical tools to identify structural
hanges during pathogenesis, they are limited in inferring the con-
equences on functional behaviours. Mathematical and computational
2

frameworks can add valuable insights by using digitally reconstructed
networks as the structural basis for simulating physiological processes,
e.g. blood flow, molecule exchange [6,16–19]. Such predictions can
then be validated against in vivo functional imaging, effectively recre-
ating the structure-function relationship of microvascular networks in
health and disease (Fig. 1A).

Combining imaging and modelling therefore results in powerful
frameworks with the potential to interrogate processes underlying
parthenogenesis [16] as well as to accelerate the development of new
treatment strategies, through e.g. digital twins [20,21]. However, such
frameworks are by nature, composite and therefore are subject to
multiple sources of error that can accumulate and propagate from the
imaging component to the modelling component, potentially leading to
erroneous predictions.

For instance, an inaccurate estimation of vessel diameters during
image processing will result in significant variation of blood flow rate
predictions, since the microvessel blood flow rates depend on the fourth
power of the vessel diameter [22]. Blood flow being in turn one of the
principal mechanisms underlying oxygen, nutrient and drug delivery, it
is therefore critical to be able to estimate the uncertainties associated
with the outcome of the imaging section of the framework in order to
make quantitative and informative predictions.

The most straightforward approach to quantify such uncertainties is
to validate the outcome of each component against a ground-truth [23,
24]. Whilst this can be done with physical or digital phantoms, the
ability of phantoms to replicate real structures, particularly complex
microvascular networks, is limited by both physical phantom manufac-
ture and by the models used to create the synthetic networks [5,23].
In addition, whilst phantoms can provide overall error bounds for
a pipeline, they cannot do so for a specific real-world dataset. An
alternative approach which acknowledges the lack of the ’ground-
truth’ for a real microvascular network [25–27] involves creating a
gold-standard via a consensus of experts. Such consensus approaches
are a widely-applied method in segmentation [28]. For spatial graph
objects which are the output of skeletonisation, such gold-standard
consensus methods are not utilised, making it a vulnerability in the
imaging-modelling pipeline.

One reason for this lack of consensus approach in skeletonisation
is the challenge of creating suitable metrics for evaluating microvascu-
lar networks when represented as graph objects. Graphs contain the
spatial location of nodes and segment radii as well as connectivity
information for the microvascular network. Averaging or combining
this information across multiple spatial graphs, to create an analogue
in skeletonisation to the consensus segmentation approach, requires
a suitable distance metric to measure between graphs. Whilst some
methods have been developed, e.g. using graph edit distances and then
looking for a Maximum Common Subgraph [29–32], the graph edit
distances do not provide any way to assess the skeleton’s correctness
given the raw image data, or a consensus segmentation. Some metrics
for comparison of the raw image data (or segmentation) and skeleton
have been proposed, including bifurcation position and number, con-
nectivity, homology etc. [23,24,33–35], however there is no clarity as
to which of these metrics is most important or how differences in these
metrics translate into differences in the networks functional properties.

Therefore, it is critical to explore and acknowledge how the errors
introduced into the image processing pipeline [5,19,23,29] translate
into variation in the structural and functional properties of microvascu-
lar networks. Here we focus on the variability in microvascular network
properties and blood flow predictions that result from implementa-
tion of different segmentation and skeletonisation approaches, and
delineate a practically implementable super metric to assess skeleton
’correctness’.

The challenges to do this are two-fold: (1) to understand the extent
to which skeletonisation variation can lead to variations in structural
and dynamic network properties; (2) to define a practically imple-

mentable metric for validation of skeletons which takes into account
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Fig. 1. (A) diagram showing the combination of imaging with mathematical modelling to simulate the structure-function relationship of microvascular networks. (B) The image
processing section of the imaging-modelling framework, showing the three raw datasets used in this work - Brain medulla, FaDu tumour, LS tumour. Brain medulla and FaDu
tumour were acquired using MF-HREM; LS Tumour was acquired using Microfilled CT. Segmentations by individual expert annotations collated via STAPLE algorithm and MOST
pipeline (see Section 3.1.2). Skeletonisation of STAPLE segmentations done with Auto Skeleton, Centreline Tree, and Vessel Vio (see Section 3.1.3).
salient geometric features. This work addresses these challenges by:
(1) Demonstrating the variability caused by skeletonisation to both
predicted blood flow distributions and structural network measures, (2)
Proposing a novel super metric for skeletonisation evaluation based on
comparison of the skeleton to a gold standard binary image used to
produce it. Furthermore, we develop and introduce this super metric
in a mathematical form that is simple to compute, captures multiple
topological characteristics of vascular networks which lead to dynamic
functional behaviour discrepancies, and can be formally optimised.

To do this, we start by briefly reviewing the sources of variability
stemming from segmentation and skeletonisation steps (Section 2) and
the existing methods to quantify such a variability (Section 3). We then
go on and utilise three different imaging datasets of vessel networks
that bridge different imaging modalities, different scales, and both
healthy and pathological networks, and create several valid image
3

processing pipelines; that is, pipelines which follow standard method-
ologies and implement parameterisation methods where these exist. We
then compare the outputs of these pipelines in terms of standard struc-
tural network metrics, and implement blood flow simulations to gain
insight into the link between image analysis tools and flow predictions
(see Fig. 1B and Section 4). Finally we introduces the new-super metric
and show that minimising it leads to a reduction in skeleton metric
variability (Section 5).

2. Sources of variability and mitigation strategies in image pro-
cessing

2.1. Image processing: Segmentation

Segmentation is the process of partitioning an image into separate
segments, e.g. vessel and background, often by assigning a class to
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every pixel in the image. Segmentation of microvascular networks
is a vast research field, with different competing approaches which
include filtering for tube-like structures, seed-point growing or flood
filling approaches which group connected voxels together, as well as
machine learning approaches [36,37]. Validation and benchmarking of
segmentation algorithms is done by comparing the output to a ground
truth or gold standard segmentation - typically either synthetic data
or a portion of manually segmented data [38,39]. Metrics for these
comparisons are well-established including overlap based metrics such
as DICE or Jaccard indices, surface based metrics such as Hausdorff
distances or volumetric based such as Volume similarity etc. [40–42]
(see Section 3). More recently metrics which aim to include connectiv-
ity as well as voxel overlaps, such as cl-dice [33], have appeared; this
metric quantifies what proportion of the voxels that make up the cen-
treline of a segmented vessel fall within the ground truth segmentation.
Segmentation algorithms often have many adjustable parameters which
are formally or informally optimised, using one or a combination of the
above metrics and the ground truth.

Unfortunately, the manual or synthetic gold standard data can also
be flawed: synthetic images or images of physical phantoms rarely
capture the full complexity of real tissues [28], while manual segmen-
tations, generally performed by expert annotators, are subjective, with
factors such as alertness, environmental distractions or differing access
to segmentation tools contributing to inter and intra-annotator varia-
tion [28,42]. A common approach to mitigate potential discrepancy
between gold-standard manual segmentations is to aggregate several
manual segmentations through a voting or aggregation strategy. There
are several such aggregation strategies of which the most commonly
used to for biomedical images is the STAPLE (Simultaneous truth and
performance level estimation) algorithm [28,28,36,42–44].

2.2. Image processing: Skeletonisation

Skeletonisation seeks to reduce the foreground pixels of an image
to a thinned (single voxel width) line that largely preserves the extent
and connectivity of the original structure. A skeleton can in turn be
represented as a spatial graph structure, where meeting points of two
or more lines, or end points are nodes and the connections between
the meeting points are segments. Such graph structures can serve as
the basis for structural analyses as well as simulation of functions such
as blood flow.

