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Abstract—In this paper, we investigate the design of energy-
efficient beamforming for an ISAC system, where the transmitted
waveform is optimized for joint multi-user communication and
target estimation simultaneously. We aim to maximize the system
energy efficiency (EE), taking into account the constraints of a
maximum transmit power budget, a minimum required signal-
to-interference-plus-noise ratio (SINR) for communication, and a
maximum tolerable Cramér-Rao bound (CRB) for target estima-
tion. We first consider communication-centric EE maximization.
To handle the non-convex fractional objective function, we pro-
pose an iterative quadratic-transform-Dinkelbach method, where
Schur complement and semi-definite relaxation (SDR) techniques
are leveraged to solve the subproblem in each iteration. For
the scenarios where sensing is critical, we propose a novel
performance metric for characterizing the sensing-centric EE and
optimize the metric adopted in the scenario of sensing a point-like
target and an extended target. To handle the nonconvexity, we
employ the successive convex approximation (SCA) technique to
develop an efficient algorithm for approximating the nonconvex
problem as a sequence of convex ones. Furthermore, we adopt
a Pareto optimization mechanism to articulate the tradeoff
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between the communication-centric EE and sensing-centric EE.
We formulate the search of the Pareto boundary as a constrained
optimization problem and propose a computationally efficient
algorithm to handle it. Numerical results validate the effectiveness
of our proposed algorithms compared with the baseline schemes
and the obtained approximate Pareto boundary shows that there
is a non-trivial tradeoff between communication-centric EE and
sensing-centric EE, where the number of communication users
and EE requirements have serious effects on the achievable
tradeoff.

Index Terms—Integrated sensing and communication (ISAC),
energy efficiency, fractional programming.

I. INTRODUCTION

Integrated sensing and communications (ISAC) are antic-
ipated as a viable enabling technology for unlocking the
potential of next-generation wireless networks, as the two
kinds of systems tend to share various common devices,
signal processing techniques, and even the hardware cir-
cuitries. Rather than the conventional parallel development
of the two systems, the joint designs advocating their co-
existence and cooperation have attracted extensive research
interest in recent years [2]. For instance, the coexistence
of communication and radar systems focuses on spectrum
sharing or physical integration design, which mainly aims
to mitigate mutual interference and efficiently manage the
limited wireless resources [3]–[5]. Indeed, since communi-
cation and radar systems may transmit independent signals
superimposed in the time/frequency domains, the interference
between each other should be minimized to facilitate their
individual functionalities. In such cases, numerous approaches
have been proposed, such as cooperative spectrum sharing [6]
and beamforming design [7]. Nevertheless, the existence of
inevitable mutual interference still causes certain limitations
on spectral efficiency performance.

Meanwhile, compared with the coexistence design ap-
proaches that generate communication and sensing signals
separately, ISAC employs a common transmitted signal for
realizing communication and sensing simultaneously. In such
a case, the crux of ISAC is how to design a specialized wave-
form for effectively transmitting data and sensing potential
targets. In particular, the waveform design can be categorized
into the communication-centric, radar-centric, and joint design
according to the design goals [8]–[10]. Specifically, the radar-
centric design aims to modulate the communication data onto
the radar pulses, where the radar probing signals can be
regarded as an information carrier [11]. On the other hand,
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communication-centric approaches utilize existing communi-
cation signals to sense the environment, such as cellular
signals [12] and Wi-Fi signals [13]. In particular, various
environmental conditions can be extracted from the received
echoes of the communication signals, as the target’s existence
or movement inevitably affects the signal’s propagation. Nev-
ertheless, the integration performance is limited in the above
two approaches, as the communication/sensing functionality
is often carried out as ancillary tasks. In contrast, the joint
ISAC design studies the co-design of signaling methodologies
enabling both communications and sensing, which is the
research content of this work.

A. Related Works

One of the key challenges in joint waveform design is
to strike a balance between the tradeoff of communication
and sensing. A pioneer work of [14] investigated embed-
ding communication data by manipulating sidelobes within
the MIMO radar’s spatial beampattern, while reserving the
mainlobe for target detection. Although this method paved
the way for the development of dual-functional transmitter
design, the related beampattern optimization was not studied.
This research gap was addressed by [15] that studied the dual-
functional beampattern, where the Cramér-Rao bound (CRB)
was minimized subject to the constraint of the minimum
required signal-to-interference-plus-noise ratio (SINR) at each
communication user. Subsequently, the fundamental tradeoff
between the CRB for target parameter estimation and the data
rate for communication was also investigated in [16], [17]
under various system settings, thereby unveiling the potential
of ISAC.

Despite the aforementioned approaches can achieve a favor-
able tradeoff between radar sensing and data transmission [16],
[17], the energy efficiency (EE) optimization of the joint wave-
form has not been fully investigated. Currently, the energy
consumption of state-of-the-art fifth-generation (5G) wireless
networks is extremely high, resulting in expensive operational
costs [18]–[20]. It is anticipated that the upcoming ISAC will
consume significant energy than the current ones, as the wire-
less signals are expected to serve the dual purposes of envi-
ronment sensing and information transmission simultaneously.
This increase in energy consumption may hinder the long-
term development of sustainable and environmentally friendly
wireless communication technologies. It is also worth noting
that existing well-investigated communication-only energy-
efficient designs cannot be directly applied to ISAC, e.g., [18]–
[20], as they do not take sensing functionalities into consider-
ation. Hence, there is an urgent need to investigate the energy
efficiency design of ISAC for establishing perceptive-efficient
and spectrally-efficient cellular networks.

Recently, a few works have studied ISAC beamforming
for maximizing communication-centric EE. For instance, the
work [21] investigated the communication EE maximization
under the required radar beampattern constraint. Yet, it does
not consider the sensing EE and the performance of target
parameter estimation. Besides, the work [22] focused on
energy minimization under the sensing and communication

constraints. However, the algorithm designed in [22] cannot
handle the EE optimization due to the intrinsic challenges
brought by fractional programming in the resource allocation
design. More importantly, to the best of our knowledge, the
sensing-centric EE that characterizes the EE of target sensing
has been rarely studied in the literature. In particular, to fulfill
the increasing demand for sensing services, it is natural for the
base station (BS) to transmit the waveforms with high power
for improving the detection and estimation performance. How-
ever, this operation will inevitably bring unaffordable energy
costs, which contradicts the emerging requirements of carbon
neutrality and environmental sustainability for future wireless
networks [18]. Therefore, designing an energy-efficient sens-
ing performance metric for ISAC is of utmost importance.

B. Contributions

Against this background, this work considers the EE op-
timization for the waveform design of ISAC, where the
communication-centric EE, sensing-centric EE, and their
tradeoffs are investigated. Specifically, for the ISAC sys-
tems wherein communication serves as the primary objective,
we study the ISAC waveform design for maximizing the
communication-centric EE, i.e., the ratio of the achievable rate
and the corresponding power consumption, while guaranteeing
both the target estimation and communication performance
in terms of the CRB and SINR, respectively. As for the
sensing-centric ISAC systems, for the first time, we propose
the performance metric to measure the sensing-centric EE
for target parameter estimation. Then, we optimize the ISAC
waveform to maximize the sensing-centric EE, considering
the constraints of SINR, CRB, and the maximum transmis-
sion power budget. Then, we study the Pareto boundary of
communication-centric EE and sensing-centric EE for charac-
terizing their tradeoffs. The main contributions of this paper
are summarized as follows.

