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Purpose: We aim to use fundus fluorescein angiography (FFA) to label the capillaries on color fundus (CF)
photographs and train a deep learning model to quantify retinal capillaries noninvasively from CF and apply it to
cardiovascular disease (CVD) risk assessment.

Design: Cross-sectional and longitudinal study.
Participants: A total of 90732 pairs of CF-FFA images from 3893 participants for segmentation model

development, and 49229 participants in the UK Biobank for association analysis.
Methods: We matched the vessels extracted from FFA and CF, and used vessels from FFA as labels to train

a deep learning model (RMHAS-FA) to segment retinal capillaries using CF. We tested the model’s accuracy on a
manually labeled internal test set (FundusCapi). For external validation, we tested the segmentation model on 7
vessel segmentation datasets, and investigated the clinical value of the segmented vessels in predicting CVD
events in the UK Biobank.

Main Outcome Measures: Area under the receiver operating characteristic curve (AUC), accuracy, sensi-
tivity, and specificity for segmentation. Hazard ratio (HR; 95% confidence interval [CI]) for Cox regression
analysis.

Results: On the FundusCapi dataset, the segmentation performance was AUC ¼ 0.95, accuracy ¼ 0.94,
sensitivity ¼ 0.90, and specificity ¼ 0.93. Smaller vessel skeleton density had a stronger correlation with CVD risk
factors and incidence (P < 0.01). Reduced density of small vessel skeletons was strongly associated with an
increased risk of CVD incidence and mortality for women (HR [95% CI] ¼ 0.91 [0.84-0.98] and 0.68 [0.54-0.86],
respectively).

Conclusions: Using paired CF-FFA images, we automated the laborious manual labeling process and
enabled noninvasive capillary quantification from CF, supporting its potential as a sensitive screening method for
identifying individuals at high risk of future CVD events.
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The use of retinal photographs provides a noninvasive method
to evaluate the health and functionality of the vasculature
within the human body. This has led to significant interest in
identifying retinal vessel alterations as potential biomarkers
that may aid in the detection of diseases that affect the eye,
brain, and heart, such as cardiovascular diseases (CVDs),
which include heart attack and stroke.1e4 Because of their high
rates of morbidity and mortality worldwide, prevention and
early detection of CVD are crucial.5

Quantitative changes in retinal vessels have been iden-
tified as independent predictors of systemic health and
ª 2024 Published by Elsevier Inc. on behalf of the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
disease.1,2,6 However, manual labeling of these vessels is a
laborious process, leading to a limited number of labeled
images available for model development, often < 30
images per dataset. Although semiautomatic or automatic
retinal vessel measurement programs like QUARTZ,7

VAMPIRE,8 AutoMorph,9 and the Retina-based Microvas-
cular Health Assessment System (RMHAS)10 have enabled
some degree of automated analysis on the retinal vessels,
they often fail to segment and quantify the retinal
capillaries. These capillaries are a critical component of
the retinal vasculature, but their low contrast in color
1https://doi.org/10.1016/j.xops.2023.100441
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fundus (CF) images makes it challenging to visualize,
outline, and segment them. Consequently, automated
detection of retinal capillaries remains unavailable, which
limits further investigation into understanding their
contribution to various systemic diseases, including
diabetes mellitus, coronary artery disease,11 chronic
kidney disease,12 and critical illness.13

The gold standard for evaluating retinal vascular dis-
ease is fundus fluorescein angiography (FFA) because of
its ability to provide clear and realistic information on the
retinal microvasculature with enhanced contrast. Never-
theless, FFA has several drawbacks, including being time
consuming, costly, and invasive because it requires
intravenous fluorescein injection that may lead to severe
adverse effects such as anaphylaxis. Therefore, utilizing
the vasculature information from matched FFA images to
label and segment retinal vessels from the CF represents a
potential novel approach for quantifying retinal
capillaries.