Different approaches to skeletonisation can be distinguished: (1)
thinning approaches which use either morphological operations or
distance transformations; (2) minimum cost paths; or (3) wave front
propagation. In general the criteria for a correct skeleton given a
binary image are: thinness (single voxel thick), medialness (centreline is
equidistant from the original boundaries), and homology (a continuous
mapping can be made from the 3D volume to the skeleton, i.e. the
number of connected components and loops of the original structure
is preserved). Thinning approaches are the most common. These it-
eratively remove pixels of a binary structure without changing the
topology (i.e without creating gaps, islands or removal of end points),
until a single pixel centreline remains (thinness), which is located at
the centre of the original object (medialness). Medial axis thinning was
widely adopted following the approach of Lee et al. [45], which is
implemented in many packages (e.g. Matlab, ImageJ, scikit-image and
Vessel Vio [46–48]). Whilst the medial thinning algorithm is highly ef-
ficient for 3D volumes it does not preserve homology [49]. Alternative
thinning approaches were extended by Pudney et al. [50] and Palagyi
et al. [51], with application of distance transform ordering (Distance
Transformed Homotopic Ordering) (DTHO). These approaches better
preserve medialness and have been proven mathematically to preserved
homology. DTHO approaches and their derivatives are also widely used
and implemented in commercially available packages, e.g. Amira-Avizo
Autoskeleton (AS), which implements a parallelised DOHT of Fouard
4

et al. [52].
Minimum cost path approaches such as the Djistrika or Tree span-
ning algorithms seek to move from one connected node to another -
making a (minimal cost) path, through an undirected graph object,
i.e. a collection of nodes and edges. These include algorithms such as
the TEASAR algorithm [53] implemented in Amira-Avizo’s CentreLine
Tree (CL) module.

Wave-front methods simulate flow from initial sets of seed points.
The vessel scooping algorithm of Rodriguez et al. [54] adapted by Wu
et al. [55] and implemented in an open source framework Vaa3D [56–
58], uses such an approach: starting with seed point(s); at each iteration
of the algorithm, voxels within the 3D connected neighbourhood (26
neighbourhood connectivity) of a seed voxel (a single voxel taken as
the starting point for the algorithm) are added to make a cluster. At
each iteration, a connected component analysis identifies new clusters,
which represent a branched vessel, and the centre of mass of every
cluster is calculated to define the centreline of the vessels.

These four different methods have been widely applied across dif-
ferent vascular or airway networks [6,34,48,55,59–62]. Each approach
offers different advantages - Computational efficiency is often provided
by minimum cost path approaches [53], or parallelised thinning ap-
proached [52]; better corner preservation is given by the use of distance
transformations [50], alongside better delineation of complex junctions
etc. [27]. Critically, each of these algorithms also applies different
constraints on the final topology of the network which will be explored
in further detail.

Metrics for comparison and evaluation of skeletonisation algorithms
are less widely used or formalised than those used for evaluating
segmentation. The most common method found in the literature is to
use visual inspection of the skeleton superimposed on the image [27,34,
45,52,63]. Some methods or criteria do exist, such as comparison using
DICE between manual selection of bifurcation points [64,65]; however,
most of these methods focus either on connectivity preservation (a
feature that should be assured if homology is preserved) or on volume
similarity between the graph and the 3D binary volume. To the best
of our knowledge there is no method to rate the correctness of a
skeletonisation for a particular dataset which considers both structural
and functional properties of the networks.

3. Methods for quantifying variability

3.1. Creation of skeletons

3.1.1. Dataset
We explore three raw datasets acquired using two modalities: MF-

HREM with fluorescently labelled vasculature, or microCT with micro-
filled vasculature (i.e. where the vasculature is injected with a radio
opaque contrast agent prior to microCT). For each dataset, we applied a
consensus segmentation approach using multiple expert annotators fol-
lowed by skeletonisation using either Amira Autoskeleton (AS), Amira
Centreline Tree (CL) or VesselVio (VV), or the MOST algorithm, which
is an end-to-end segmentation and skeletonisation method. The nine
outputs from these pipelines were compared via structural metrics and
a blood flow simulation metric. Fig. 1B summarises the pipeline. The
three datasets used were:

• Portion of a brain medulla network from a W/T Balb/c mouse,
imaged with MF-HREM [8]

• Portion of a subcutaneous FaDu tumour network from a Balb/c
mouse imaged with MF-HREM [8]

• Whole subcutaneous colorectal tumour (LS174T) (referred to
hereafter as LS) imaged with microCT after microfill filling on
the vessels [66].
Raw datasets are available via the respective publications.
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3.1.2. Segmentation
Manual segmentation by two or more annotators (referred to as

’Expert annotator’ in Fig. 1B) were performed on all raw datasets using
AmiraAvizo v2019.1–2021.2. The segmentations were performed using
a manual local region filling tool (magic wand). Using this tool, an
annotator selects seed point(s) in any one of 3 orthogonal image planes,
as well as selecting and varying intensity and contrast thresholds;
voxels connected in 3D to the seed point which are within an annotator
set threshold for intensity or contrast, can then be selected and added
to the segmentation. In addition a physical boundary or limit could be
drawn by the annotator to limit the extent of the region growing, and
manually corrected by voxel painting on individual slices. In this way
it is possible for a trained annotator to manually segment relatively
large 3D vascular datasets without being biased by the plane in which
annotation is performed(as is created by interpolating between slices
in one plane).

A total of four annotators participated; all, barring annotator 2,
could be considered as experts for the specific imaging modality. The
STAPLE algorithm, an iterative weighted voting algorithm [28] was
applied to the expert annotations for each dataset. At each iteration
this algorithm votes on every pixel in an image segmentation based on
the set of annotations provided by the experts. It then weights each
annotator according to how closely their segmentation corresponds to
the voted image. This weighting is then used in the next iteration of the
voting process. The algorithm continues until the segmentation stops
changing. This process creates a single segmentation for each dataset
that is considered to be a consensus segmentation between the expert
annotators.

Widely used metrics were applied to compare each individual expert
manual segmentation to the consensus segmentation. Metrics recorded
were Jaccard index 𝐽 , Dice score 𝐷, Volume Difference 𝛥𝑉 and Hau-
sorff Distance 𝐻 :

𝐽 (𝐴,𝐵) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (1)

𝐷(𝐴,𝐵) = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (2)

here 𝑇𝑃 is the voxel-wise true positive (the number of voxels where
vessel is detected in both the consensus and test segmentation images
t the same location), 𝐹𝑃 is the voxel-wise false positive (the number
f voxels identified as a vessel in the test segmentation but not in the
onsensus) and 𝐹𝑁 is the voxel-wise false negative (the number of
oxels where a vessel is not detected in the test segmentation but is
n the consensus segmentation). Unused in these metrics is the voxel-
ise true negative, 𝑇𝑁 : the number of voxels where a vessel is not
etected in both the consensus and the test segmentations. Then, the
olume difference is based on the absolute difference in volumes of the
egmented structure and the ground truth, usually normalised by the
round truth volume:

𝑉 =
|𝑉𝑡 − 𝑉𝑐 |

𝑉𝑐
, (3)

here 𝑉𝑡 is the volume of the test segmentation and 𝑉𝑐 is the volume
of the consensus segmentation. Finally, the Hausdorff distance is com-
monly used to compare two voxelised surface representations e.g. to
compare boundary points from the consensus segmentation 𝐴 and a
test segmentation 𝐵. It is defined as the maximum distance between
ach point in 𝐴 to its nearest neighbour in 𝐵.

̌ (𝐴,𝐵) = 𝑚𝑎𝑥𝑥∈𝐴{𝑚𝑖𝑛𝑦∈𝐵{‖𝑥, 𝑦‖}}, (4)

here �̌� is the directional Hausdorff distance from which the absolute
ausdorff distance 𝐻 can be calculated.

̌ ̌
5

(𝐴,𝐵) = 𝑚𝑎𝑥{𝐻(𝐴,𝐵),𝐻(𝐵,𝐴)}. (5)
.1.3. Skeletonisation
Skeletonisation reduces the network to a graph representation which

escribes the vessel network in terms of ‘nodes’, ‘points’, ‘segments’,
nd ‘sub-segments’ (illustration for each of these structures are pro-
ided in Supplementary Figure S1). A segment is defined by a start (𝑖)

and end node (𝑗) (these nodes have an ID and a 3D spatial position
(x,y,z)); which could either be a branching node connecting several
segments together or a terminal node where no further branches
were detectable. Between the start and end node of each segment
lie sub-segments (𝑠), with ‘points’ marking the start and end of each
sub-segment, able to capture the curvature of the segment. Each sub-
segment has an associated radius (𝑅𝑠) and length (𝐿𝑠)).

We implement and compare a number of skeletonisation algorithms
chosen according to the following criteria: (i) we chose not to apply
any in-house codes that do not have a well maintained open-source
platforms, (ii) the algorithms should be able to run on large (<100 GB)
image volumes, (iii) they should have been used by other groups
to produce segmentations of large blood vessel networks, (iv) our
choices should cover the range of methodological approaches outlined
in Section 2.2.