• We optimize the communication-centric EE considering
the two scenarios having a point-like target estimation
and an extended target estimation, respectively, under the
constraints of CRB, SINR, and transmission power limi-
tations. For the case of point-like target, the nonconvexity
of the objective function and CRB constraint hinder
the communication-centric EE optimization. For handling
these challenges, we first adopt the quadratic-transform-
Dinkelbach method to reformulate the nonconvex frac-
tional objective function as a tractable formulation. Then,
we adopt the semi-definite relaxation and linear matrix
inequality to convert the nonconvex optimization problem
into a sequence of convex optimization problems. Finally,
we generalize the proposed algorithm to an extended
target case.

• We propose a performance metric for capturing the notion
of sensing-centric EE for the first time, which adopts the
ratio of the reciprocal of the CRB to the transmit energy
for measuring “information-per-Joule”. Then, based on
the proposed metric, we consider the sensing-centric EE
maximization for point-like/extended targets by optimiz-
ing the transmit beamforming. Although the considered
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problem is nonconvex, we adopt the Schur complement
to reformulate the problem into a tractable formulation,
facilitating the development of a successive convex ap-
proximation (SCA)-based algorithm to effectively acquire
the solution to the design problem.

• We adopt the Pareto optimization technique to charac-
terize the tradeoff between the communication-centric
EE and the sensing-centric EE. In particular, we formu-
late a constrained optimization problem that maximizes
the communication-centric EE under the constraint of
sensing-centric EE. To handle the nonconvexity of the
considered optimization problem, we propose an SCA-
based iterative algorithm for addressing the nonconvexity.
Then, by varying the threshold of the sensing-centric
EE, the approximate Pareto boundary can be obtained by
solving a sequence of constrained problems. Simulation
results present the Pareto boundary to demonstrate the
tradeoff between the two EE metrics.

The remainder of this paper is organized as follows. Section
II introduces the system model, including the communication
model and the sensing model. In Section III, we study the
optimization of the communication-centric EE under the sens-
ing and communication constraints. The sensing-centric EE
is studied in Section IV. Section V investigates the tradeoff
between the communication-centric and the sensing-centric
EE. Simulation results are provided in Section VI. Finally,
we conclude the paper in Section VII.

Notations: The normal plain text (i.e., t), bold lowercase
letters (i.e., w) and uppercase letters (i.e., W) represent
scalars, vectors, and matrices, respectively. tr(·), rank(·), (·)H ,
and (·)T denote the trace operator, the rank operator, the
Hermitian transpose, and the transpose operator, respectively.
Cn×n stands for an n×n complex-valued matrix. ∥ · ∥ repre-
sents the L2 norm of a matrix. The inequality A ⪰ 0 means
that A is Hermitian positive semi-definite. Re(·) denotes the
real part of the argument. We adopt E(·) for the stochastic
expectation. ḟ(x) denotes the first derivative of function f(x).
The notation ≜ is used for definitions.

II. SYSTEM MODEL

As depicted in Fig. 1, we consider an ISAC multiple-
input multiple-output (MIMO) system, where the BS equipped
with M transmit antennas serves K single-antenna UEs for
communication with K ≤ M . Let k ∈ K ≜ {1, 2, · · · ,K}
denote the communication user set. As for radar estimation, the
environmental information is simultaneously extracted from
the reflected echoes with N receiving antennas implemented
at the BS. To avoid the potential of sensing information
loss, similar to [15], we assume that the number of transmit
antennas is less than or equal to that of receive antennas,
i.e., M ≤ N . As for target sensing, both the point-like
target and the extended target cases are considered separately
covering various practical scenarios. In particular, the former
case denotes the unstructured point that is far away from the
BS, such as unmanned aerial vehicles (UAVs). On the other
hand, for the extended target, it acts as a reflecting surface with
a large number of distributed scatterers, such as a vehicle or
a pedestrian [15]. The detailed model is given as follows.

User 1

User 2

User 𝑘

…

Point-like target

Extended target

ISAC BS

Fig. 1: An illustration of an ISAC MIMO system where an
ISAC BS simultaneously serves multiple communication users
and senses a point-like target or an extended target.

A. Communication Model

We denote the beamforming vector and the channel from the
BS to the k-th user as wk ∈ CM×1 and hk ∈ CM×1, respec-
tively. Then, the data symbol intended for the k-th user at time
slot l is denoted as sk[l], with unit power E

(
|sk[l]|2

)
= 1. Left

multiplying s[l] = [s1[l], s2[l], · · · , sk[l]]T ∈ CK×1 with the
beamforming matrix W = [w1,w2, · · · ,wk] ∈ CM×K , the
transmitted signal vector of the BS is given by x[l] = Ws[l].
Then, the transmitted ISAC waveform over L time slots can
be denoted as X = [x[1],x[2], · · · , x[L]] ∈ CM×L. Then,
the received signal at the k-th user during the l-th time slot,
l ∈ {1, 2, · · · , L}, is given as follows

yk[l] = hHk wksk[l] +

K∑
j=1,j ̸=k

hHk wjsj [l] + zc[l], (1)

where zc[l] is the additive white Gaussian noise (AWGN) with
zero mean and variance σ2

c . The received SINR at the k-th user
can be calculated as

SINRk(W) =

∣∣hHk wk

∣∣2
σ2
c +

∑K
j=1,j ̸=k

∣∣hHk wj

∣∣2 , (2)

and the corresponding achievable rate is Rk(W) = log2(1 +
SINRk(W)).

It is well known that communication-centric EE is defined
as a ratio of the transmission sum rate

∑
k Rk(W) to the

total power consumption P . Following [23], [24], the power
consumption can be calculated as

P =
1

ϵ
Pd + P0, (3)

where Pd =
∑
k ∥wk∥22 and ϵ ∈ [0, 1] denote the total

power consumption of the transmitted data and the power
amplifier efficiency, respectively. P0 denotes the sum of the
power consumed by the circuitries in the RF chains and the
power consumption of the BS including power supply, cooling
system, etc. As it is still an open issue to accurately quantify
P0, we follow [25], [26] to assume P0 as a constant. Note
that the impact of values of P0 on the system performance
will be investigated in the simulation section. Hence, the
communication-centric EE, measuring the required “bits-per-
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Joule” [18], [25], can be calculated as

EEC =
Rk(W)

P

=

∑
k log2

(
1+
∣∣hHk wk

∣∣2/(σ2
c+
∑K
j=1,j ̸=k

∣∣hHk wj

∣∣2))
1
ϵ

∑
k ∥wk∥22 + P0

.

(4)

B. Sensing Model

For radar sensing, the BS exploits the echo signals collected
in L time slots to estimate the target parameter. This work
considers the two cases with either a point-like target or an
extended target, respectively. As we consider the mono-static
colocated MIMO radar, we have identical angle of departure
(AOD) and angle of arrival (AOA) of the target. For notational
simplicity, we denote θt = θr = θ, following the existing
literature [15], [27], [28]. Then, for the point-like target that
locates in the far field, the target response matrix can be
denoted as

A = αar(θ)a
H
t (θ), (5)

where at(θ) and ar(θ) denote the transmit and receive steer-
ing vectors for the transmit signal at angle θ, respectively.
Following the existing works on ISAC, e.g., [16], [17], we
assume that the BS employs a uniform linear antenna with a
half-wavelength spacing between the adjacent antennas. Then,
the transmit and receive steering vectors are given by

at(θ) =
[
1, · · · , e−jπcosθ, e−jπ(M−1)cosθ

]T
, (6)

ar(θ) =
[
1, · · · , e−jπcosθ, e−jπ(N−1)cosθ

]T
. (7)

For the extended target that locates in the near field, we
follow [15] to model it as a reflecting surface with Ns
point-like scatters. Then, the target response matrix can be
represented as

A =

Ns∑
i=1

αiar(θi)a
H
t (θi), (8)

where αi is the reflection coefficient of the i-th scatterer. 1

Therefore, the received target echoes YR from the point-like
or the extended targets can both be denoted as

YR = AX+ Zs, (9)

where Zs is the zero-mean AWGN with variance σ2
s in each

element.
Since CRB is a lower bound on the variance of an unbiased

estimator of an unknown parameter that can guarantee the
performance of sensing [15], [17], we adopt the CRB as
the sensing metric to design the energy-efficient ISAC in the
following.