We have developed a novel framework, RMHAS-FA, to
overcome the challenges of manual labeling and the failure to
segment retinal capillaries. This approach utilizes matched
FFA images to label the CF and generate numerous high-
resolution labels on the retinal capillary to meet the data re-
quirements of deep learning models. We further demonstrated
the clinical value of the segmented capillaries by examining
their correlation with CVD risk factors, incidence, and
mortality.
Figure 1. Workflow of the study. AVR ¼ arteriolar-to-venular ratio; CF ¼
angiography; RMHAS ¼ Retina-based Microvascular Health Assessment Syste
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Methods

We developed a vessel segmentation model to automatically
detect retinal vasculature, including capillaries, by using pseudo-
labels generated from CF-FFA pairs. The segmentation process
involved registering coarse to fine vessels in CF and FFA images
and using the fine vessels as pseudo-labels to train the model to
segment delicate retinal vessels from the CF images. Model
validation was performed on a dataset of 9068 CF-FFA pairs and
15 manually labeled CF images. External validation was con-
ducted using 7 vessel segmentation datasets to assess the
generalizability and robustness of the approach. We also evalu-
ated the clinical significance and associations of the measure-
ments with CVD risk prediction using 10-year follow-up data
from the UK Biobank. Figure 1 provides a graphical summary of
the pipeline, and Fig S1 shows the study flowchart.

Data

Model Development

CF-FFA Pairs. Color fundus with corresponding FFA pairs
was retrospectively collected from clinical service; the CF
and FFA images were taken at the same visit. Fundus fluo-
rescein angiography images were captured using Zeiss FF450
Plus (Carl Zeiss, Inc) and Heidelberg Spectralis with reso-
lutions of 512 � 512 and 768 � 768, respectively. Color
fundus images were captured using Topcon TRC-50XF,
Zeiss Visucam 500, Zeiss FF450 Plus (Carl Zeiss, Inc), and
color fundus; CVD ¼ cardiovascular disease; FFA ¼ fundus fluorescein
m; VSD ¼ vessel skeleton density.



Table 1. Model Segmentation Performance on Internal Validation*, Manual Capillary Labeling** and External Test Sets

Dataset N AUC Accuracy Sensitivity Specificity Camera Disease Country

CF-FFA* 9068 0.94 0.89 0.90 0.89 Various Various China
FundusCapi** 15 0.95 0.94 0.90 0.93 TRC-50XF (Topcon) Various China
CHASEDB 28 0.96 0.89 0.92 0.89 NM-200D (Nidek, Japan) Various UK
DRHAGIS 40 0.96 0.90 0.93 0.90 TRC-NW6s (Topcon), TRC-NW8 (Topcon),or

CR-DGi (Canon)
DR, HBP, AMD,

glaucoma
UK

HRF 45 0.95 0.88 0.92 0.88 CR-1 (Canon) DR, glaucoma -
IOSTAR 30 0.95 0.91 0.87 0.91 SLO (i-Optics Inc., the Netherlands) Netherlands and

China
LES-AV 22 0.97 0.92 0.94 0.92 glaucoma
DRIVE 20 0.97 0.94 0.89 0.94 CR5 non-mydriatic 3CCD camera (Canon) DR Netherlands
STARE 20 0.95 0.91 0.91 0.91 TRV-50 fundus camera (Topcon) Various USA

AMD ¼ age-related macular degeneration; AUC ¼ area under the receiver operating characteristic curve; CF ¼ color fundus; DR ¼ diabetic retinopathy;
FFA ¼ fundus fluorescein angiography; HBP ¼ high blood pressure; SLO ¼ scanning laser ophthalmoscopy; UK ¼ United Kingdom, USA ¼ United States
of America.
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Nikon D7100 (Nikon), with pixel resolutions ranging from
1110� 1467 to 2600� 3200. One CF accompanies multiple
FFA images, and each CF was registered with multiple FFA
images into multiple CF-FFA pairs. The CF-FFA pairs were
randomly split into training and testing sets at a ratio of 9 to 1
at the patient level to ensure no patient crossover between the
training and testing sets.