Using these criteria, four skeletonisation methods were chosen,
three of which were run with binary image inputs and one which used
raw image data as an input:

• Amira v2021.2 Autoskeleton (AS) plugin: a widely used skeletoni-
sation package [6,34,62,67], which implements the a parallelised
version of DOHT algorithm [52]. Amira-Avizo’s implementation
estimates the radius of each subsegment using 1/5th of the max-
imum Chamfer distance and provides additional optional user
inputs to smooth the output of the spatial graph. If smooth-
ing is selected, there are two associated parameters, ‘smooth’
and ’attach to data’, smoothing is done via weighted average
of a point’s location and the location of its two neighbours; the
’smooth’ and ’attach to data’ then provide the respective weights
for this averaging. This smoothing can be performed iteratively
and the iterations can also be defined by the user. Finally, a
threshold value is available for creating a binary image if the user
input has not already been segmented (for a binary image this is
automatically detected).

• Amira v2021.2 Centerline Tree (CL) plugin: an implementation
of the TESEAR algorithm [53], a shortest distance path spanning
approach which creates a strict tree structure. There are two user-
defined parameters: the zeroVal and slope parameters, which are
used to restrict the voxels which are included in the search for end
points of the network, For any particular segment centrelines, any
voxels which fall within the critera: slope * distance to boundary
of vessel + zeroVal are excluded from the end point search. This
reduces the sensitivity of the algorithm to surface noise in the
segmentation. The radius is estimated using a minimum inscribed
sphere algorithm [53]. CL has been used to skeletonise various
vascular networks [59,60,68,69].

• VesselVio (VV): a recently released open-source package [48] for
skeletonisation of large vessel networks. It provides an imple-
mentation of the widely used medial thinning approach of Lee
et al. [45], with automated calculation of common structural
metrics. In this case modifications have been developed to detect
spurious branches and to allow pruning of structures. These are
controlled by three user inputs: length of end segments to be
pruned, length of isolated segments to be pruned and resolution of
the image. The subsegment radii are estimated using a Modified
Euclidean Distance map [48].

• Micro-Optical Sectioning Tomography (MOST): an end-to-end
pipeline, i.e., it does not require a binary input image and instead
can take a raw image data as an input. It performs a vessel
scooping algorithm [54] adapted by Wu et al. [55]. Starting

with seed point(s); at each iteration of the algorithm, voxels
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Fig. 2. Categories of metrics computed for each network (medulla, FaDu, LS) and for each skeletonisation algorithm (MOST, AS, VV, CL). See Supplementary Figure S1 for diagram.
that are above a threshold and are within the 26 neighbourhood
connectivity of a seed point are added to make a cluster. At
each subsequent iteration, any voxels above the threshold, that
are connected to the cluster and within the scooping radius
(parameter set by user), are added to the respective cluster. A
connected component analysis on the clusters at each iteration
identifies new clusters (i.e. those not connected to each other)
which delineate a branched vessel. The centre of mass of every
cluster is calculated at each iteration to define the centreline of
the vessels. The radius of the vessels is calculated using a radius-
adjustable sphere algorithm, where radius of the vessel is equal to
the radius of the maximum sized sphere that fits entirely within
the segmented vessel [58]. This has been implemented in the
open-source Vaa3D software [56–58] and requires 4 user defined
parameters: the threshold, the seed size, the scooping distance
and the size of the voxels (non-isotropic voxels are supported).
This pipeline has been applied to mouse brain vessel segmentation
for the MOST imaging technique [55]. Here, this method was
applied to only the medulla network.

The selection of parameter values for each skeletonisation algorithm
is challenging when applying to large complex network structures due
to a lack of defined metrics which will be discussed later. For AS, CL
and VV algorithms, parameters were set via overlaying the skeleton on
the image volume and visually inspecting the data for poor overlap,
including addition of spurious nodes or segments, or missing portions
of network (See Supplementary Table S1 for values). For the MOST
pipeline, an existing methodology for parameter setting developed
by [55] was followed and is outlined in detail in the Supplementary
information section 1.1.

3.2. Analysis of skeletons

3.2.1. Structural metrics
Many different structural metrics are used to characterise and com-

pare microvascular networks. Table 1 lists a number which are used
extensively in the literature, organised into sub categories based on
6

similar properties. These categories are: vessel diameter and volume
measures, branching measures, vessel spacing and density measures,
and network-shape measures.

As Table 1 indicates there are many metrics to choose from when
analysing microvascular networks (See Supplementary Figure S1 for
additional diagrams). Here we choose a subset that are frequently
reported in the literature, will provide comparative insights across our
three networks and have a bearing or link to the network functionality:

• Radius - 𝑅𝑖𝑗 = 1
𝑛
∑𝑛−1

0 𝑅𝑠 where 𝑛 denotes the number of sub-
segments 𝑠 comprising the segment {𝑖𝑗} linking node 𝑖 with node
𝑗.

• Length to Diameter Ratio - LDR𝑖𝑗 = 𝐿𝑖𝑗
2𝑅𝑖𝑗

, where 𝐿𝑖𝑗 =
∑𝑛−1

0 𝐿𝑠

denotes the length of the segment, i.e., the cumulative length of
each subsegment.

• Tortuosity - 𝜏𝑖𝑗 = ‖𝑿𝑖−𝑿𝑗‖

𝐿𝑖𝑗
where ‖𝑿𝑖 − 𝑿𝑗‖ represents the

Euclidean distance between 𝑿𝑖 and 𝑿𝑗 the positions of node 𝑖
and 𝑗 respectively.

• Number of sub-networks - 𝑐𝑐 the number of distinct sub networks,
i.e. graphs not sharing a single node with one another.

• Branching Angle - 𝜃𝑖𝑗𝑘 = cos−1
(

(

𝑿𝑖−𝑿𝑗
)

⋅
(

𝑿𝑘−𝑿𝑗
)

‖𝑿𝑖−𝑿𝑗‖⋅‖𝑿𝑘−𝑿𝑗‖

)

, the direct
angle between segment 𝑖𝑗 and segment 𝑗𝑘

• Intervessel Distance - IVD𝑖𝑗 = min𝑣 ‖𝑿 1
2 𝑖𝑗

− 𝑿 1
2 𝑣
‖ where 𝑿 1

2 𝑖𝑗
represents the position of the midpoint of segment 𝑖𝑗 and 𝑿 1

2 𝑣
represents the position of the midpoint of any other segment, so
that IVD is the closest midpoint to midpoint distance to another
segment, for every segment.

These metrics are summarised in Fig. 2 and diagrammatically shown in
Supplementary Figure S1.

3.2.2. Blood flow simulations
A range of approaches exist to simulate blood flow in microvas-

cular networks, from fully-resolved three-dimensional implementations
suited for small networks [83], to continuous formulations describing
flow distribution at the scale of entire organ [84,85]. In this work,
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Table 1
Morphometric measures of blood vessel networks presented in the literature. These are metrics that depend on vessel diameter and volume, vessel length measure, branching
parameters and vessel spacing and density measures.

Structural Metric (as named by
authors)

Description References

Vessel diameter and volume metrics - Vessel diameter varies substantially throughout vessel networks and affects blood flow and pressure.
It has also been used as an identifier of pathology [70,71]

Vessel diameter Vessel diameter [6,72–75]
Average radius Average vessel radius [34]
Number of dilated capillaries Number of vessels with a diameter above 40μm [71]
Variation from mean vessel
diameter

Percentile variation from mean vessel diameter [70]

Length-to-diameter ratio Length to diameter ratio [76]
Vessel volume Total volume of all vessels can be calculated from area and lengths of all vessel

subsegments
–

Compactness Ratio of area/volume of convex hull containing vessels (polygon enclosing all vessel)
to the total area/volume of all vessels (density type metric)

[77]

Branching metrics - These look to quantify the properties of bifurcations within networks, which have been shown to differ between healthy
and pathological networks [72]. Branching metrics also have a direct bearing on predictions of flow and oxygen distributions, as hematocrit is
unevenly split between daughter vessels based on the flow in each of them.