1Note that the extended target reflects Ns > 1 scatters, consisting of
multiple signal paths with different angles. As the BS has no prior knowledge
about the distribution of the scatters and cannot distinguish Ns scatterers lying
within the same range bin, the BS is required to estimate A instead of the
angles of all scatters. Then, various algorithms, such as MUSIC [29], can be
adopted to calculate the angles of scatters from the estimated A.

III. COMMUNICATION-CENTRIC ENERGY-EFFICIENT
DESIGN

A. Point-Like Target Case

Since the CRB of α has a similar form as the one of θ, for
conciseness, this work only considers the CRB of θ to for the
design of the ISAC beamforming. For the point-like target, the
CRB of θ is given followed [27], as in (10) at the top of next
page, where Rx is the sample covariance matrix of X. Since
E
(
|sk[l]|2

)
= 1, for a large L, we have the asymptotic result

Rx = 1
LXXH ≈WWH =

∑K
k=1 wkw

H
k [15].

The communication-centric energy efficient design is to
maximize the EEC defined in (4), under the constraints of
multiple users’ required SINR and maximal CRB(θ), whose
optimization problem can be formulated as follows2

max
{wk}K

k=1

∑K
k=1log2

(
1 +

∣∣hHk wk

∣∣2/(σ2
c+
∑K
j=1,j ̸=k

∣∣hHk wj

∣∣2))
1
ϵ

∑
k ∥wk∥22 + P0

(11a)

s.t.

K∑
k=1

∥wk∥22 ≤ Pmax, (11b)

CRB(θ) ≤ ρ, (11c)∣∣hHk wk

∣∣2
σ2
c +

∑K
j=1,j ̸=k

∣∣hHk wj

∣∣2 ≥ γk,∀k, (11d)

where Pmax denotes the power budget of the BS and (11b)
is the transmit power constraint. Besides, ρ and γk are the
required CRB threshold for sensing and the required SINR
for the k-th communication user, respectively. In general,
it is challenging to solve problem (11) directly, due to the
nonconvexity of the fractional objective function (11a) and
nonconvex constraints (11c) and (11d).

For addressing the nonconvex optimization problem, we
first adopt the Dinkelbach’s method [31] to reformulate the
problem (11) as

max
{wk}K

k=1

f1(wk)− λf2(wk) (12a)

s.t. (11b), (11c), (11d), (12b)

where f1(wk) ≜
∑K
k=1 log2

(
1 +

|hH
k wk|2

σ2
c+

∑K
j=1,j ̸=k|hH

k wj|2
)

,

f2(wk) ≜ 1
ϵ

∑K
k=1 ∥wk∥22 + P0, and λ ≥ 0 is the auxiliary

variable to be iteratively updated by

λ =
f1(wk)

f2(wk)
. (13)

With (12) and (13), an efficient solution to problem (11) can
be obtained by updating wk and λ alternately.

2For brevity in our presentation, we focus solely on the CRB of angle
estimation to illustrate our proposed energy efficiency design. However, it is
worth mentioning that the proposed algorithm can be generalized to involve
the CRB for the joint estimation of angle and distance. Specifically, since the
distance can be estimated from the signal propagation delay [30], the CRB
for the joint estimation of angle and time delay can be derived as shown in
Appendix A, i.e., CRBθ̂ in (56) and CRBτ in (57). As CRBθ̂ and CRBτ

share nearly identical formulation as CRB(θ) in (10), this generalization is
naturally facilitated.
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CRB(θ) =
σ2
s

|α|2
(
M ȧH(θ)RT

x ȧ(θ) + aH(θ)RT
xa(θ) ∥ȧ(θ)∥

2 − M |aH(θ)RT
x ȧ(θ)|2

aH(θ)RT
x a(θ)

) , (10)

Nevertheless, problem (12) is still difficult to handle due
to the following issues: 1) the objective function (12a) is still
non concave over {wk} due to the fractional function f1(wk);
2) nonconvex constraints (11c) and (11d). Since the function
log2(·) is concave and non-decreasing, the nonconvexity of
(12a) can be addressed if the term inside log2(·) can be
reformulated as an equivalent concave formulation. Bearing
this in mind, since f1(wk) belongs to the general multiple-
ratio concave-convex fractional programming problem, we
adopt the quadratic transform method [32, Theorem 1] to
reformulate f1(wk) as

f1(wk) = max
tk

K∑
k=1

log2
(
1 + 2tk Re(w

H
k hk)− t2kBk(wk)

)
,

(14)
where Bk(wk) = σ2

c +
∑K
j=1,j ̸=k

∣∣hHk wj

∣∣2 and tk is an
introduced auxiliary variable that is iteratively updated by

tk =
∣∣hHk wk

∣∣σ2
c +

K∑
j=1,j ̸=k

∣∣hHk wj

∣∣2−1

. (15)

Based on the above reformulations, problem (11) can be recast
as

max
{wk,tk}K

k=1,λ

K∑
k=1

log2
(
1 + 2tk Re(w

H
k hk)− t2kBk(wk)

)
− λ

(
1

ϵ

K∑
k=1

∥wk∥22 + P0

)
s.t. (12b),

(16)

where {wk, tk}Kk=1 and λ can be updated alternatively.

In the following, we focus on handling the nonconvex
constraints (11c) and (11d). Specifically, constraint (11c) can
be reformulated as

M ȧH(θ)RT
x ȧ(θ) + aH(θ)RT

xa(θ) ∥ȧ(θ)∥
2

−
M
∣∣aH(θ)RT

x ȧ(θ)
∣∣2

aH(θ)RT
xa(θ)

− σ2
s

2Lρ |α|2
≥ 0. (17)

Then, for notational conciseness, denoting F(RX) ≜
M ȧH(θ)RT

x ȧ(θ)+aH(θ)RT
xa(θ) ∥ȧ(θ)∥

2, (17) can be refor-
mulated as the following linear matrix inequality by leveraging
the Schur complement [33].[

F(Rx)− σ2
s

2Lρ|α|2
√
MaH(θ)RT

x ȧ(θ)√
M ȧH(θ)RT

xa(θ) aH(θ)RT
xa(θ)

]
⪰ 0. (18)

Next, for handling the nonconvex constraint (11d), we in-
troduce an auxiliary optimization variable matrix Wk and

reformulate constraint (11d) into

tr(QkWk)− γk
∑
k∈K
j ̸=k

tr(QkWj) ≥ γkσ2
c , (19a)

Wk = wkwH
k , (19b)

where Qk = hkh
H
k . Then, problem (11) can be equivalently

reformulated as

max
{wk,Wk,tk}K

k=1

K∑
k=1

log2
(
1 + 2tk Re(w

H
k hk)− t2kBk(Wk)

)
− λ

(
1

ϵ

K∑
k=1

tr(Wk) + P0

)
(20a)

s.t.