FundusCapi. To provide ground truth labels to assess the
accuracy of retinal vessel segmentation, a subset of 15 images
from the test set of CF-FFA were manually labeled by a
trained retinal specialist with the assistance of FFA and CF
images. The dataset included 5 images of diabetic retinop-
athy, 5 images with unremarkable retinal diseases, and 5
Figure 2. Overlay of registered vessels extracted from color fundus (CF) photo
second column: FFA image, third column: CF vessels in green, FFA vessels in r
well, the FFA image clearly identifies more capillaries than CF, and the registered
retinal vessels, including capillaries from CF.
images with other retinal abnormalities (retinal vein occlu-
sion, age-related macular degeneration, macular telangiecta-
sia, optic disc edema, and high myopia). Fig S2 shows a
demonstration of the labeling procedure.
External Testing

Segmentation Datasets. To test the generalizability and
robustness of the segmentation model, 7 publicly available
datasets were used for external validation: STARE,14

CHASEDB,15 DR HAGIS,16 HRF,17 IOSTAR,18 LES-
AV,19 and DRIVE.20 Detailed descriptions of each dataset
can be found in Table 1.
graphy and fundus fluorescein angiography (FFA). First column: CF image,
ed, intersection of CF and FFA vessels in yellow. The vessel trunks overlay
FFA vessels will be used as labels to train a deep learning model to segment
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Figure 3. Demonstration of color fundus photograph, fundus fluorescein angiography (FFA), pseudolabels extracted from FFA, manual segmentation from the
FundusCapi dataset, and Retina-based Microvascular Health Assessment System with fluorescein angiography model prediction (based on color fundus).
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UK Biobank. To explore the utility of the segmented
capillaries, we used UK Biobank, which is a large-scale
population-based cohort study that was established in the
United Kingdom to facilitate research into various risk factors
for diseases that occur in middle and old age. Between 2006
and 2010, over 500 000 individuals aged between 40 and 69
years were recruited from across the United Kingdom, of
whom > 60 000 had undergone retinal photography (3D
OCT-1000 Mark II). Details about the cohort are available
elsewhere.21 For the analysis, we used fundus images from
the right eye as both eyes provide a consistent window for
assessing vascular changes related to CVD.

The primary outcome was CVD events, which were
defined as a composite of cardiovascular mortality, nonfatal
myocardial infarction, and nonfatal stroke according to the
guidelines of the American College of Cardiology/American
Heart Association (fatal events [International Classification of
4

Diseases 10th Revision {ICD-10} codes I20-25, I60-64] and
nonfatal events [ICD-10 codes I21, I22, I60-64]).22 These
events were identified through linkages to death certificate
records and hospital episode statistics. The secondary
outcome measure was CVD mortality, which was defined
as fatal CVD events based on the clinical guidelines of the
European Systematic Coronary Risk Evaluation (ICD-10
codes, I10-15, I44-1, I20-25, and I61-73).23
Ethical Approval

All patients were anonymized and deidentified, and the
study followed the principles of the Declaration of Hel-
sinki. The Institutional Review Board of Zhongshan
Ophthalmic Center approved the study (No.
2021KYPJ164-3).



Table 2. Baseline Demographics of the UK Biobank Participants Included in our Analysis

Characteristics Total (n [ 49 229) Female (n [ 27366) Male (n [ 21863) P*

Age, median (IQR) 58 (50e63) 57 (50e63) 58 (50e63) < 0.001
Total cholesterol, mean � SD, mmol/L 5.7 � 1.1 5.9 � 1.1 5.6 � 1.1 < 0.001
HDL cholesterol, mean � SD, mmol/L 1.5 � 0.4 1.6 � 0.4 1.3 � 0.3 < 0.001
Body mass index, mean � SD, kg/m2 27.2 � 4.7 26.8 � 5.1 27.7 � 4.1 < 0.001
Diastolic blood pressure, mean � SD, mm Hg 81.7 � 10 80.1 � 9.9 83.6 � 9.7 < 0.001
Systolic blood pressure, mean � SD, mm Hg 136.8 � 18.3 134.4 � 19 139.8 � 16.9 < 0.001
HbA1c, mean � SD, mmol/mol 35.5 � 6 35.4 � 5.5 35.7 � 6.5 < 0.001
Diabetes mellitus, n (%) < 0.001
No 47033 (95.5) 26479 (96.8) 20 554 (94)
Yes 2196 (4.5) 887 (3.2) 1309 (6)