Branching number Number of daughter vessels connected to a parent at a branching node [6,72,73]
Branching angle Angle between two vessels at a branching point [6,72,73]
Branching order The level in the hierarchy of a branching structure a vessel is located, with

outermost vessel in this case considered as 1st Order.
[75]

Bifurcation index Ratio of diameters of two daughter vessels at a branching point [78]
Branching index /bifurcation
density

Number of branching points per unit area/volume [34,79]

Ratio of length of daughter to
parent

Ratio of length of daughter vessel to parent vessel [78]

Interior node density Number of non-boundary nodes per volume [74]
Boundary nodes Number of boundary nodes per surface area of the region of interest [74]
% multiply–connected nodes Percentage of interior nodes with more than 3 connections [74]

Vessel spacing and density metrics - All cells in the body require oxygen and the intervessel distance is an indicator of the diffusion
distance from blood vessels to cells. Large intervessel distances are indicative of oxygen-deprived regions in the tissue which can often be
markers of pathological cell function or can identify different microenvironment niches.

Intervessel distance Distance between vessels [6,72,73]
Minimum intervessel distance Minimum distance between vessels [75]
Vessel density Vessel volume/ Whole volume [6,72,73,79–

81]
Interbranch distance Distance between branching points (i.e. vessel length) [6]
Highest microvascular density Highest vessel volume/whole volume [80]
Maximum extravascular distance Maximum distance between a vessel and a tissue point [74]
Convexity index Slope of linear fit to log–log scale histogram of extravascular distance (inversely

correlated with maximum extravascular distance)
[74]

Network shape metrics - these provide information on structures in the network including the number of loops, the number of edges per
vessel loop and the loop length. Computational complexity associated with most of these metrics is high [74], with the exception of tortuosity.
Blood vessel tortuosity is a sign of pathology, for example in oncology, ophthalmology, cardiology and neurology [76]. Tortuosity may be
calculated in many ways including the distance metric, the Sum of Angles Metric (SOAM) or the inflection count metric (ICM).

Tortuosity The ratio of the curved to straight line length of the vessel [76] [82]
Number of loops Number of loops created by vessels [75]
Mean no edge/loop Number of edges per vessel loop [74]
Mean loop length Mean loop length [74]
Total number of endpoints Total number of branch endpoints (e.g. boundary or deadend) [79]
Number of Subgraphs The number of subgraphs within the network [17]
w
H
i

𝐺

w
a

we focus on a popular pore-network approach [6,10,17,86] that does
not requires further processing and makes direct use of the network
skeleton (indeed, this approach has already been used in imaging-
modelling pipelines [16]). We describe blood as an effective fluid with
non-Newtonian properties and assume Poiseuille flow, reducing the
problem to a pressure distribution associated to the nodes of the graph,
and flow rate distribution associated to the segments of the graph. First,
flow rate conservation is imposed at every node of the graph so that
∑

𝑗
𝑄𝑖𝑗 = 0, (6)

here 𝑄𝑖𝑗 represents the flow rate in segment 𝑖𝑗, where we recall 𝑖 and
are the nodes at each extremity of the segment. Then, momentum con-
ervation is prescribed between those two nodes assuming no leakage

= 𝐺 (𝑃 − 𝑃 ), (7)
7

𝑖𝑗 𝑖𝑗 𝑖 𝑗
here 𝑃𝑖 and 𝑃𝑗 represent the pressure at node 𝑖 and 𝑗 respectively.
ere 𝐺𝑖𝑗 represents the conductance associated with the segment 𝑖𝑗 and

s defined as

𝑖𝑗 =
𝜋𝑅4

𝑖𝑗

8𝜇𝑖𝑗𝐿𝑖𝑗
, (8)

here we recall 𝑅𝑖𝑗 is the segment radius, 𝐿𝑖𝑗 the segment length
ccounting for segment tortuosity (𝜏𝑖𝑗) and 𝜇𝑖𝑗 the blood effective

viscosity. Such a viscosity depends non-linearly on both the segment
diameter and local presence of red blood cells, referred to as the haema-
tocrit, and is described using a well-established relationship derived
from experiments [87]. In this work, we consider that each segment
has a constant haematocrit corresponding to the systemic haematocrit
(i.e. 𝐻𝑑 = 0.4 [88]), although this could be readily extended using
additional semi-empirical relationships to account for phase separation

effects [89], with the trade-off of solving a coupled, non-linear problem.
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We close the system formed by Eqs. (6)–(8) by applying bound-
ary conditions at all terminal nodes, i.e. nodes connected to exactly
one segment. The assignment of boundary conditions in the absence
of measured data is highly challenging - here we seek a pragmatic
approach which allows us to explore the role of vessel architecture
on network-scale functional metrics (rather than being able to make
specific, quantitative predictions). Therefore we develop an approach
which is straightforward to implement and standardisable across the
different networks:

• The Medulla and FaDu networks have a box-like shape, with a
large number of terminal nodes near the box faces. We apply a
pressure drop 𝛥𝑃 = 50mmHg between opposite faces, observing
that the blood flow model (Eqs. (6)–(8)) is linear so that blood
flow distribution is independent of the pressure drop value. We
chose this value so as to remain in a physiological range [10]
and as a basis for discussions. We assume terminal nodes located
within 50 μm of a face belong to that face and that terminal
nodes located close to the box corners were associated with their
closest face. For nodes lying on other faces we impose 𝑃𝑖 =

𝛥𝑃
𝛥𝐿𝑥𝑖

where 𝛥𝐿 is the distance between the two opposite faces and
𝑥𝑖 the position of the node along the direction of the pressure
drop. For terminal nodes located within the network, i.e. dangling
ends located far from the faces, we impose no flow, so that
inlet and outlets are located only on the network surfaces. To
avoid favouring a specific direction we repeat the simulations
with the pressure drop applied on the remaining two pairs of
opposite faces. See Supplementary Figure 3 for diagrammatic
representation.

• The LS network includes structures with larger diameters than
the other two networks and is also less box-like in shape. In
particular, Fig. 5vii shows that the LS network has a large segment
dangling close to the bottom. This segment is present in every
reconstructed skeleton, regardless of the algorithm considered.
The terminal node associated with such a segment is then pre-
scribed with a high pressure, and all other boundary vertices are
prescribed with a low pressure so that the pressure drop between
high and low pressure vertices is 𝛥𝑃 = 50mmHg.

We perform blood flow simulations for the Medulla, FaDu and LS
etworks for each image processing pipeline presented in Fig. 1B.

. Segmentation, skeletonisation and simulation results

.1. Segmentation

The segmentation metrics for the manual annotator segmentations
f each dataset, which compare the overlap between each expert anno-
ator and the consensus STAPLE segmentation, are provided in Table 2.
n all cases, the different annotators produced substantively differ-
nt segmentations from one another, with one segmentation being
uantitatively similar to the STAPLE consensus.

The Medulla brain network represents the simplest segmentation
ase - vessels are well labelled throughout and imaging artefacts
anisotropic asymmetric resolution specific to the imaging modality
R-HREM) have been well reduced [90] (Fig. 3). Additionally, the

etwork is non-pathological and thus vasculature has a more ordered
tructure, i.e., vessels appear tube-shaped with most branches have one
arent and two daughter nodes.

The FaDu and the LS tumour networks, on the other hand, both
epresent pathological microvascular networks, with highly disorgan-
sed vasculature where many vessels do not appear tube-like in struc-
ure, and include complex branching points where many vessels meet
Fig. 3).

The LS tumour annotators performed their segmentations (Fig. 3) in
pproximately 120 h (Annotator 1) and 15 h respectively (Annotator
8

). Annotator 1’s segmentation shows better distinction of the fine n
essels and this is reflected in the metrics in Table 2. This highlights
hat not only is the level of expertise important to consider, but also
he conditions under which each expert annotator is working. As of
et, there is no widespread consensus for the best approach to these
hallenges [42,91].

The FaDU network represents the worst case scenario for segmen-
ation: the network is pathological, meaning deviations from tubular
ranching tree structures cannot be used to distinguish imaging arte-
acts from vascular structures. Also the anisotropic resolution, char-
cteristic of MF-HREM [90], is more pronounced owing to the lower
esolution (Fig. 3). These challenges are borne out in the differences
etween the two expert annotators ( Table 2). In this case experts had
ad similar levels of experience and completed the task over similar
ime frames.