F(
∑K
k=1Wk)− σ2

s

2Lρ|α|2
√
MaH(θ)

K∑
k=1

WT
k ȧ(θ)

√
M ȧH(θ)

K∑
k=1

WT
k a(θ) aH(θ)

K∑
k=1

WT
k a(θ)

 ⪰ 0,

(20b)
(11b), (19a), (19b), (20c)

where Bk(Wk) ≜
∑

k∈K
j ̸=k

tr(QkWj) + σ2
c . However, con-

straint (19b) is a nonconvex equality constraint which is
difficult to handle. Therefore, we introduce the following
lemma to transform constraint (19b) into equivalent inequality
constraints.

Lemma 1: Wk = wkwH
k can be equivalently reformulated

as [
Wk wk

wH
k 1

]
⪰ 0,Wk ⪰ 0,∀k, (21a)

tr(Wk)−wH
k wk ≤ 0,∀k. (21b)

Proof: The proof is given in Appendix B.

Although the equality constraint in (19b) has been refor-
mulated as the equivalent inequality constraints, constraint
(21b) is still nonconvex. For handling this, we adopt the SCA
technique that establishes an inner convex approximation of
constraint (21b) given as

tr(Wk) +
(
w

(i−1)
k

)H
w

(i−1)
k −2Re

((
w

(i−1)
k

)H
wk

)
≤ 0,∀k,

(22)

where w
(i−1)
k is the solution obtained at the i-th iteration of

the SCA.

Therefore, at the i-th iteration, the convex approximation of
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problem (11) can be reformulated as

max
W,tk,λ

K∑
k=1

log2
(
1 + 2tk Re(w

H
k hk)− t2kBk(Wk)

)
− λ

(
1

ϵ

K∑
k=1

tr(Wk) + P0

)
(23a)

s.t. (11b), (19a), (20b), (21a), (22). (23b)

Algorithm 1 summarizes the iterative algorithm
for handling problem (11), where f̂1(wk,Wk) =∑K
k=1 log2

(
1 + 2tk Re(w

H
k hk)− t2kBk(Wk)

)
and

f̂2(Wk) = 1
ϵ

∑K
k=1 tr(Wk) + P0. Although we cannot

guarantee that the optimal solution of problem (11)
can be obtained, the proposed Algorithm 1 follows the
inexact Dinkelbach-type algorithm adopted in [34], whose
convergence can be guaranteed by the following lemma.

Lemma 2: Let
{
wi
k,W

i
k

}
be the solution sequence gener-

ated by solving problem (23). The sequence {λ(i)} generated
by Algorithm 1 is non-decreasing and convergent.

Proof: Since f̂1(w
(i),W(i)) − λ(i)f̂2(W

(i)) =(
λ(i+1) − λ(i)

)
f̂2(W

(i)), we have λ(i+1) ≥ λ(i)

if f̂1(w
(i),W(i)) − λ(i)f̂2(W

(i)) ≥ 0. Obviously,
f̂1(w

(i−1),W(i−1)) − λ(i)f̂2(W
(i−1)) = 0. At the i-th

iteration, we approximate problem (11) as problem (23)
around w

(i−1)
k . Since w

(i−1)
k is definitely a feasible solution

of problem (23), we have f̂1(w(i),W(i)) − λ(i)f̂2(W(i)) ≥
f̂1(w

(i−1),W(i−1)) − λ(i)f̂2(W
(i−1)) = 0. Therefore, we

can conclude that the sequence {λ(i)} is non-decreasing and
Algorithm 1 converges due to the finite power budget.

Remark 1: Our proposed Algorithm 1 employs Dinkelbach’s
extended algorithm [35], which is adapted for nonconvex sub-
problems encountered during iterations. In fact, Dinkelbach’s
extended algorithm has been widely adopted for handling
resource allocation problems in wireless communications, e.g.,
[36], [37]. As shown in [36], since the solution of each sub-
problem can be obtained by applying SCA and the sequence
generated during iterations is non-decreasing, Algorithm 1 is
guaranteed to converge to an efficient solution of problem (11)
[35, Theorem 2.2].

Algorithm 1 : Proposed Iterative Algorithm for Handling
Problem (11)

Set i = 0, δ > 0,{w(0)
k ,W

(0)
k } ∈ S;

Initialize t
(0)
k , λ(0) satisfying f̂1(w

(0),W(0)) −
λ(0)f̂2(W

(0)) ≥ 0;
repeat
i← i+ 1 ;
w̃

(i)
k ← w

(i−1)
k ;

t
(i)
k ←

Re(w
(i−1)
k

H
hk)

Bk(W
(i−1)
k )

;

λ(i) ← f̂1(w
(i−1)
k ,W

(i−1)
k )

f̂2(W
(i−1)
k )

;

Solve problem (23a) to obtain the optimal w(i)
k ,W

(i)
k ;

until f̂1(w(i),W(i))− λ(i)f̂2(W(i)) is less than δ.

Complexity Analysis: The computational complexity of Al-

gorithm 1 is dominated by solving problem (23a). Prob-
lem (23a) involves linear matrix inequality (LMI) constraints
that dominate the computation complexity. We notice that
the problem contains one LMI constraint of size 2M , K
LMI constraints of size M + 1, and K LMI constraints
of size M . Given the required accuracy ϵ0 > 0, the ϵ0-
optimal solution can be achieved after a sequence of it-
erations. Then, the computational complexity can be given
as O(

√
(2M + 1)(K + 1)M6K3 Iiter ln(1/ϵ0)) by reserving

the highest order term, where Iiter denotes the number of
iterations [38].

Remark 2: Due to the stringent requirement introduced by
(22), it is generally non-trivial to directly obtain a feasible
solution as an initial point. Alternatively, we can adopt the
penalty SCA [39] and introduce auxiliary variables ρ̄k to
transform problem (23) into

max
W,tk,λ

K∑
k=1

log2
(
1 + 2tk Re(w

H
k hk)− t2kBk(Wk)

)
− λ

(
1

ϵ

K∑
k=1

tr(Wk) + P0

)
− p̄

K∑
k=1

ρ̄k (24a)

s.t. w
(i−1)
k − 2Re

((
w

(i−1)
k

)H
wk

)
≤ ρ̄k,∀k, (24b)

(11b), (19a), (20b), (21a), (24c)

where p̄ and
∑K
k=1 ρ̄k denote the weight coefficient and the

penalty term, respectively. To obtain the initial point of (23),
we can solve problem (24) as an initial warm-up phase by
gradually raising p̄ to induce a reduction in the penalty term
to a smaller value. When the penalty term decreases to zero,
problem (24) reduces to problem (23), whose solution serves
as the feasible initial point of (23).

B. Extended Target Case

For estimating the extended target, we follow [15] to
consider the CRB of the target response matrix A instead
of the angle. Since K ≤ M , transmitting K signal streams
is not always sufficient for recovering the rank-M matrix.
To address this issue, the BS generates additional signals
that are dedicated for target probing. As such, the augmented
data matrix at the l-th time slot is x̃[l] ≜

[
W,W̃

]
[s[l]; s̃[l]],

where s̃[l] ∈ C(Nt−K)×1 is the dedicated probing signal and
E
(
s[l]s̃H [l]

)
= 0. Note that in the augmented signal, the

beamforming W = [w1,w2, · · · ,wK ] ∈ CM×K broadcasts
the information data to the K users and the beamforming
W̃ = [wK+1, · · · ,wK+M ] ∈ CM×M is employed to generate
probing signals for enabling the estimation of the target
response matrix. However, the introduced probing signals
s̃[l] inevitably generate undesired interference to the served
multiple users that introduces non-trivial tradeoff between
sensing and communication. In particular, the SINR received
at the k-th user is given by

˜SINRk =

∣∣hHk wk

∣∣2∑K
i=1,i̸=k

∣∣hHk wi

∣∣2 + ∥∥∥hHk W̃
∥∥∥2
2
+ σ2

C

, (25)
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where
∥∥∥hHk W̃

∥∥∥2
2

is the additional interference due to the
probing signals. In such a case, the CRB for the extended
target estimation can be derived as

CRBextended =
σ2
sM

N
tr
(
Rx

−1
)
, (26)

where RX = WWH + W̃W̃H .