Current smoker, n (%) < 0.001
No 44 527 (90.7) 25 205 (92.4) 19 333 (88.7)
Yes 4545 (9.3) 2079 (7.6) 2466 (11.3)

HbA1c ¼ glycosylated hemoglobin; HDL ¼ high density lipoprotein; IQR ¼ interquartile range; SD ¼ standard deviation.
*P value for parametric 1-way analysis of variance test or the nonparametric Kruskal‒Wallis test.
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Cross-modality Image Registration

Vessel Detection. Retinal vessels in CF images were
extracted using a U-net-based retinal artery/vein/optic
disc segmentation and measurement system called
RMHAS.24 The extracted vessels were used for
registration purposes.

Vessels in FFA images were extracted using a patched
deep learning model developed by Ding et al25 which was
trained using human-in-the-loop labeling. The FFA vessels
extracted were used for geometric registration with CF
vessel and as pseudo labels for model training.

Coarse Registration. The registration pipeline follows a
previous study.26 In summary, to account for the large-scale
differences between vessel frames, we used a rigid regis-
tration based on keypoint matches, as shown in Figure 1.
We applied the AKAZE keypoint detector27 to detect key
points by comparing the gradients of small image patches
rather than the points themselves. The nearest-neighbor-
distance ratio was used for feature matching, and random
sample consensuswas used to generate homography
matrices and reject outliers. We added a validity restriction
to exclude erroneously registered pairs. The rotation scale
was restricted to 0.8 to 1.3, and the absolute value of the
rotation radian was < 4 before the warping transformation.
Additionally, pairs with poor registration performance (e.g.,
Dice coefficients < 0.5) were filtered out. The threshold
value was empirically set based on the dataset used in our
experiments.

Fine-registration. To optimize the small misalignment
between registered vessels, we used nonrigid registration
to conduct pixel-wise alignment on the vessel segmenta-
tion maps, as shown in Figure 1. We measured similarity
using normalized cross-correlation and used B-spline
curves to define a continuous deformation field that maps
each pixel in the FFA vessel to a corresponding pixel
within the CF vessel. The optimization of the deformation
was determined using the gradient-based L-BFGS-B
algorithm.28
Deep Learning Microvascular Segmentation

We employed the pix2pixHD29 architecture, which is a
generative adversarial network, for retinal vessel
segmentation by the following minimax game: the
generator G aims to produce a realistic retinal vessel map
to deceive the discriminator D, whereas the discriminator
D aims to differentiate the generated vessels from the real
labels. During training, the CF was cropped to the field of
view and fed into the model with a batch size of 1 and a
learning rate of 0.0002. To prevent overfitting and
increase the ability to detect small vessels, we augmented
the images by randomly flipping them horizontally and
vertically and resizing them to multiple resolutions (32 �
i, 32 � j), where i and j ranged randomly from 14 to 29.
We trained the model for a total of 100 epochs. We
selected the model with the highest Dice index in the
validation set to avoid overfitting.

Segmentation Performance Evaluation

The segmentation results were evaluated both qualitatively
and quantitatively by comparing them with ground truth.
The accuracy of the segmentation was assessed at the pixel
level using metrics of the area under the receiver operating
characteristic curve, accuracy, sensitivity, and specificity.