The MOST algorithm combines both segmentation and skeleton-
sation, and utilises a different form of adaptive threshold for the
egmentation portion of the algorithm. The segmentation portion of this
lgorithm was not evaluated separately to the skeletonisation portion,
ather the final output was evaluated against the STAPLE segmentation
sing overlap metrics, precision and recall, defined by the authors of
he MOST algorithm [55]. We combine the precision and recall by
aking the harmonic mean of these and refer to this as the F1 score (see
upplementary Materials Section 1.1). Our highest score was F1=0.83.
his cannot be directly compared to the overlap metrics of DICE or
accard indices of the manual segmentation in the previous sections,
s it is based on the overlapping ‘regions’ of vessel in cross-sectional
mages throughout the stack, rather than voxel-to-voxel overlap on the
ull image volumes, and only after a re-binarization of a skeletonised
raph. Rather, the F1 score we obtain should be compared to the
iterature value of 0.92, which is calculated from the harmonic mean of
recision and recall in [55]. The lower F1 score here already suggests
hat there will be higher uncertainty in the final skeleton results for this
lgorithm.

In all cases it is clear that whilst there may be closer or further
onsensus between experts regarding the manual segmentation of mi-
rovascular structures, one should be cautions of inferring ground-truth
rom consensus, and should rather consider gold-standard consensus as
distinct case from e.g. a synthetic dataset ground truth.

.2. Skeletonisation metrics

For all datasets each skeletonisation results in a distinct spatial
raph. The number of nodes, segments, subnetworks, total network
olume, branched and terminal nodes are reported in Supplementary
able S3. From these data alone, the wide variation produced by these
ifferent methods is clear. For each dataset, the skeletonised network
ith highest number of nodes has more than double the number of
odes and segments than that with the lowest. In addition, there is no
lear pattern for any given algorithm: e.g. for the tumour datasets, LS
nd FaDu, the CL algorithm produces the lowest number of branching
odes, whereas for the medulla brain dataset the CL algorithm produces
he highest number of branching nodes. This could be attributed to the
umber of looping nodes that are broken by the CL algorithm which
he medulla may have more of given that it is the highest resolution
ataset. Comparison of the network volume with the volume of the
onsensus segmentation (Supplementary Table S3-S5) demonstrates VV
lgorithm provides the closest volume approximate in the FaDu and LS
ases, which can be linked to the mean radius distribution, as discussed
elow.

Comparison between the structural metrics defined in Section 3.2.1
Fig. 2) further demonstrates the differences in the geometry of the
etworks. Figs. 4 and 5 show the distributions of structural metrics
or the spatial graphs produced by skeletonisation of the STAPLE
egmentation and MOST output for all three datasets. The radius,
DR, branching angle, IVD and tortuosity distributions as well as the

umber of subnetworks for each skeleton are statistically compared (as
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Fig. 3. Segmentation outputs for each dataset from two independent annotators. The bottom row shows the STAPLE output for each dataset.
Table 2
The Jaccard index, Dice Score, Volume similarity and Hausdorff Distance, of individual semi-manual segmentations compared to a gold standard segmentation. The gold standard
was constructed by combining the individual hybrid hand-automated segmentations using the STAPLE algorithm.

DataSet Annotator Jaccard index Dice score Volume similarity Hausdorff distance

MR-HREM Medulla Brain Non-Expert Annotator 0.52 0.68 0.6322 82.32
MR-HREM Medulla Brain Expert Annotator (1) 0.66 0.80 −0.40757 55.0
MR-HREM Medulla Brain Expert Annotator (1) 0.99 0.99 0.000137 57.2

LS Tumour CT Expert Annotator (3) 0.84 0.91 −0.171 83.21
LS Tumour CT Expert Annotator (1) 0.74 0.85 −0.31 72.01

FaDu Tumour MF-HREM Expert Annotator (4 ) 0.28 0.43 −1.13 100.3
FaDu Tumour MF-HREM Expert Annotator (1) 0.99 0.99 −0.006 77.6
measured by the Kruskall-Wallis test) and are summarised in Table 3
(extended statistics in Supplementary Table S10–S12).

By looking across all datasets we clearly see that structural metrics
are highly dependent on the skeletonisation algorithm. For example,
in all cases the skeletonisation algorithm that produces the highest
mean radius value produces the lowest IVD. This is the VV algorithm
in all cases where it is applied and can be seen to be a consequence
of the modified Euclidean distance approach to radius estimation [48].
9

Similarly, the networks with the highest number of subnetworks tends
to have the highest IVD, although this can be countered by large radii.
The majority of the metrics differ significantly between skeletonisation
methods. The CL algorithm, a shortest path approach following a dis-
tance ordered search, produces a less well connected network (higher
number of sub networks) compared to the thinning approaches of VV
and AS (Figs. 4Bvi and 5vi). The AS algorithm consistently produces
the lowest number of sub networks across all datasets, though it is
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Fig. 4. (A) Medulla brain and (B) FaDu tumour network metrics. For both cases i-vi are the branching angle, radius, LDR, tortuosity, IVD and number of subnetworks respectively,
and vii shows the network with subnetworks coloured for one of the three image processing pipelines.

Fig. 5. LS Tumour network metrics. Graphs i-vi are the branching angle, radius, LDR, tortuosity, IVD and number of subnetworks respectively, and vii shows the networks with
subnetworks coloured for one of the three image processing pipelines.
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Table 3
Summary statistics for Kruskall-Wallis test between means of each structural metric
across each skeletonisation method, ∗∗∗ p ≤ 0.0001, ∗∗ p ≤ 0.001, ∗ p ≤ 0.05, ns p
≥ 0.05.

Datasets Radius Branching IVD Tortuosity LDR Flow

Medulla

MOST vs. AS *** *** *** *** *** ***
MOST vs. CL *** ** *** *** *** ***
AS vs. CL *** *** *** *** *** ***

FaDu

VV vs. AS *** ns *** ** *** ***
VV vs. CL *** ** *** *** ** ***
AS vs. CL *** ** *** *** *** ***

LS

VV vs. AS *** ns *** ** *** ***
VV vs. CL *** ns *** *** *** ns
AS vs. CL ns ns *** *** *** ***

not clear if this is a ‘better’ skeletonisation (we discuss this notion
further in Section 5). For other metrics, there is no clear pattern in
the variation between CL and AS approaches across all datasets. For
example, the mean IVD in the Medulla brain network is significantly
lower in the CL case than in the AS case, whereas the reverse is true
for the FaDu network. For tortuosity there is also not a clear pattern
in the differences between the distributions across all three datasets
(Figs. 4Aiv, 4Biv and 5iv).

Radius distributions, on the other hand, display some patterns that
can be linked back to assumptions or limitations of the algorithms;
for example, we note that the radius distribution for the CL has a
hard-coded minimum radius value of twice the pixel size. This distorts
the radius distribution where vessels approach the imaging system
resolution (Figs. 4Ai, 4Bi and 5ii). Where the imaging resolution is
lower, and thus the image captures mostly larger vessels (such as
the LS tumour dataset), the hard coded minimum is less apparent
(Fig. 5i). Similarly, the radius calculation for the AS algorithms has
a simplistic approach which uses 1/5th the maximum of the Chamfer
distance map. This leads to generally lower radius values compared to
algorithms which use e.g. maximum inscribed sphere approaches used
(CL [53] and MOST [58]) or a modified Euclidean distance approach
(VV [48]). In addition, the strict tree topology enforced by the CL
algorithm, and the MOST breaks looping structures within the network,
forcing the structure towards a more ’tree-like’ topology, i.e., single
parent vessel with two child vessels at all nodes. This leads to a
higher number of terminal nodes compared to all other skeletonisations
algorithms (Supplementary Table S3). In the CL case this also leads to
distinctive bimodal distribution of branching angles with the smaller
angle between child vessels and a larger angle between parent and
child. This forcing of networks into a strict tree-like topology may be
appropriate for large calibre vessels or in networks that are purely an
arterial or venous, but is a highly questionable assumption in the case
of capillary networks which have a more mesh-like structure [17] such
as the medulla brain. Moreover, it is not clear that such an assumption
would hold for a pathological vessel networks such as the LS and FaDu
networks.

The MOST approach, the only approach which does not share the
same binary segmentation, produces even further disparity in structural
metric results, including a reduction in network connectedness, as
evidenced by the high number of subnetworks (Fig. 4Avi). This is likely
influenced by the absence of manual segmentation in this pipeline;
human annotators have a tendency to fill in connected regions when
segmenting even if there is faint or absent staining, due to the expecta-
tion of a connected tubular structure when segmenting a microvascular
network [36].