Based on the discussions above, the problem of
communication-centric EE optimization for estimating an ex-
tended target can be formulated as

max
{wk}K+M

k=1

∑K
k=1 log2(1 +

˜SINRk)
1
ϵ

∑K+M
k=1 ∥wk∥22 + P0

(27a)

s.t.

K+M∑
k=1

∥wk∥22 ≤ Pmax, (27b)

CRBextended =
σ2
sM

L
tr
(
Rx

−1
)
≤ τ, (27c)

˜SINRk ≥ γk. (27d)

Obviously, although constraints (27b) and (27c) are both con-
vex, the fractional objective function (27a) is still nonconvex.
Following Section III-A, we first adopt Dinkelbach’s transfor-
mation to handle the nonconvex fractional programming and
reformulate the problem as follows

max
{wk}K+M

k=1

K∑
k=1

log2(1 + ˜SINRk)− λ

(
1

ϵ

K+M∑
k=1

∥wk∥22 + P0

)
(28a)

s.t. (27b), (27c), (27d). (28b)

Then, by exploiting the equality − log a = max
b

(log b −
ab) [40], problem (28) can be reformulated as problem
(29) as shown at the top of the next page. For obtaining
a tractable formulation, by introducing auxiliary variables
Wk ≜ wkw

H
k , k ∈ [1, 2, · · · ,K] and RW̃ = W̃W̃H ,

problem (29) can be reformulated as problem (30) as shown
at the top of the next page.

After inspecting problem (30), we can find that all con-
straints are convex, except for constraint (30f). Besides, the
objective function in (30a) includes three sets of optimization
variables: {λ}, {bk}, and

{
{Wk}Kk=1,RW̃

}
. Moreover, when

fixing the other two sets, the objective function is convex with
respect to the remaining one. Therefore, we first adopt the
rank relaxation to remove constraint (30f) and then employ an
alternating optimization (AO) algorithm to optimize three sets
of optimization variables alternately. The detailed algorithm is
summarized in Algorithm 2, where we denote f̃1(Wk,RW̃)
and f̃2(Wk,RW̃) shown in (31) at the top of the next page
for brevity.

In the following theorem, we will show that the rank-1
solution of problem (30) can be recovered from the solution
generated by Algorithm 2.

Theorem 1: Given the optimal solution obtained by Algo-

Algorithm 2 : Proposed Iterative Algorithm for Handling (27)

Set i = 0, δ > 0,{W(0)
k ,R

(0)

W̃
} ∈ S , and

initialize
(
b
(0)
k , λ(0)

)
satisfying f̃1(W

(0)
k ,R

(0)

W̃
) −

λ(0)f̃2(W
(0)
k ,R

(0)

W̃
) ≥ 0;

repeat
i← i+ 1 ;
W̃

(i)
k ,R

(i)

W̃
←W

(i−1)
k ,R

(i−1)

W̃
;

b
(i)
k ← b

(i−1)
k ;

λ(i) ← f̃1(W
(i−1)
k ,R

(i−1)

W̃
)

f̃2(W
(i−1)
k ,R

(i−1)

W̃
)

;

Solve the rank relaxation of problem (30) to obtain the
optimal W(i)

k ,R
(i)

W̃
, b

(i)
k ;

until f̃1(W
(i)
k ,R

(i)

W̃
)− λ(i)f̃2(W(i)

k ,R
(i)

W̃
) is less than δ.

rithm 2 as {W∗
k,R

∗
W̃
}. When K = 1,

Ŵ∗ =
W∗hkh

H
k W∗

hHk W∗hk
, R̂∗

W̃
= R∗

W̃
(32)

is the optimal rank-1 solution that achieves identical perfor-
mance as {W∗

k,R
∗
W̃
}. When K > 1, one can always con-

struct the optimal solution that satisfies the rank-1 constraint
acquiring the same performance.

Proof: The proof is given in Appendix C.
Complexity Analysis: We provide the computational com-

plexity of Algorithm 2 as follows. Similarly, the problem
(30) is a semidefinite program that can be solved by the
standard interior-point algorithm. We note that the problem
involves K + 1 LMI constraints of size M . We consider the
highest order term and express the computational complexity
as O(

√
MK +M +K + 1M6K3Iiter log(1/ϵ0)) for an ϵ0-

optimal solution, where Iiter represents the number of itera-
tions [38].

IV. SENSING-CENTRIC ENERGY-EFFICIENT DESIGN

A. Performance Metric for Sensing-Centric EE

Recall that in communication-centric designs, EE is gener-
ally defined as the ratio of the achievable rate and the power
consumption which can measure the amount of communi-
cation information per Joule. For sensing, it is well known
that Fisher information is the statistical expected value of the
observed information about an observable random variable,
revealing the highest accuracy (the lowest variance) that can
be achieved. It is also well established that CRB is the
inverse of Fisher information for unbiased estimators [41],
[42]. Considering these, we adopt the reciprocal ratio of the
CRB to the transmit power, further normalized by the total
time slot length. In this context, we arrive at a novel sensing-
centric EE metric defined as

EEs ≜
CRB−1

L
(

1
ϵ

∑K
k=1 ∥wk∥22 + P0

) . (33)

Both the sensing-centric EE and communication-centric EE
measure the “information” per Joule, but the “information”
has different meanings. In particular, the sensing-centric EE
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max
{wk}K+M

k=1 ,{bk}K
k=1,λ

K∑
k=1

log2

∣∣hHk wk

∣∣2 + K∑
i=1,i̸=k

∣∣hHk wi

∣∣2 + ∥∥∥hHk W̃
∥∥∥2
2
+ σ2

C

 (29a)

+

K∑
k=1

log2 bk − bk(
K∑

i=1,i̸=k

∣∣hHk wi

∣∣2 + ∥∥∥hHk W̃
∥∥∥2
2
+ σ2

C)

− λ(1

ϵ

K+M∑
k=1

∥wk∥22 + P0

)
s.t. (27b), (27c), (27d). (29b)

max
{Wk,bk}K

k=1,RW2,λ

K∑
k=1

log2

hHk

Wk +

K∑
i=1,i̸=k

Wi +RW̃ + σ2
C

hk


+

K∑
k=1

log2 bk − bk

 K∑
i=1,i̸=k

hHk Wihk + hHk RW̃hk + σ2
C

− λ(1

ϵ
tr

(
K∑
k=1

Wk +RW̃

)
+ P0

)
,

(30a)

s.t. tr

(
K∑
k=1

Wk +RW̃

)
≤ Pmax, (30b)

σ2
sM

N
tr

( K∑
k=1

Wk +RW̃

)−1
 ≤ τ, (30c)

hkWkh
H
k − γk

 K∑
i=1,i̸=k

hHk Wihk + hHk RW̃hk

 ≥ γkσ2
c , (30d)

Wk ⪰ 0,∀k,RW̃ ⪰ 0, (30e)
rank(Wk) = 1,∀k. (30f)

f̃1(Wk,RW̃) =

K∑
k=1

log2

hHk

Wk +

K∑
i=1,i̸=k

Wi +RW̃ + σ2
C

hk
+ K∑

k=1

log2 bk−bk

 K∑
i=1,i̸=k

hHk Wihk + hHk RW̃hk + σ2
C


(31a)

f̃2(Wk,RW̃) =
1

ϵ
tr

(
K∑
k=1

Wk +RW̃

)
+ P0. (31b)

measures the average Fisher information per Joule, i.e., the
amount of information that can be extracted by an ideal
observer per Joule, with the specific unit also depending on
the to-be-estimated parameter. In the following sections, we
investigate the sensing-centric EE in cases of estimating a
point-like target and an extended target.