Vessel Measurement

The resulting segmentation maps were binarized, and
watershed and filled under the guidance of the RMHAS
segmentation module to obtain the arteries and veins. The
vessel caliber measure is the same as that described in
RMHAS.24

Binary images of the arteries and veins were reduced to
skeleton images with a width of 1 pixel. Skeletonized
images were then used to calculate the vessel skeleton
density (VSD) as the absolute vessel length in the image
scan (in pixels).
5
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We quantified the vessels in the entire retina and per-
formed subgroup analysis by dividing the fundus image into
2 regions: 1 disc diameter from the fovea and other regions.

Statistical Analysis

We calculated the follow-up time as person-years for each
participant in the UK Biobank from the date of the
baseline CF to the first occurrence of CVD, death, loss to
follow-up, or February 28th, 2021, whichever came first.
Only Caucasian participants were included in the study. At
the time of analysis, each participant had been followed
up for over 10 years from the date of the baseline visit.
Descriptive statistics were reported as mean (standard
deviation [SD]) or median (interquartile range) for nor-
mally or non-normally distributed continuous variables,
respectively, and as percentages for categorical variables.
To compare groups, we used either a parametric 1-way
analysis of variance test or a nonparametric Kruskal‒
Wallis test.

We removed sex-specific extreme outliers in the analysis
of retinal measurements by adjusting the upper and lower
bounds of a traditional box and whisker plot and accounting
for skewness using the Robustbase package in R
(range ¼ 3).30 To investigate the clinical relevance of retinal
measurements of different sizes, multiple retinal
measurements from retinal segments were grouped into
“large,” “medium,” or “small” based on the tertiles of
retinal caliber (stratified by artery/vein and gender) and
summarized as a mean value for each image. Descriptive
statistics were stratified by sex and CVD risk level to
explore sex differences and trends in retinal
measurements. Cardiovascular diseases risk stratification
followed the American Heart Association’s Pooled Cohort
Equation,22 with risk levels defined as < 5% (low risk),
5% to < 7.5% (borderline risk), � 7.5% to < 20%
(intermediate risk), and � 20% (high risk). We examined
P values for trends by fitting a linear model for the risk
categories and retinal measurements. Measurements were
then inverse-rank normalized to a mean of 0 and an SD of
1 for regression analysis.

We conducted linear regression models for continuous
variables and logistic regression for binary variables to
examine the associations between retinal measurements
(independent variables) and CVD risk factors (dependent
variables), including age, sex, systolic blood pressure, dia-
stolic blood pressure, body mass index, total cholesterol,
glycosylated hemoglobin, diabetes mellitus, and smoking.
The models were unadjusted, as well as age- and sex-
adjusted.

To investigate the associations between retinal vessel
measurements and incident CVD and CVD mortality, we
used sex-specific Cox proportional hazards models because
the strength of the association differs by sex.31,32 The
analyses included unadjusted, age-adjusted, and risk
factor-adjusted (age, systolic blood pressure, diastolic blood
pressure, body mass index, smoking, total cholesterol, and
diabetes mellitus) models. We assessed the proportional
hazard assumption using Schoenfeld residuals, and it was
satisfied for each model.



Figure 4. Association of retinal vessel measurements with incident cardiovascular disease (CVD) in the UK Biobank study. A, Female participants; B, Male
participants. Pink denotes artery, blue denotes vein. Model 1 unadjusted, Model 2 adjusted for age, Model 3 adjusted for age, systolic blood pressure, diastolic
blood pressure, body mass index, smoking status, blood cholesterol, and diabetes. AVR ¼ artery to vein ratio; CI ¼ confidence interval; HR ¼ hazard ratio;
VSD ¼ vessel skeleton density (in pixel unit).