The differences between network topologies for the AS and VV
11

approaches are of particular interest (Fig. 4B and Fig. 5) as both are
thinning approaches with the same input segmentation. This shows
that these widely used algorithms with the same theoretical aims
(e.g. medialness, homology, and thinness) result in significantly dif-
ferent graph outputs. Furthermore it is not possible to visually assess
the output correctness through overlay methods alone, or to use the
quantitative structural metrics of the outputted networks to determine
which algorithm performs ‘better’ in either dataset. Indeed, neither of
these methods produces a homotopic skeletons which is shown simply
by comparison of the number of connected components in the binary
labelled volume and the resulting number of subnetworks (see Sup-
plementary Tables S3–S5 for values). Interestingly, the CL algorithm
does preserve the number of connected components when compared to
the input segmentation. However, as previously discussed, it does not
preserve loops and thus will inevitable violate homology where looping
structures are present in the segmented micro-structure.

In some cases the comparison of the structural metrics does not
achieves statistical significance, e.g. in the LS network branching an-
gle (Fig. 5i). This could suggest that two algorithms are in closer
agreement; and whilst this may be the case, a spatial encoding of the
branching angles (as with the other metrics) is necessary to understand
if structural differences will result in a functional difference between
two skeleton structures. This is something which is rarely considered
in spatial graph microvascular network analysis, but can be born out
through functional metrics such as the flow results we present below.

Overall the structural metric analysis highlights significant variabil-
ity underpinned by the skeletonisation algorithm selection. Whilst we
do not question that structural metrics do vary between networks in
meaningful ways such as in pathology and as such, are still clearly
valuable to compute. We show that great care must be taken to ensure
that the measures extracted are not dominated by the skeletonisation
algorithm used to compute and moreover that any comparison of
networks using different skeletonisation algorithms such as between
different studies, should be treated with extreme caution. It is also
clear that structural metrics alone do not necessarily provide a clear
indication of whether any one skeletonisation algorithm is closer to
an accurate representation of the imaged microvascular networks than
another.

4.3. Flow results

The flow model used here incorporates geometrical and topolog-
ical network information with a standardised approach to boundary
condition assignment; therefore, we consider the flow predictions as
a summary statistic on how different structural interpretations of the
same networks would influence functional measures rather than a
quantitative prediction about in vivo dynamics. In this context, Figs. 6
and 7 show the simulated flows across the different skeletonised net-
works (VV, AS, CT and MOST), with Fig. 6A and B focusing on the
medulla and FaDu networks, and Fig. 7 on the LS network.

Figs. 6Ai, 6Bi and 7i show the flow rate distribution histograms for
each network (for the case of a pressure drop along the ⃖⃗𝑥 direction
for the Medulla and FaDu networks). We can see that the distributions
vary widely depending on the algorithm considered. Quantitatively,
statistical comparisons (Table 3) show that flow distributions were
significantly different across all networks, except the LS network in
the case of CL against VV algorithms (Kruskall Wallis test with Dunn’s
multiple comparisons, see details in Supplementary Table S10-S12).
Such differences in flow distribution impact integral quantities such as
the perfusion flow rate, defined as 𝑄𝑃 = 1

2
∑

𝑖∈{𝐵𝐶} |𝑄𝑖𝑗 |, i.e. the total
flow rate going through all terminal nodes (the set of terminal node
being {𝐵𝐶}). Figs. 6Aii and Bii, and 7ii show the resulting perfusion
flow rate for the medulla, FaDu and LS networks respectively. We
see that for each network there is consistently one skeletonisation
algorithm associated with a perfusion flow rate approximately an order
of magnitude larger than the others. We note, however, that there is
no consistency across the three networks, with the medulla network
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Fig. 6. Flow simulation for (A) medulla and (B) FaDu networks for each skeletonisation algorithm. (i) The flow distribution for the case of a pressure drop applied in the 𝑥
direction. (ii) The perfusion flow rate, i.e. the total flow rate going through the network, averaged over the three pressure drop directions, with the error bars representing the
standard deviation. (iii) Fraction of nodes that are terminal (plain), fraction of nodes that are terminal with no flow (cross hatch). (iv) (v) and (vi) show the spatial flow distribution
associated to the histogram displayed in (i).
showing largest perfusion flow rate when the MOST algorithm is used,
the FaDU network when the VV algorithm is used and the LS network
when the AS algorithm is used. Such differences also hold when looking
at the net flow rates going through each face of the box-like shaped
network (medulla and FaDu networks, see Supplementary Tables S7
and S8), regardless of the pressure drop direction considered. These dif-
ferences in flow distribution and perfusion flow rates can be attributed
to the cumulative effects of radius distribution, network connectivity
and terminal node distribution.

As already mentioned in the Introduction and further illustrated
by Eq. (8), flow rates are particularly sensitive to the radius of blood
vessels. Consequently, we see that the simulations predicting the largest
perfusion flow rates are commonly associated with the algorithms
reconstructing the network with the largest radii for the subsection
networks- the MOST algorithm for the medulla network (Fig. 4Aii), VV
algorithm the FaDu network (Fig. 4Bii). For the LS network which is
a complete network (as opposed to a box-like network) this pattern
12
is broken; the AS algorithm despite having a lower mean radius that
the VV algorithm produces the highest flow. This case highlights the
complexity of linking network topology to dynamic behaviours, as can
be seen from Fig. 5iv there is a disconnect between one of the largest
vessels in the LS networks produced by the VV algorithm that is not
present in the CL or AS networks Figs. 5v and vi . This small change
has a dramatic impact on the flow distribution in the skeleton produced
by the VV algorithm, (Fig. 5ii).

Figs. 6Aiv-Avii, 6Biv-Bvi, (medulla and FaDu networks, pressure
drop along the ⃖⃗𝑥 direction) and 7iv-vi (LS network) show strikingly
different spatial flow patterns obtained depending on the algorithm
used, reflective of the differences observed in flow rate distribution
histograms. We see that in all cases the flow patterns are highly
heterogeneous, which is a hallmark of the microvascular system [92].
Still, we note the existence of regions associated with very small
flow rates (dark blue for the medulla network, white for the FaDu
network and red for the LS network), whose sizes vary depending on
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Fig. 7. Flow simulation for the LS network. (i) shows the flow distribution. (ii) The perfusion flow rate, i.e., the total flow rate going through the network. (iii) Fraction of nodes
that are terminal (plain), fraction of nodes that are terminal with no flow (cross hatch). (iv) (v) and (vi) show the spatial flow distribution associated to the histogram displayed
in (i).
the algorithm considered. Such regions are the result of the combined
effect of connectivity (number and spatial distribution of subnetworks)
and boundary conditions (number and spatial distribution of terminal
nodes). For instance, looking at the LS network and the flow prediction
based on the VV algorithm (Fig. 7iv), we see a large region with no flow
on the top-right corner. We see that such a region is perfused with blood
in the case of AS and CL algorithms (Figs. 7v and 7vi). Recalling that we
assigned the LS network with only one high pressure node (the node
at the very bottom), i.e. one inlet, this means that this region, with
relatively large segments, is actually considered by the VV algorithm
as a disconnected, independent subnetwork.

Beyond highlighting the effect of radius distribution and network
connectivity, the flow simulations demonstrate how different skeleton-
isation algorithms will lead to different terminal node distributions, and
therefore to different boundary conditions. To illustrate this, Figs. 6Aiii,
Biii and 7iii show the number of terminal nodes, expressed as a fraction
of the total number of nodes, in each network and for each algorithm
(plain bars). We see that consistently at least 40% of nodes are terminal,
increasing to 90% in the case of the CL algorithm and FaDu network.
As already mentioned in Section 4.2, the CL algorithm breaks looped
structures, creating microvascular trees instead, which systematically
increases the number of terminal nodes. Moreover, Figs. 6Aiii, 6Biii and
7iii also show the number of terminal node that are associated with
no flow, expressed as a fraction of the total number of nodes (cross-
hatched bars), either because they are located far from the boundary or
in a non perfusing, independent subnetwork. We see that this fraction
generally follows closely the fraction of terminal nodes, indicating
that a large number of terminal nodes are actually non perfusing, and
therefore that most of the terminal nodes are not located close to the
boundary (for the case of the medulla and FaDu network specifically).