Based on the above metric, we study the waveform design
to maximize the sensing-centric EE considering the point-like
target and the extended target in Sections IV-B and IV-C,
respectively.

B. Point-Like Target Case

Considering the point-like target, with the CRB of esti-
mating θ given in (10), the sensing-centric EE optimization

problem can be formulated as

max
{wk}K

k=1

CRB−1(θ)

L
(

1
ϵ

∑K
k=1 ∥wk∥22 + P0

) (34a)

s.t.

K∑
k=1

∥wk∥22 ≤ Pmax, (34b)

CRB(θ) ≤ ρ, (34c)

∣∣hHk wk

∣∣2
σ2
c +

∑K
j=1,j ̸=k

∣∣hHk wj

∣∣2 ≥ γk,∀k. (34d)

Obviously, problem (34) is also intractable due to the
fractional objective function (34a) and nonconvex constraints
(34c) and (34d). For handling the fractional objective function
(34a), with the introduced auxiliary optimization variables
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ω, t, ϕ, and ζ, problem (34) can be reformulated as

max
{wk}K

k=1,ω,ϕ,ζ
ω (35a)

s.t. CRB(θ) ≤ 1

t
, (35b)

1

ϵ

K∑
k=1

∥wk∥22 + P0 ≤ ϕ, t ≥ ζ2, (35c)

ω ≤ ζ2

ϕ
, (35d)

(34b), (34c), (34d).

The equivalence between (35) and (34) is obvious, since
constraints (35a), (35b), and (35c) should be active at the
optimal solution. We note that (35b) share the same form
with (11c). Therefore, with the Schur’s complement, constraint
(35b) can be equivalently reformulated as[
F(
∑K
k=1 Wk)− tσ2

s

2L|α|2
√
MaH(θ)

∑K
k=1 W

T
k ȧ(θ)√

M ȧH(θ)RT
xa(θ) aH(θ)RT

xa(θ)

]
⪰ 0,

(36)

where F(
∑K
k=1 Wk) ≜ M ȧH(θ)

∑K
k=1 W

T
k ȧ(θ) +

aH(θ)
∑K
k=1 W

T
k a(θ) ∥ȧ(θ)∥

2 and Wk = wkw
H
k .

Furthermore, Lemma 1 presents an equivalent formulation
of the equality Wk = wkw

H
k whose convex approximation

has been given in (21a) and (22). Then, for handling the
fractional constraint (34d), we introduce auxiliary variables
{τk, ψk,∀k} to reformulate (34d) as

τ2k/ψk ≥ γk, (37a)

τk = hHk wk, ψk ≥ σ2
c +

K∑
j=1,j ̸=k

∣∣hHk wj

∣∣2 , (37b)

where (37b) are convex constraints. Then, problem (34) can
be reformulated as

max
Θ

ω, s.t. ω ≤ ζ2

ϕ
, γk ≤

τ2k
ψk
,∀k (38a)

(20b), (34b), (35c), (36), (21a), (22), (37b),
(38b)

where Θ ≜
{
{Wk,wk}Kk=1, ω, t, ϕ, ζ, τk, ψk

}
denotes the

set of optimization variables. Obviously constraint (38b) is
convex. Therefore, the challenge for handling problem (38)
lies in the nonconvexity of constraint (38a). To deal with
this, we adopt the SCA techniques to establish a convex
approximation of constraint (38a). Since function ζ2

ϕ is jointly
convex with respect to ζ and ϕ, its convex lower approximation
can be established as

ζ2

ϕ
≥ (ζ(n))2

ϕ(n)
+

2ζ(n)

ϕ(n)
(ζ − ζ(n))−

(
ζ(n)

ϕ(n)

)2

(ϕ− ϕ(n))

=
2ζ(n)

ϕ(n)
ζ −

(
ζ(n)

ϕ(n)

)2

ϕ, (39)

where ζ(n) and ϕ(n) are the feasible points obtained at the
n-th iteration of the SCA. Consequently, the inner convex

approximation of ω ≤ ζ2

ϕ is

ω ≤ 2ζ(n)

ϕ(n)
ζ −

(
ζ(n)

ϕ(n)

)2

ϕ. (40)

Similarly, the inner convex approximation of γk ≤ τ2
k

ψk
,∀k

is

γk ≤
2τ

(n)
k

ψ
(n)
k

τk −

(
τ
(n)
k

ψ
(n)
k

)2

ψk,∀k, (41)

where τ
(n)
k and ψ

(n)
k are the feasible points obtained at the

n-th iteration.
Finally, a convex approximation of problem (38) is formu-

lated as

max
Θ

ω, s.t. (40), (41), (38b). (42)

In this way, problem (42) can be solved with off-the-shelf
numerical convex program solvers such as CVX Toolbox [43].
We summarize the proposed iterative method in Algorithm 3,
where its initial feasible solution can be obtained by following
the penalty SCA method given in Remark 2.

Algorithm 3 : Proposed Iterative Algorithm for Handling (34)

Initialize n = 0, Θ(0) ∈ S.
repeat
n← n+ 1;
w̃

(n)
k ← w

(n−1)
k

Solve problem (42) with Θ(n−1) and obtain the optimal
value Θ(∗) ;
Θ(n) ← Θ(∗) ;

until Convergence

In the following, we analyze the convergence of Algo-
rithm 3. We can note that in the iterative procedure of
Algorithm 3, Θ(n−1) is always feasible in problem (42) at
n-th iteration owing to the adopted first-order Taylor approx-
imation. We note that (42) can be optimally solved and the
optimal value of its objective function serves as a lower bound
on that of (38). Therefore, it can be guaranteed that the optimal
value of (38) at n-th iteration n, denoted as p

(n)
∗ , always

satisfies p(n)∗ ≥ p
(n−1)
∗ . Therefore, Algorithm 3 produces a

non-decreasing objective function of problem (38). Similar to
Algorithm 1, the computational complexity of Algorithm 3 is
O(
√

(2M + 1)(K + 1)M6K3Iiter ln(1/ϵ0)).

