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Abstract— In this paper, a plane-based LiDAR odometry
method is proposed. SLAM is an essential part of the au-
tonomous robotic design that provides estimated pose of a robot.
Instead of using the point cloud map as in most existing works,
the proposed method constructs a map consisting of a series
of planes for estimating the pose in an efficient and accurate
way. The plane map method reduces the number of objects
processed in the map compared to point cloud map methods.
Every time a LiDAR scan is received, the scan is voxelized and
the planes included are extracted. The planes are matched with
their counterparts in the plane map. Subsequently, the pose is
optimized iteratively to get an accurate pose estimate. With the
optimized pose, the plane map is updated. The effectiveness of
the proposed method is verified by both public datasets and
real-world experiments. The results show that the plane map-
based method can achieve accurate SLAM with a processing
rate of more than 20 Hz in both indoor and outdoor scenarios
in comparisons with some recent LiDAR SLAM algorithms.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is one of
the most fundamental problems in the field of autonomous
robotics [1]. When a robot explores an unknown environ-
ment, SLAM is utilized to localize the robot. Comparing
to visual sensors, LiDAR can achieve more reliable and
accurate measurements and stay robust to illumination and
weather change [2]. Therefore, LiDAR SLAM is widely used
in autonomous robotic applications.

The matching of point clouds plays an essential role in
LiDAR SLAM. Iterative closest points (ICP) [3] and its
variants [4], [5] are the most classic method to calculate
the transformation between two raw point clouds iteratively.
The feature-based method introduced by LOAM [6] extract
planes and edges and match the features, which enable real-
time scan-to-scan registration. Some works such as LeGO-
LOAM [7], LOAM LIVOX [8] and F-LOAM [9] improve
LOAM and are widely used.

Although existing works on LiDAR SLAM have achieved
good performance, the time cost of processing a LiDAR scan
and of optimizing the pose remains high. This is because the
number of points in a single LiDAR scan is large and the
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(a) EEE environment (b) Result on eee 02 dataset
Fig. 1. Example of the proposed method on NTU VIRAL datasets. (a)
shows the environment of the dataset. (b) is the mapping and pose estimation
result on the eee 02 dataset.

size of the point cloud map expands as the robot explores
the surroundings.

In most man-made environments, there exist many planes
available for environment reconstruction, such as the walls,
the doors, the tables, and so on. In such cases, these planes
can be used to build a plane map. The plane map represents
the feature of the points that lie on an exact plane. Since
the number of planes in a plane map is much smaller than
the number of points in a point cloud map for the same
scene, achieving SLAM by leveraging the plane map are
prone to significantly reduce the computational cost. On the
other hand, the plane-based SLAM is also memory saving for
map storage. Therefore a plane map is suitable for resource-
constrained robotics research when exploring an unknown
man-made environment.

The extraction of the plane is the basis for constructing a
plane map. The extraction algorithms can be roughly classi-
fied as model fitting-based method, clustering-based method,
and region growing-based method. For the model fitting-
based method, the Hough Transform [10] and the Random
sample consensus (RANSAC) [11] are widely deployed,
they find the best-fit plane of a set of points to realize the
extraction. The clustering-based methods [12] are robust and
capable for unstructured objects. For the region growing-
based method [13], they choose a seed region and the clusters
grow by checking the similarity of the normal vector.

In the past few years, plane-based SLAM has become
more and more popular in visual SLAM. Specifically, CPA-
SLAM [14] extracts the planar features by RANSAC and
tracks the pose by these planes. SP-SLAM [15] achieves
the estimation goal by adding parallel and perpendicular
plane constraints to the system. ManhattanSLAM [16] uses
structural regularities to improve the accuracy and robustness
of the system. VIP-SLAM [17] utilizes the plane information
and integrates it into the system to achieve accurate tracking.

In this paper, a lightweight LiDAR odometry method



based on the plane map is introduced. The input LiDAR
scan is firstly voxelized and the planes are extracted. With
the planes, the corresponding planes in the plane map are
matched. Subsequently, the cost function is constructed to
optimize the pose iteratively. Afterwards, the new planes
are utilized to update the plane map. The effectiveness of
the proposed algorithm is examined by public datasets and
experiments (Fig. 1). Main contributions of the proposed
method can be summarized as follows:

• A real-time and accurate LiDAR odometry is designed
without the necessity of GPU acceleration.