Linear or weakly non-linear problems such as the blood flow prob-
lem described in Section 3.2.2 are mostly controlled by their initial
and boundary conditions, which requires a degree of arbitrary deci-
sion whether motivated by physiology or pragmatism. Strategies have
been developed to mitigate the arbitrary aspect of boundary condition
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assignment, such as periodic boundary condition for terminal nodes
on the faces of box-shaped networks [10], or formulating the blood
flow model (Eqs. (6)–(8)) as a constrained minimisation problem [93],
or even setting pressure or flow rate values on nodes associated with
specific segments (e.g. arterioles, venules that are known entry/exit
points for the network). However, such strategies have their limits;
e.g., they do not solve the problem of dangling ends located far from the
boundaries or disconnected subnetworks. An intuitive solution to solve
the latter issue could be to either remove/discard small subnetworks
such as isolated segments, or include new segments to artificially
increase connectivity and obtain a single, all-connected network. How-
ever, dangling ends and disconnected subnetworks can be features of
pathologies, e.g. where parts of the original healthy network have
atrophied leaving isolated segments [10,94] or where there is dis-
regulated angiogenesis, e.g. caused by cancer cell angiogenic factor
secretion [6,14], which makes it challenging to alter arbitrarily the
network structure. In this context it is critical to be able to quantify the
uncertainties attached to a set of network skeletons, and be able to label
their features as either being the result of a physiopathological pro-
cesses or the result of a gap in the skeletonisation algorithms. Beyond
this lies the propagation of such uncertainties to functional prediction.
In particular, the perfusion flow rate underpins drug delivery [6,18,95];
given the range of values displayed in Figs. 6 and 7, it is challenging
to make informative and quantitative predictions using such datasets.
Similarly, net flow rates associated with faces for box-like shaped
networks (Supplementary Tables S7 and S8) can be used to infer the
local permeability tensor of the tissue associated with the reconstructed
network. Such a permeability tensor, being a key player in multiscale
models [84,85], can easily propagate the uncertainties generated by the
network skeleton to predictions at coarser length scales.

In summary, the flow simulations highlight the limited ability of the
skeletonisation algorithms to consistently recover key features of the
flow, whether due to differences in the reconstructed segment radii,
network connectivity or terminal node distribution. This motivates the
need for a quantitative and easy to apply metric to assess and optimise
skeletons produced by different algorithms.
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Table 4
Comparison of skeletonisations utilising individual metrics described above.
Datasets Volume

μm3
No.
connected
components

Euler No.
of largest
connected
component

Bifurcation
DICE

cl- sensitivity

Medulla

Binary Image 1.42 74 −381 1 1
VV 0.738 71 −381 0.5 0.9733
AS 0.337 62 −381 0.74 0.9999
CL 0.412 74 1 0.56 0.9997

FaDu

Binary Image 4.60 6067 −333 1 1
VV 3.80 3965 −264 0.2 0.8997
AS 1.12 836 −333 0.61 0.9499
CL 1.24 6067 1 0.35 0.9187
F
s
c
t
t
a
c

𝑀

5. A super metric for skeleton validation

The creation of a full skeleton consensus ground-truth in an analo-
gous manner to the segmentation fields is an overly manually intensive
approach which could not be widely applied [24]. An alternative
approach is to consider that the skeletonisation step should alter as
little as possible the information contained in the segmented image.
Doing so means to consider the segmented image as a gold standard,
so that metrics derived from the skeleton then need to be compared to
metrics derived from the segmented image. However, as revealed from
our analysis in Section 4.3 we should weight our comparison with the
segmented image towards the information content of the segmented
image that most affects dynamic behaviour. This includes: radius of
vessels, connectivity of vessels, in particular the connectivity of the
largest single connected component of the networks, which carries the
majority of the blood flow (see Supplementary Figure S2). In addition
to this, spatial encoding of geometric similarity must be included
to ensure dynamic similarity, (note the principles of medialness and
homology already ensure some spatial encoding of similarity). Such a
comparison to the segmented image leverages the methods from the
segmentation field used to create gold-standard segmentations, and
provides a fixed point against which to assess a new skeletonised
network in all cases. A number of other researchers have also sought to
validate skeletons by comparison to binary images, [5,23,35], but these
only consider one or two metrics in isolation, rather than formulating
it as a collective. For example Table 4 shows comparison between
the STAPLE segmentation and the skeletons for the medulla and FaDu
Tumour datasets, across five different measures: Volume, number of
connected components, Euler characteristic of the largest subnetwork
(connected component), DICE score for bifurcation points, and cl- sen-
sitivity [33]. It can be seen that depending on which metric is chosen
for comparison, a different skeletonisation algorithm will appear to be
superior. In the Medulla case, the CL algorithm gives the closest number
of connected components to the STAPLE segmentation, however CL is
the least good when the Euler number of the largest connected compo-
nent or the bifurcations dice in a small subvolume is considered. The
AS algorithm, on the other hand, provides the highest bifurcation DICE
and cl-sensitivity, but has the lowest similarity in terms of volume and
connected components compared to the other candidate skeletonisation
algorithms. These differences are also apparent in the FaDu data, but
to an even greater extent owing to the pathology of this network and
the lower resolution of the image data. This further highlights why a
single metric which take into consideration multiple properties of a
microvascular network is needed.

We have developed a composite super metric that combines several
morphological measurements of a skeletonised network and can be
quickly computed from the network spatial graph. This super metric
contains five measures each calculated by comparison to the binary
image:
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1. 𝑉 - Total network volume
2. 𝐵 - Number and location of bifurcation points in a small subset

of the network, reported as a DICE score
3. 𝑐𝑐 -The number of connected components or subgraphs of the

network.
4. 𝜒 - The local Euler characteristic, where we have reformulated

the classical Euler characteristic to resolve the special case of
𝜒classical = 0. Our local Euler will always be positive 𝜒 = 2 −
𝜒classical. [23,35,96].

5. 𝑐𝑙 - A partial form of the cl-dice metric (only the sensitivity
portion, i.e., the overlap of the skeleton centreline with the
binary image following) [5,33].

For the 𝑐𝑙 measure we consider only the overlap of the centreline
from the skeleton with the binary image, i.e the cl-sensitivity. 𝑉 , 𝑐𝑐 and
𝜒 have equivalence in both the binary image and the spatial graph
form. For 𝑉 , 𝑐𝑐 the equivalence is trivial and for the 𝜒 number we
compute the number of holes or tunnels through the largest connected
component in the binary image, or equivalently, in the largest subgraph
of the network, the number of nodes minus number of segments [96].
Our variation from the classical Euler characteristic resolves the valid
but special case where Euler characteristic would be zero, (e.g. a net-
work with one single loop) and guarantee a strictly positive quantity.
For 𝐵, manual annotation of bifurcation points in a small subvolume of
the binary data must be performed once, then the True Positive (𝑇𝑃 ),
alse Positive (𝐹𝑃 ), and False Negative (𝐹𝑁) bifurcation points in the
ame subregion can be computed for any skeleton automatically. 𝑐𝑙 is
alculated by transformation of the spatial graph into a binary cen-
reline image using Bresenham’s algorithm [97]. The overlap between
he two images is then calculated (See supplementary Info Section 7
nd Supplementary Table 13 for calculation of each metric). We then
ombine these individual metrics to create the super metric:

𝑆 =
∑

𝑖
𝑤𝑖 ⋅

|

|

|

|

|

𝛥𝐼𝑆𝑓𝑖
𝑓𝐼,𝑖

|

|

|

|

|

, (9)

where 𝑓𝑆,𝑖 and 𝑓𝐼,𝑖 represent each of the metrics 1–5 listed above and
is computed from the reconstructed skeleton or the initial segmented
image respectively (see Supplementary Table 13 for further details).
Then 𝛥𝐼𝑆𝑓𝑖 represent the difference in metric values between the
two estimates. Finally, 𝑤𝑖 are the non-linear weights given to each
individual metrics. Taken together, we see that Eq. (9) can be written
as the projection (scalar product) of the distance vector between the
reconstructed skeleton and segmented image onto a weighted space
representative of the priority given to the different elementary metric,
so that a skeleton minimising the super metric should be more similar
to the initial segmented image. We note that in this context all metric
used are strictly positive.