C. Extended Target Case

For the case of the extended target, following the discussion
in Section III-B, we choose A as the parameter to be estimated
and adopt the formulation of CRB in (26). Then, we have the
sensing-centric EE for sensing an extended target as

EES =

(
σ2
sM
L tr

(
Rx

−1
))−1

L
(
1
ϵ tr(Rx) + P0

) =

(
tr
(
Rx

−1
))−1

σ2
sM

(
1
ϵ tr(Rx) + P0

) ,
(43)
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where RX = WWH+W̃W̃H =
∑K
k=1 wkw

H
k +RW̃. Then,

we formulate the problem as

max
{wk}K

k=1,RW̃

(
tr
(
Rx

−1
))−1

σ2
sM

(
1
ϵ tr(Rx) + P0

) (44a)

s.t. tr(Rx) ≤ Pmax, (44b)
σ2
sM

N
tr
(
Rx

−1
)
≤ ϕ, (44c)

˜SINRk ≥ γk, (44d)

where ˜SINRk is given in (25) and can be recast as a convex
form in (30d) by letting Wk = wkw

H
k . We notice that in

(44a), the numerator is the reciprocal of a convex function
and the denominator is strictly positive and convex. To handle
its nonconvexity, we introduce auxiliary optimization variables
pe, qe and equivalently transform the problem into

max
{wk}K

k=1,RW̃,qe,pe

1

peqe
(45a)

s.t. pe ≥ σ2
sM

(
1

ϵ
tr(Rx) + P0

)
, qe ≥ tr

(
Rx

−1
)
, (45b)

(44b), (44c), (44d). (45c)

Then, the problem can be further transformed into its equiva-
lent form as

min
{Wk}K

k=1,RW̃,qe,pe
ln(pe) + ln(qe) s.t. (45b), (45c),

(46)

where the objective function is still not convex, but can be
approximated based on the first order Taylor series expansion
given by

ln(pe) + ln(qe) ≤ ln
(
p(n)e

)
+ ln

(
q(n)e

)
+

1

p
(n)
e

(
pe − p(n)e

)
+

1

q
(n)
e

(
qe − q(n)e

)
,

(47)

where p
(n)
e and q

(n)
e are the feasible solutions obtained at

the n-th iteration. Following the techniques detailed in Sec-
tion III-B, a convex approximation of problem (45a) at the
n-th iteration can be established as

min
{Wk}K

k=1,RW̃,qe,pe
ln(p(n)e ) + ln(q(n)e ) (48a)

+
1

p
(n)
e

(pe − p(n)e ) +
1

q
(n)
e

(qe − q(n)e )

(48b)
s.t. (30b), (30c), (30d), (30e), (45b). (48c)

The computational complexity is
O(
√
MK +M +K + 1M6K3Iiter ln(1/ϵ0)) for an ϵ0-

optimal solution.

Theorem 2: Based on the optimal solution of (48a), denoted
as {W∗

k,R
∗
W̃
}, the optimal rank-1 solutions can always be

reconstructed.

Proof: The proof can be achieved by following the proof
of Theorem 1 and the details are omitted for brevity.

V. APPROXIMATE PARETO BOUNDARY OF
ENERGY-EFFICIENT ISAC SYSTEMS

In this section, we aim to investigate the Pareto bound-
ary of the achievable EE performance region built on the
communication-centric EE and the sensing-centric EE. Con-
sidering the point-like target case, we follow [44] to formulate
the search of the Pareto boundary as a constrained optimization
problem that maximizes the communication-centric EE under
the sensing-centric EE constraint. It is worth noting that the
proposed algorithm can be adapted to the extended target case
directly. Now, we aim to solve

max
{wk}K

k=1

∑K
k=1log2

(
1 +

∣∣hHk wk

∣∣2/(σ2
c +

∑K
j=1,j ̸=k

∣∣hHk wj

∣∣2))
1
ϵ

∑
k ∥wk∥22 + P0

(49a)

s.t.
CRB−1(θ)

L
(

1
ϵ

∑K
k=1 ∥wk∥22 + P0

) ≥ E , (49b)

∑
k

∥wk∥22 ≤ Pmax, (49c)

where E denotes the required minimum sensing-centric EE
threshold. Obviously, problem (49) is a nonconvex fractional
program, which is challenging to solve directly. To handle frac-
tional objective function (49a) and nonconvex constraint (49b),
we follow [44] to find the approximate optimal Pareto bound-
ary for characterizing the tradeoff between the communication-
centric EE and sensing-centric EE.

In particular, we first apply the Dinkelbach algorithm to
reformulate fractional function (49a) as

max
λ

K∑
k=1

log2

(
1 +

∣∣hHk wk

∣∣2
Bk(Wk)

)
− λ

(
1

ϵ

K∑
k=1

tr(Wk) + P0

)
s.t. (21a), (21b), (50)

where Bk(Wk) =
∑K
j=1,j ̸=k tr(QkWj) + σ2

c .
Furthermore, by introducing auxiliary variables bk, k =

1, . . . ,K, the intractable fractional terms in (50) can be
equivalently formulated as
K∑
k=1

log2

(
1 +

∣∣hHk wk

∣∣2
Bk(Wk)

)

= max
bk

(
K∑
k=1

log2(1 + bk)−
K∑
k=1

bk+

K∑
k=1

(1 + bk)
∣∣hHk wk

∣∣2
Bk(Wk)

)
,

(51)

which has an analytical solution bk =
|hH

k wk|2
Bk(Wk)

. Finally, by
applying the quadratic transform [32, Theorem 1], problem
(49) can be reformulated as (52) at the top on the next page.

The convex approximation of nonconvex constraint
(21b) is constraint (22), as mentioned in Section III-A.
For handling nonconvex constraint (49b), we introduce an
auxiliary variable Ẽ and employ the Schur complement to
obtain the convex approximation of problem (49) given
by (53) at the top of the next page. (53) is convex whose
optimum can be obtained by the interior point method.
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max
{wkWk,bk,tk}K

k=1,λ

∑
k

(
log2(1 + bk)− bk + 2tk

√
(1 + bk)Re(w

H
k hk)− t2kBk(Wk)

)
− λ

(
1

ϵ

K∑
k=1

tr(Wk) + P0

)
(52a)

s.t. (21a), (21b), (49b), (49c). (52b)

max
{wkWk,bk,tk}K

k=1,λ

∑
k

(
log2(1 + bk)− bk + 2tk

√
(1 + bk)Re(w

H
k hk)− t2kBk(Wk)

)
− λ

(
1

ϵ

K∑
k=1

tr(Wk) + P0

)
(53a)

s.t.

[
F(
∑K
k=1 Wk)− Ẽσ2

s

2L|α|2
√
MaH(θ)

∑K
k=1 W

T
k ȧ(θ)√

M ȧH(θ)RT
xa(θ) aH(θ)RT

xa(θ)

]
⪰ 0, (53b)

Ẽ ≥ EN

(
1

ϵ

K∑
k=1

tr(Wk) + P0

)
, (53c)

(21a), (22), (49c). (53d)

Therefore, an efficient solution of problem (49) can be
obtained by solving a sequence of problem (53). Algorithm
4 summarizes the iterative algorithm, where f̆1(wk,Wk) =
β

R

∑K
k=1

(
log2(1+bk)−bk+2tk

√
(1 + bk)Re(w

H
k hk)

−t2kBk(Wk)
)

+ (1 − β) ϕ̃
LC , f̆2(Wk) =

λ
(

1
ϵ

∑K
k=1 tr(Wk) + P0

)
.

Algorithm 4 : The Proposed Algorithm for Handling Problem
(49)

Initialize i = 0, δ > 0, {w(0)
k ,W

(0)
k }Kk=1 to a feasible value;

repeat
i← i+ 1 ;
w̃

(i)
k ← w

(i−1)
k

Update λ by λ(i) = f̆1(w
(i−1),W(i−1))

f̆2(W(i−1))
;

Update bk by b(i)k =
|w(i−1)

k

H
hk)|2

Bk(W
(i−1)
k )

;

Update tk by t(i)k =

√
(1+bk) Re(w

(i−1)
k

H
hk

Bk(W
(i−1)
k )

;

Solve problem (53) to obtain the optimal w(i)
k ,W

(i)
k ;

until f̆1(w(i),W(i))− λ(i)f̆2(W(i)) is less than δ.