• A novel way of plane characterization is proposed that
increases the efficiency in correspondence detection and
plane updating.

• A series of planes are acting as the basic element for
feature correspondence of the source and target set,
which accelerates the overall process.

This paper is organized as follows: In Section II, pre-
liminaries and the problem formulation are provided. The
overview of the system pipeline is introduced with a detailed
insight into its key components in Section III. The perfor-
mance of the proposed method is evaluated in Section IV.
Conclusion remarks are drawn in Section V.

II. PRELIMINARIES

Given a scan Sk at frame k from 3D LiDAR, the task of
the proposed method is to accurately estimate the pose Tk

of the LiDAR in world frame {W} and build a geometric
map M of the environment.

In this paper, the k-th scan of N points is denoted by
Sk = {p1,p2, · · · ,pN}, where pi = (xi, yi, zi) represents
the 3D coordinates. The world frame and local frame of Sk

is denoted by {W} and {Lk}, respectively. The world frame
{W} coincides with the first local frame {L0}.

The pose of the k-th scan is presented by a transformation

matrix Tk =

[
Rk tk
0 1

]
∈ SE(3), where Rk ∈ SO(3) is

a rotation matrix describing orientation and tk ∈ R3 is a
translation vector describing the position of a scan.

The map is defined as a collection of m planes, i.e. M =
{P1,P2, · · · ,Pm}, where Pj represents a plane. A plane can
be characterized by Pj = f(cj ,nj ,Cj , Nj), where cj is the
plane center, nj is the normal vector, Cj is the covariance
matrix and Nj is the number of points. These characters are
instrumental for plane matching and plane updating in the
proposed algorithm.

III. PLANE-BASED LIDAR SLAM

In this section, the proposed method is described and an
overview is shown in Fig. 2. When a new scan is received, the
motion distortion is compensated and the planes set Pk are
extracted from the undistorted point cloud S̃k. With extracted
planes and the initial pose T̄k given by pose prediction, the
pose of this frame is estimated. Subsequently, the planes are
included in the plane map. Meanwhile, the plane map is
updated by merging similar planes and erasing outliers.

Fig. 2. System overview

A. Motion compensation and pose prediction

Due to the fact that the measurements of a LiDAR are not
collected at the same time, the measurements suffer from
motion distortion. For most of the existing 3D LiDAR, the
sampling time between two consecutive scans is less than 10
ms. Therefore, it is reasonable to assume a constant angular
velocity and a linear velocity during two consecutive scans
to compensate the distortion and predict the motion.

Define the rigid transformation from frame k−1 to frame
k as Tk−1,k. Suppose ωk−1,k is the angle-axis representation
of Rk−1,k, xk−1,k = [ωk−1,k; tk−1,k] is used to characterize
Tk−1,k. The skew-symmetric matrix of ω is defined as
[ω]× ∈ so(3) and the exponential map exp(·) can map an
element of so(3) into SO(3).

The rigid transformation at the last scan Sk is denoted by
Tk. When the k-th scan Sk is obtained, the pose of the last
two frames, i.e. Tk−2 and Tk−1, are used to estimate the
transformation between last frame and current frame

Tk−1,k = Tk−1
−1Tk = Tk−2

−1Tk−1. (1)

The start time and end time of scan Sk are denoted by
tsk and tek, respectively. For the i-th point pi in the scan Sk

recorded within the time ti ∈ [tsk, t
e
k], a time ratio variable is

defined as s =
ti−tsk
tek−tsk

. The rigid transformation Tk−1,ti can
be estimated by linear interpolation

Rk−1,ti = exp(s[ωk−1,k]×),

tk−1,ti = stk−1,k.
(2)

where Rk−1,ti is the rotation matrix of Tk−1,ti and tk−1,ti

is the translation vector of Tk−1,ti . The distortion of current
scan Sk can be corrected as

S̃k = {Rk−1,k
−1(Tk−1,tipi − tk−1,k) | pi ∈ Sk}. (3)

The pose of frame k is predicted as

T̄k = Tk−1Tk−1,k. (4)

B. Plane extraction

After compensating the distortion of the point cloud in
the environment (Fig. 3a), the next step is to extract planar
features from the undistorted point cloud S̃k (Fig. 3b). The
3D point cloud is voxelized and the voxel containing a plane
is captured(Fig. 3c). Then voxels with similar planar features
are clustered through region growth (Fig. 3d).