The non-linear weighting for each term has been formulated to
weight appropriately for the influence of each measure on the dynamic
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Fig. 8. Super metric minimisation impact on skeletons. (A) the value of the super metric in all 10 runs for each algorithm, (B) each term in the super metric is plotted for the
baseline, optimal and worst case of the parameter sets.(C) The perfusion flow rate change, i.e., the total flow rate going through the network between the initial and optimal
parameter values for all four algorithms. The 95% CI for all four networks in the initial and optimal case.
properties of the network, but could be adapted depending on the con-
text. Here, 𝑉 , 𝜒 and 𝑐𝑐 are associated with 𝑤𝑉 = 1 and 𝑤𝜒 = 1, i.e. they
are assigned with unit weights. On the other hand, the bifurcation
DICE (𝐵) the cl-sensitivity (𝑐𝑙), elementary metric are weighted so that
𝑤𝐵 = 1

𝐵2
𝑠

and 𝑤𝑐𝑙 = 1
𝑐𝑙3𝑆

. We also note that, by definition, we have
𝐵𝐼 = 1 and 𝑐𝑙𝐼 = 1. Consequently, for the present case the super metric
simplifies into:

𝑀𝑆𝑖
=
|

|

|

|

𝑉𝐼 − 𝑉𝑆

𝑉𝐼

|

|

|

|

+
|

|

|

|

𝑐𝑐𝐼 − 𝑐𝑐𝑠
𝑐𝑐𝐼

|

|

|

|

+
|

|

|

|

𝜒𝐼 − 𝜒𝑆

𝜒𝐼

|

|

|

|

+
|

|

|

|

|

1 − 𝑐𝑙𝑆
𝑐𝑙𝑆

3

|

|

|

|

|

+
|

|

|

|

|

1 − 𝐵𝑆

𝐵𝑆
2

|

|

|

|

|

, (10)

The practical affect of the weighting is that only a very minor reduction
in 𝑐𝑙 from 1 will result in a high super metric value, which is intuitively
understandable i.e. a skeletonisation algorithm may occasionally cut a
corner and still represent the network in the segmented image well,
but large proportions of centreline outside of the binary segmentation
is not plausible. For 𝐵, larger deviation from 1 in the DICE bifurcation
re tolerated by the super metric as the bifurcation points are annotated
anually and hence may be slightly subjective. As 𝑐𝑙 or 𝐵 deviate from
the terms can quickly become dominant in the overall metric leading

o a rejection of the skeleton, even if other morphological features are
orrect such as the number of connected components. This helps to
nforce the spatial correctness which was highlighted as critical for
ynamic behaviour.

We then looked for the parameter values minimising the super
etric for each of the four algorithms, i.e., VV, CL, AS and MOST on
subsection of the medulla brain dataset (See Supplementary infor-
ation section 7 for optimisation methods) in order to rank them in

heir ability to reproduce the initial segmented data. Fig. 8A shows
hat the super metric was able to provide a clear optimal algorithm
hoice from amongst the four algorithms- The AS algorithm had the
owest super metric score in the optimal case and indeed was generally
ower than all other algorithms for most of the parameter spaces
xplored. Fig. 8B shows how each term of the super metric contributes
o the overall value of the super metric for the baseline and optimal
ase for each algorithm. The very high DICE bifurcation case can be
een for the MOST algorithm indicating the spatial inaccuracy of this
keletonisation method.

The super metric also proves to be a highly useful tool in identifying,
n which area an algorithm is performing most poorly. For example in
ig. 8B it is clear that for the AS algorithm the Volume term is the
ighest contributor to the super metric value. When we consider that
his algorithm shows lower mean radius than its closest competitor the
V algorithm also show in Supplementary Figure 5; it indicates that

he method for evaluation of radius in the AS algorithm should be
mproved. Finally Fig. 8C shows how the absolute flow rate through
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the networks changes in response to optimisation of the super metric.
As can be seen the optimal flow rates of the network are more tightly
clustered as shown by the smaller 95% confidence intervals in the
Optimal flow of Fig. 8C.

In summary, we have defined a super metric for the assessment of
skeletonisation algorithms. The super metric can be considered a scalar
product of a distance and weighting term for each component included.
We have chosen to include five features in the term guided by our
previous dynamic and structural metric study. We show that the super
metric can be easily and rapidly computed and applied to a wide range
of skeletonisation algorithms. When this is done it is simple to compare
different skeletonisation algorithms and choose that which provides
the minimum super metric value. In addition the individual terms of
the super metric can guide algorithm improvement. Whilst we believe
this initial super metric captures and combines the critical measures
that should be used to assess micro-vascular network skeletons, the
formulation is clearly amenable to being added to or adapted by others.
In particular an addition that would allow radius and length to be
distinguished (rather than a global volume term) would be preferable.
Furthermore formulation of this metric in a numerically differentiable
form could lead to its use as a loss function for machine-learning based
skeletonisation approached.

6. Conclusion

The critical role of vascular networks in healthy tissue function
and as biomarkers of disease is indisputable. This importance coupled
to the increasing advances in 3D imaging techniques and computa-
tional frameworks for simulating the functional properties of networks
from geometric data has huge potential in the field of computational
medicine [16,20,21]. The image-processing pipeline is a key step in
such frameworks, especially when applying them to large microvas-
cular networks. Ensuring that there is robust and widely agreed upon
validation methods in place for the image processing portion of these
frameworks is therefore a priority.

In this work we have demonstrated the extent to which image
processing variability, and in particular skeletonisation, can create
variability in the structural properties measured from vascular net-
works and how this can propagate into frameworks that simulate the
functional properties of microvascular networks from 3D imaging data.
These differences can be so large that substantively different biolog-
ical conclusions regarding, e.g., the tortuosity or connectivity of any
vascular network may be arrived at solely due to the selection of the
skeletonisation algorithm even in case where it had been parameterised

by accepted methods in the field. This is critical where multiple studies
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are assessing how pathological changes in a vascular network may
lead to functional differences in e.g. blood flow or oxygenation and
what the biological implications of this on tissue function may be. The
differences in functional properties (such as blood flow or perfusion)
cannot be easily intuited from structural metrics owing to the com-
plex dependencies on overall network connectivity, individual vessel
properties such as radius, and how boundary conditions and nodes are
identified and initialised.

Within the image processing pipeline the field of segmentation, has
numerous widely applied metrics and strategies to mitigate variation
caused by different algorithms or expert annotations. For skeletonisa-
tion the validation landscape is far less clear.

There are a wide variety of open source and commercial algorithms
for performing skeletonisation with a vast and widely spread body
of literature on the various developments and implementations. As a
global goal, many of these algorithms have three guiding principles:
homology preservation, thinness and medialness. Whilst these goals
are, to a greater or lesser extent, achieved by individual algorithms,
there is increasingly a push to scale such algorithms to handle the
ever increasing size of 3D imaging data. With the added constraint
of efficiency for data sets of 100 GB and upwards, it may be that
whilst the mathematical proof for e.g. homology holds in the orig-
inal algorithm [50], efficient computational implementation through
parallelisation, for example, produces unexpected behaviour or breaks
assumptions of the original algorithm [52].

The fundamental challenge for skeletonisation, is that there is gen-
erally no gold-standard for a skeleton, or agreed upon metrics for as-
sessing skeletons. The creation of a gold standard for skeletons is a large
challenge. To the authors knowledge, the only published manually-
defined consensus centreline datasets are the coronary artery datasets
of Schaap et al. [24], where the length of time required to produced
consensus centrelines for just the first 3 branches of the coronary artery
tree was over 500 h of expert time. Instead we have proposed a super
metric for skeletonisation that utilised the binary input image as the
gold-standard and seeks for the skeleton to most closely represent the
binary image with a weighting to features which most heavily affect the
functional behaviour of the network. To that end we have proposed
a metric which consists of 5 terms each of which captures features
that we have demonstrated are important to the functional behaviour
of microvascular networks, and we have combined these as a scalar
product of a distance from the binary image and a weighting term.
This formulation is simple and fast to compute and thus is practically
usable by any researcher as well as providing intuitive insights into the
ways in which a particular skeletonisation algorithm differs from other
algorithms or from the binary input image used to create it. We aim that
this super metric become a standard metric for assessing microvascular
skeletons as it will allow of a quantitative assessment of new algorithms
and will empower researchers to be able to effectively choose and
optimise new skeletonisation algorithms. Further development of the
super metric with the addition of new terms of the refinement of our
existing terms would be highly beneficial particularly in assessing how
the radius of vessel is estimated, or by efficiently including functional
properties in the metric composition.
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