Shi et al � Retinal Capillary Quantification and CVD Risk Assessment
The retinal models were developed using PyTorch and
trained on 1 NVIDIA GeForce RTX 3090 card. Data were
analyzed using R version 4.0.1, and statistical significance
was defined as a false discovery rate of < 0.05.
Results

The development of the RMHAS-FA cross-modality model
involved 3893 participants with 90 732 CF-FFA pairs (9403
CF images; 56 580 FFA venous phase images), of which
81 664 pairs were used for model development and 9068
pairs for testing. Using CF vessels as references, the mean of
the registered vessels’ specificity was 0.997 (SD: 0.004),
indicating the vessel trunks were matched well, visualization
of the registered vessels is presented in Figure 2. The model
achieved area under the curve, accuracy, sensitivity, and
specificity scores of 0.94, 0.89, 0.90, and 0.89,
respectively, on pixel accuracy in the internal test set.
When evaluated with manual capillary labeling, the
performance was 0.95, 0.94, 0.90, and 0.93, respectively,
as shown in Table 1.

When tested on 7 public datasets including different
cameras and diseases, the segmentation model achieved
notably high sensitivity in detecting retinal vessels compared
to previous studies reported in the literature (see Table 1 and
Fig S3 for quantitative and qualitative results).33 Figure 3
presents a side-by-side comparison of CF, FFA, pseudola-
bels extracted from FFA, manually labeled FundusCapi, and
the predictions made by the RMHAS-FA model.

The external validation of the UK Biobank dataset
included 49 229 participants; the median age was 58 years
(interquartile range ¼ 50e63), among whom 21863 (44%)
were men. The baseline characteristics of the study partici-
pants are presented in Table 2. During a median follow-up
of 10.91 years (interquartile range ¼ 10.81e11.05), there
were 2111 (4.3%) CVD events and 268 (0.5%) CVD mor-
tality cases. Men had smaller arteriolar-to-venular ratio
7



Figure 5. Association of retinal vessel measurements in different retinal region (macular region and other region) with incident cardiovascular disease
(CVD) in the UK Biobank study. A, Female participants; B, Male participants. Pink denotes artery, blue denotes vein. Model 1 unadjusted, Model 2
adjusted for age, Model 3 adjusted for age, systolic blood pressure, diastolic blood pressure, body mass index, smoking status, blood cholesterol and diabetes.
CI ¼ confidence interval; DD ¼ 1 disc diameter from the fovea; HR ¼ hazard ratio; VSD ¼ vessel skeleton density.
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(AVR) (which was more pronounced in large vessels) and
smaller VSD in arteries but larger VSD in veins compared to
women (Table S1). Retinal measurements stratified by
Pooled cohort equation risk levels showed clear trends
(Table 3); the AVR and VSD decreased with increasing
CVD risk levels in both arteries and veins (P value for
trend < 0.001).

Arterial VSD was significantly associated with body
mass index, systolic blood pressure, diastolic blood pres-
sure, and glycosylated hemoglobin, whereas small and large
vessels had different association effect sizes. The AVR from
large vessels had a stronger negative association with blood
pressure, blood lipids, and smoking status than that from
small vessels. The VSD from small vessels had a stronger
negative association with glycosylated hemoglobin and
diabetes status than that from large vessels for both arteries
and veins. The VSD in the macular region (1 disc diameter
from the fovea) was more strongly associated with systemic
biomarkers than that in the other regions (see Figs S4eS9).

In the Cox regression analyses stratified by sex
(Figure 4), each SD decrease in the arterial VSD (small) was
associated with an increased risk of CVD and CVD
mortality for women. The hazard ratios (HRs) and 95%
confidence intervals (CIs) for crude, age-adjusted, and
risk-adjusted models were 0.74 (95% CI 0.69e0.79), 0.89
(95% CI 0.83e0.96), 0.91 (95% CI 0.84e0.98) for CVD
risk, and 0.53 (95% CI 0.43e0.65), 0.66 (95% CI
0.53e0.82), 0.68 (95% CI 0.54e0.86), for CVD mortality.
For men, a decrease in arterial VSD (small) per SD was
associated with an increased risk of CVD in the single-
variable model (HR of 0.8 [95% CI 0.76e0.85]). Howev-
er, after adjusting for age and risk factors, the effect was
insignificant, whereas the association with CVD mortality
remained significant after multiple adjustments (HR for
crude, age-adjusted, and risk-adjusted models of 0.67 [95%
8