1) Voxelization: Inspired by VoxelMap [18], voxelization
can be achieved in a coarse-to-fine manner. Instead of



(a) Environment (b) Point cloud

(c) Voxelization (d) Planes
Fig. 3. Plane extraction process. For a robot with 3D LiDAR in the
environment (a), it can receive the point cloud (b). The point cloud is
voxelized and transformed into voxel cloud (c). Cluster similar planes voxel,
planes in the point cloud is extracted (d).

constructing a voxel map, an adaptive voxel point cloud is
constructed for plane extraction. In the proposed method, the
space of local frame {Lk} is decomposed into voxels with a
coarse map resolution. In such case, all points in undistorted
point cloud S̃k are distributed into voxels according to their
positions. Denoting a voxel as vi = {p̃1, p̃2, · · · , p̃Ni

}, the
covariance matrix C of the points in a voxel vi is

Cvi
=

1

Ni

Ni∑
k=1

(p̃k − p̄vi) (p̃k − p̄vi)
T
,

p̄vi =
1

Ni

Ni∑
k=1

p̃k.

(5)

For each voxel with points from the undistorted point
cloud, points in the voxel form a plane if the minimum
eigenvalue λmin(Cvi) of Cvi is less than a predefined thresh-
old. Otherwise, the voxel is regarded as a non-plane voxel.
The covariance matrix is calculated and non-plane voxels are
divided into eight octants. Such covariance matrix calculation
and voxel division process are repeated until the number
of layers reaches the maximum limit. If voxel vi forms a
plane, the planar characters covariance matrix Cvi

, plane
center cvi = p̄vi , plane normal vector nvi = umin(Cvi), and
number of points Nvi = Ni are recorded, where umin(Cvi)
is the eigenvector corresponding to the minimum eigenvalue
λmin(Cvi). Fig. 4 illustrates the voxelization process. As a
result, a voxel point cloud Vk is generated (Fig. 3c).

2) Cluster: Similar plane features are clustered according
to their normal vector and locality through region growth.
A cluster corresponds to a plane in the point cloud. In the
proposed method, the voxel is considered as a seed. Due
to the fact that the number of voxels in a point cloud is
comparatively smaller than the number of points and the
spatial structure of the voxel allows a rapid search of its
adjoining voxels, the planes can be extracted efficiently.

The plane voxel vs with the most number of points Ns is
selected as the root to begin plane searching and its neighbor
voxels are pushed into a search set S. The normal vector

(a) Distribution of points (b) Octotree structure
Fig. 4. Illustration of voxelization. Assume the maximum number of layers
is 2. Given a voxel vi in layer 0 with points lying on different planes, divide
the voxel into eight octants. In layer 1, points in vk form a plane, so the
planar characters are recorded. The non-plane voxel vj is divided again and
plane voxel vm is recorded. Since layer 2 is the maximum number of layers,
non-plane voxel vn is not divided. (b) presents the structure of voxel vi.

and the plane center of the plane voxel vs are denoted as
ns and cs, respectively. Every plane voxel vt in the search
set S with the normal vector nt and the plane center ct is
regarded as a candidate voxel to be matched and removed
from the search set S. The angle between the normal vector
of vs and vt and the projections of the center vector cs − ct
on both normal vectors are calculated, which are used to
cluster similar plane voxel. Specifically, the plane voxel vt
is classified into a cluster if the following conditions hold{

nT
s nt > τθ,

nT
i (cs − ct) < τd, i ∈ {s, t}.

(6)

where τθ is the angular threshold and τd is the distance
threshold that are properly chosen. If the conditions in (6)
are satisfied, the voxel vt is added to the current cluster.
In the meantime, the adjoining voxels of vt are added to
the search set S. Otherwise, the voxel vt is ignored. The
calculation is repeated until the search set S is empty. The
updating rules of the planar characters will be analyzed in
Section III-D. Subsequently, a new unclustered seed voxel is
chosen to repeat the clustering process until all voxels in Vk

have been checked. After plane extraction, a set of planes
Pk = {Pk

0 ,Pk
1 , · · · ,Pk

n} is generated (see Fig. 3d).

C. Pose estimation

In order to estimate the pose of the LiDAR correctly, the
proposed method aims to calculate the transformation be-
tween the current plane set Pk and plane map M iteratively.
At the i-th iteration, the pose of the k-th frame is defined
as Ti

k and the best estimation Ti
k
∗ is used to initialize the

next iteration Ti+1
k = Ti

k
∗. To be noted, the pose of the

0-th iteration is initialized as T0
k = T̄k, where T̄k is from

(4). At the beginning of each iteration, all the planes in Pk

are transformed from the LiDAR frame {Lk} to the world
frame {W} by Ti

k. For an arbitrary plane Pk
a in Pk, its

planar characters after transformation are given by

c̃a = Ri
kca + tik,

Ña = Na,

ña = Ri
kna,

C̃a = RkCaRk
T .

(7)

The plane set after transformation is defined as P̃k. With
these new planar characters, the next step is to characterize



the counterparts of the plane set P̃k in plane map M. For
any nearby planes pair Pl and P̃k

a in the plane map M and
P̃k meet the angular condition in (6), a similarity metric is
defined to further determine the best match

m = α∥cPl
− c̃a∥+β[nT

Pl
(cPl

− c̃a)]+γ(1−nT
Pl
ña). (8)

where α, β, and γ are user-defined scaling characters. Each
plane in the plane set P̃k corresponds to the plane in plane
map M with the minimum value of the metric. The best
match of plane P̃k

a in plane map M is denoted as PPk
a

for
convenience. It is worth noting that PPk

a
is also the match of

plane Pk
a . The metric in (8) makes it possible to find planes

with similar characters and to exclude those outliers parallel
to plane PPk

a
but on another object.

With the matched planes, the pose is estimated by mini-
mizing the sum of the point-to-plane error

Ti
k

∗
= argmin

Ti
k

∑
Pk

a∈Pk

Na∑
j=1

nT
PPk

a

(Ti
kpa,j − cPPk

a
). (9)

where pa,j is the j-th point of plane Pk
a from plane set Pk,

cPPk
a

and nPPk
a

are the center and normal vector of plane
PPk

a
in plane map M. The Jacobian matrix of the error can

be calculated by applying left perturbation model [19]

J = nT
PPk

a

[
I3×3 −[Ti

kpa,j ]×
01×3 01×3

]
. (10)

The nonlinear optimization in (9) can be solved by the
Gauss-Newton method. In each iteration, the Jacobian matrix
of each residual is computed and the pose of the LiDAR is
estimated by the Ceres Solver library1.

D. Map update

With the optimized pose Ti
k
∗, the plane map is updated

by including new observations, merging similar planes and
erasing unstable planes. For a plane with new corresponding
planes, the planar characters are updated.

1) Planar characters update: In the flow of plane extrac-
tion (III-B.2), plane update (III-D.2), and plane merge (III-
D.3), it is necessary to update the planar characters. Instead
of calculating the new covariance matrix Cnew with all the
points on both planes, the covariance matrices from both
planes are utilized to avoid time-consuming calculations with
massive points. Specifically, for similar pairs plane Pa and
plane Pb with plane centers ca and cb, number of points Na

and Nb and covariance matrices Ca and Cb, respectively.
The planar characters are updated as follows

cnew =
1

(Na +Nb)
(Naca +Nbcb),

Nnew =Na +Nb,

Cnew =
1

Nnew
[Na(Ca + cac

T
a ) +Nb(Cb + cbc

T
b )]

− cnewc
T
new,

nnew =umin(Cnew).

(11)

1https://github.com/ceres-solver/ceres-solver

2) Plane update: After pose estimation, the plane map
is updated with optimized pose Ti

k
∗ and the plane set Pk

of frame k. Initialized by the first plane set P0, the plane
map is updated with successive plane sets. All the planes
in Pk are transformed from LiDAR frame {Lk} to world
frame {W} by Ti

k
∗ obtaining P̃k. To find the corresponding

plane for an arbitrary plane P̃k
a in P̃k, any plane in map

M is considered as a candidate corresponding plane if the
following similarity conditions are verified

• The angle between the normal vectors of the two planes
is lower than a threshold.

• The projections of the center vector on both planar
surfaces should below a certain threshold.