CI 0.58e0.78], 0.83 [95% CI 0.71e0.98], and 0.83 [95% CI
0.70e0.98], respectively). The analyses of vessel measure-
ments in different retina regions (Figure 5) showed that
VSD from the macular region was more significantly
associated with incident CVD and CVD mortality for both
sexes than VSD from other regions.
Discussion

In this study, we utilized vasculature data from FFA to
automatically label the CF for small retinal vessel segmen-
tation. We assessed the performance of the algorithm on
multiple external datasets and further investigated the
contribution of retinal vessels of various sizes on incident
CVD and CVD mortality using the UK Biobank data.

Previous studies on the automated segmentation of
retinal vessels based on CF were developed solely based on
manual labeling of the vessels, which can be labor-intensive,
time-consuming, and subject to significant interobserver
variations. Automated segmentation of retinal capillaries is
even more difficult because they are often small and elusive
in CF. Inspired by previous investigation of generating
realistic FFA images from CF,34 we used more than 90 000
CF-FFA pairwise images to develop a method that allows us
to use FFA images to automatically generate retinal vessel
labels for CF images. Then, we developed the RMHAS-FA
algorithm that can detect retinal vessels, including capil-
laries on the CF without requiring FFA. We proved that this
automated segmentation algorithm was accurate, and robust
to various fundus cameras, even among the images with
multiple established retinal diseases. The system can auto-
matically complete the retinal vascular analysis on a lot of
images, and it is faster (taking < 1 second in general) than
the existing tools. We assessed the accuracy of automated
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vessel segmentation based on our manually labeled capillary
dataset and 7 public datasets. Instead of being trained and
tested on the same public dataset in the development of
other algorithms, our algorithm was assessed on multiple
external validation sets to prove the generalizability among
various fundus cameras and images with various retinal
diseases.

Our study further demonstrated that, in the UK Biobank
analysis, retinal capillary density was closely associated
with systemic diseases compared to large and medium
retinal vessels, whereas AVR was the opposite. For
example, AVR from larger vessels was more significantly
associated with blood pressure and CVD events, whereas
skeleton density from retinal capillaries was more associated
with diabetes and CVD events. This is in agreement with
previous studies where using optical coherence tomography
angiography, Rakusiewicz et al35 reported significantly
decreased vessel density in the superficial capillary plexus
in children with chronic heart failure. Wang et al found
that decreased vessel density and blood flow were
associated with coronary artery and branch stenosis.
Vessel density was also associated with CVD, CVD risk
factors,11,36,37 and acute coronary syndrome.38

Finally, assessing the microvasculature changes through
retinal photography might be the most cost-effective,
noninvasive, and convenient way to assess CVD risk.
Because the coronary microvasculature changes have to be
visualized by invasive angiogram technology, numerous
studies have attempted to develop less invasive imaging
biomarkers or techniques.39 Compared to optical coherence
tomography angiography and FFA, our technology may
provide a new way to visualize systemic microvascular
changes as an easy-to-perform, cheaper, and quick
screening tool for CVD risk stratification in general practice
settings.

Several limitations should be acknowledged. First, while
we reckon that there is currently no gold standard for retinal
capillary segmentation, we, therefore, have manually
labeled a capillary dataset (FundusCapi) for validation
purposes. Second, despite having reported the clinical utility
of the algorithm for retinal vessel segmentation in the
context of its association with CVD risk factors and events,
we believe other potentials for predicting other eye diseases
or systemic conditions should be further explored. Third,
our study was conducted on a cohort of primarily Caucasian
individuals; further studies are needed to explore the asso-
ciations between retinal capillaries and CVD or systemic
diseases in other ethnic groups.
Conclusion

The utilization of cross-modality labeling enables a more
accurate segmentation of retinal vessels including the retinal
capillary from CF that is not possible before. The study
demonstrated that retinal capillaries can be accurately
segmented from CF. This quantification of capillary will
become specific biomarkers that potentially can be used in
the prevention and management of CVD.
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