• The projections of the center vector between two centers
on both normal vectors should below a certain threshold.

The center of candidates are projected to plane P̃k
a , among

which the plane with shortest projection is chosen as the
correspondence. The planar characters are updated as in (11).
In addition, a plane without any candidate plane is regarded
as a new plane and included in the plane map M.

3) Plane merge: In the plane map, some tiny planes
that lie on the edge of existing corresponding planes are
detected in III-D.2. As the number of planes in the plane
map increases, such tiny planes are to be merged into nearby
planes according to the similarity conditions in III-D.2. As
a result, tiny planes are removed and the plane map can be
streamlined, which is beneficial for efficient calculation.

4) Plane erase: Considering the fact that the motion
compensation and the similar plane cluster are not always
perfect, the outliers are erased to increase the robustness of
the proposed method and avoid unnecessary calculations. If
the number of points on a plane is less than 100 and the
plane is not observed by the past 10 frames, the plane is
regarded as an outlier. As a result, the outliers are erased as
they are considered to be inactive in the plane map.

E. Tightly-coupled LiDAR inertial odometry

To enhance the tracking accuracy of moving UAVs, the
proposed method can be integrated into tightly-coupled
SLAM frameworks such as LIO-SAM [20]. The point-to-
plane error in (9) can be regarded as a LiDAR odometry
factor that is jointly optimized with the IMU preintegration
factor and the loop closure factor. Due to space limitations,
readers are advised to refer to [20] for details.

IV. EXPERIMENTS

In this section, the performance of the proposed method is
evaluated in different real-world scenarios, including outdoor
and indoor scenes with different types of LiDARs. All the
experiments are conducted on a laptop equipped with Intel
Core i7-7700HQ @ 2.8 GHz and 16 GB RAM.

A. Indoor & outdoor experiments

The datasets are collected with a handheld device, which is
composed of a 16 channels RoboSense LiDAR. The datasets
are collected in a narrow corridor (see Fig. 5(a)), a parking



(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 5. Real environment and map generated by the proposed method, the green line is the estimated trajectory and the red point is the start and end
point. (a)-(b) is a corridor. (c)-(d) is a parking lot. (e)-(f) is a garden. (g)-(h) is a square.

lot with moving vehicles (Fig. 5(c)), a garden with plants and
stones (Fig. 5(e)), and a square in the outdoor (Fig. 5(g)).

With unknown ground truth of the trajectory, datasets are
collected via closed trajectories. The results are compared
with LOAM [6], BALM [21] and F-LOAM [9]. The End-
to-End error and the average computation time are shown in
Table I. The results show that the proposed method shows
comprehensive advantages in accuracy and computation time
in the indoor and outdoor experiments. Although BALM has
a better average computation time in the Square experiment,
the proposed method is more robust in various environments.
The proposed method has a processing rate of higher than 20
Hz, which is comparable to BALM and F-LOAM. Taking the
computation time of the proposed method in the Garden ex-
periment as an example, the average runtimes of each module
are shown in Table II. The preprocess module includes the
point cloud input process and motion compensation process.
The overall method has an average runtime of 30.586 ms and
a standard deviation of 8.724 ms in the Garden experiment.

TABLE I
COMPARISON OF DIFFERENT ALGORITHMS ON THE INDOOR &

OUTDOOR EXPERIMENTS (END-TO-END ERROR (M)/AVERAGE

COMPUTATION TIME (MS)).

Experiment A-LOAM BALM F-LOAM Proposed
Corridor 0.19/31.52 0.27/30.88 0.11/47.67 0.03/21.13
Parking 0.11/44.28 0.29/44.28 0.06/84.38 0.03/31.01
Garden 0.13/64.08 -/- -/- 0.05/30.59
Square 0.49/75.07 0.09/21.38 -/- 0.06/40.50

• The best result is highlighted in bold.
• ”-” means fail.

B. Experiments with IMU

The NTU VIRAL is a sequence of datasets collected from
an Unmanned Aerial Vehicles [22]. These datasets are col-
lected in several challenging indoor and outdoor conditions.
The metric used in this case is the Absolute Trajectory

TABLE II
AVERAGE COMPUTATION COST FOR EACH MODULE IN THE GARDEN

EXPERIMENT

Module Average (ms) Standard Deviation (ms)
Preprocess 1.627 0.337

Plane Extraction 7.399 3.138
Pose Estimation 15.338 3.749

Map Update 6.222 2.827
Total 30.586 8.724

Error (ATE) [23], which compares the absolute distances
between the estimated and the ground truth trajectory. In
the experiments, the data collected by the horizontal LiDAR
is regarded as the input LiDAR scans.

The proposed method is compared with LOAM [6], LIO-
SAM [20], and MILIOM [24]. Since LIO-SAM and MIL-
IOM use IMU data to reduce the influence of UAVs’ fast
motion, both the results of the LiDAR-only version and
the tightly-coupled LiDAR inertial version of the proposed
method are shown for a fair comparison. Only the 1-
LiDAR results are considered for all methods. For notation
simplicity, the LiDAR-only version of the proposed method
is denoted by ”Proposed-L” and the tightly-coupled Li-
DAR inertial version of the proposed method is denoted by
”Proposed”. The results are summarized in Table III. As
can be seen, the proposed method is able to achieve better
performance in most of the NTU VIRAL datasets. It can be
noticed that all the ATE of the proposed method is below
10cm when the IMU is integrated into the system.

The runtime of the proposed method in tightly-coupled Li-
DAR inertial version is compared with open-source method
A-LOAM1 and LIO-SAM2. The results are shown in Table
IV. The proposed method is able to provide accurate and
effective pose estimation at an average processing rate of
more than 20Hz. For MILIOM, only the computation time

1https://github.com/HKUST-Aerial-Robotics/A-LOAM
2https://github.com/TixiaoShan/LIO-SAM



TABLE III
ATE (M) OF THE STATE-OF-THE-ART LIDAR-BASED SLAM METHODS

OVER THE NTU VIRAL DATASETS.

Dataset ALOAM LIO-SAM MILIOM Proposed-L Proposed
eee 01 0.224 0.092 0.104 0.245 0.081
eee 02 0.189 0.082 0.065 0.208 0.069
eee 03 0.152 0.118 0.063 0.217 0.090
nya 01 0.080 0.090 0.083 0.226 0.080
nya 02 0.093 0.107 0.072 0.227 0.072
nya 03 0.084 0.366 0.058 0.253 0.081
sbs 01 0.195 0.097 0.076 0.222 0.074
sbs 02 0.087 0.096 0.081 0.211 0.076
sbs 03 0.346 0.096 0.088 0.246 0.083

• The best result is highlighted in bold.

when running the eee 02 dataset is shown in [24]. The
frontend processing time of MILIOM has a mean of 14.56
ms and the backend processing time of MILIOM has a mean
of 62.99 ms. While the proposed method takes only 39.40
ms to get similar accuracy in the case of eee 02 dataset.

TABLE IV
RUNTIME COMPARISON ON NTU VIRAL DATASET.

Dataset A-LOAM LIO-SAM Proposed
eee 01 221.78 ms 186.13 ms 42.48 ms
eee 02 183.04 ms 136.91 ms 39.40 ms
eee 03 162.69 ms 117.76 ms 42.77 ms
nya 01 115.51 ms 101.01 ms 33.73 ms
nya 02 118.64 ms 105.78 ms 33.22 ms
nya 03 121.66 ms 107.78 ms 33.91 ms
sbs 01 186.80 ms 135.48 ms 35.02 ms
sbs 02 188.34 ms 146.64 ms 35.60 ms
sbs 03 195.52 ms 151.66 ms 36.02 ms

• The best result is highlighted in bold.

V. CONCLUSION

In this paper, a lightweight and accurate LiDAR odometry
method based on the plane map is proposed. Instead of using
the point clouds to construct the map, a plane-based map
is constructed for pose estimation. Thanks to the fact that
the number of planes in the map is much smaller than that
of points, the computational cost is significantly reduced.
Meanwhile, the featured characters of a plane are saved to
the plane map. Therefore the time for character updating
and plane searching can be reduced. The proposed method
can save both time and memory, making it suitable for
some resource-constrained robotic applications. Furthermore,
experiments in indoor and outdoor environments are con-
ducted to verify the efficiency and accuracy of the proposed
method with comparisons to state-of-the-art LiDAR SLAM
algorithms and frameworks, including F-LOAM, LIO-SAM,
LOAM, and BALM.
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