VI. NUMERICAL RESULTS

Simulation results of the proposed energy-efficient wave-
form design are provided in this section. Unless stated oth-
erwise, we consider a dual-functional BS equipped N = 20
receiving antennas, with the frame length N set to 30. The
maximum transmission power Pmax is set to 30 dBm with
the power amplifier efficiency ϵ = 0.35. The circuit power
consumption is set to P0 = 30 dBm. For the target estimation
of radar, the target angle is θ = 90◦.

A. EEC Optimization

We first examine the performance of Algorithm 1 for
maximizing EEC considering the existence of a point-like
target. The convergence rate of Algorithm 1 is given in Fig. 2a.

Obviously, it enjoys a fast convergence rate, whose objective
function value converges within 12 iterations on average.
Furthermore, the convergence rate of Algorithm 1 is almost
the same for different system parameters, e.g., different M and
CRB constraints, which confirms the scalability of Algorithm
1.

Fig. 2b investigates the EEC performance versus the root-
CRB threshold for different M . The EEC increases with the in-
creasing Root-CRB threshold, indicating that EEC can achieve
a higher level when the sensing performance requirement is
less stringent. Indeed, increasing the number of antennas can
improve EEC, since more spatial degrees-of-freedom can be
utilized for designing an efficient ISAC waveform. Besides, we
compare our proposed method with a baseline scheme, which
maximizes the achievable communication sum rate under the
same constraints of problem (11), including the CRB thresh-
old, SINR requirements, and the power budget, but without
regard of the overall EE. Specifically, the sum-rate objective
function of the baseline scheme is reformulated into a tractable
formulation by using the quadratic-transform as described in
Section III-A. The problem is then solved by exploiting the
same SDR techniques and linear matrix inequality presented
in Section III-A. Obviously, the EEC of the baseline scheme
is unsatisfying, since it only considers the spectral efficiency
maximization instead of the EEC maximization. In such a case,
the baseline scheme encourages the ISAC BS to adopt as much
power as possible to increase the communication sum rate.
Note that while a globally optimal point cannot be guaranteed,
our proposed approach still clearly outperforms the state-of-
the-art one.

Fig. 2c further demonstrates the EEC performance versus the
circuit power, P0. It can be seen that increasing P0 leads to a
degradation of EEC as it also increases the total system power
consumption. Besides, compared with the baseline, decreasing
P0 will enlarge the gain obtained by our proposed algorithm.
This is because when the circuit power consumption is small,
the transmission power constitutes the majority of the overall
power consumption, thereby enhancing the relative benefits of
our proposed algorithm.
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Fig. 2: (a) EEC versus the number of iterations with γk = 10 dB, K = 3 for the point-like target case; (b) EEC versus different
root-CRB thresholds with γk = 10 dB, K = 2 for the point-like target case; (c) EEC versus different circuit power levels P0

with γk = 10 dB, K = 2, M = 14 for the point-like target case.
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Fig. 3: EEC versus different SINR requirements γk. (a) The
point-like target case with M = 14,K = 2; (b) The extended
target case with M = 14,K = 2.

Fig. 3a and Fig. 3b plot the EEC of the point-like target and
extended target with the increasing SINR constraint of multiple
users, γk, respectively. With the increasing γk, EEC first
remains unchanged and then decreases due to the shrunken
feasible region. Therefore, increasing the downlink commu-
nication rate does not necessarily improve EEC. Furthermore,
with the increasing root-CRB, the EEC decreases, since more
power is allocated to radar sensing due to the increasing
sensing requirements. A similar trend can also be found in
Fig. 3b for the increasing CRB in the extended target case.

B. EES Optimization

In this subsection, we investigate the performance of EES
optimization for both the point-like target sensing and ex-
tended target cases. In Fig. 4a, we first consider the point-like
target to show the EES versus the increasing power budget,
for different SINR levels. As expected, EES increases with
the increasing PT , since the increasing power improves the
estimation accuracy and increases EES. Besides, lowering the
SINR requirement also improves EES, since relaxing the SINR
constraint enlarges the feasible region and improves EES. For
demonstrating the performance gain obtained by our proposed
Algorithm 3, we perform the performance comparison with
two other baselines, namely BA1 and BA2. In particular, BA1

aims to minimize the transmission power while BA2 aims
to maximize the communication sum rate under the same
constraints as our proposed method (γk = 5 dB, the root-
CRB threshold is set to 0.15 deg, Pmax = 30 dBm). The
results indicate that EES of BA1 is significantly low due to
the insufficient power for improving the CRB performance.
Additionally, EES of BA2 is also inferior to the proposed
method and exhibits a further decline as the transmission
power increases, since most of the power is utilized for
maximizing the sum rate instead of sensing target.

Fig. 4b further demonstrates the EES versus the SINR
requirement, where the root-CRB threshold is set to 0.15
deg. It can be observed that EES decreases as the increasing
SINR and the number of communication users since the in-
creasing communication requirements deteriorates the sensing
performance. Fig. 4c demonstrates the impact of different
circuit power levels, P0, on the achievable EES. As expected,
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Fig. 4: (a) EES for the point-like target case versus the maximum transmission power PT , compared with the baselines, with
M = 16, ρ = 0.15 deg, K = 8. (b) EES for the point-like target case versus the SINR requirements, under different numbers
of users, with M = 16, ρ = 0.15 deg; (c) EES for the point-like target case versus different circuit power levels P0, with
K = 10, M = 14, ρ = 0.15 deg.

increasing P0 will significantly decrease EES, indicating that
EES can achieve a more satisfactory level with a lower P0

regardless of the SINR requirements.
As for the scenario of sensing an extended target, Fig. 5a

shows the EES versus communication SINR under different
numbers of users and different CRB. It is worth noting that
the performance metric for the extended target sensing EES
is different from the point-like target case. Similar to the
scenario of sensing a point-like target, EES decreases with the
increasing requirements of communication SINR, especially
when the number of users is larger. Besides, increasing CRB
requirements improves EES, due to the improved estimation
performance.

C. Approximate Pareto Boundary of Energy-Efficient ISAC.

Fig. 5b illustrates the approximate Pareto boundary, offering
a flexible and scalable tradeoff between EES and EEC. This
tradeoff allows for network designers to switch from EES
priority to EEC priority and anywhere in between, depend-
ing on the specific practical scenario. The inherent conflict
between EES and EEC also appeals a strategic approach for
the designers to strike an effective balance along the Pareto
frontier. Besides, from Fig. 5b, we can find that increasing the
number of communication users results in a significant deteri-
oration of EES, as it consumes more available spatial degrees
of freedom, revealing the fact that the tradeoff becomes mode
benign with more available degrees of freedom. On the other
hand, after the required EES surpasses a certain threshold,
there is a sharp decline in EEC. This is because most of the
available resources are allocated for satisfying the stringent
EES constraint, leaving insufficient resources for guaranteeing
the EEC performance. This serves as a reminder that the preset
EES value should not surpass a specific threshold, as exceeding
this threshold will lead to a significant reduction in EEC.

VII. CONCLUSION

In this paper, we addressed the problem of maximizing
energy efficiency for MIMO ISAC systems. We first stud-
ied the communication-centric EE adopting the conventional
definition of EE in both the point-like target and extended
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Fig. 5: (a) EES in the scenario of sensing an extended target
versus the SINR requirement, under different CRB constraints
and numbers of users. (b) The Pareto boundary of energy-
efficient ISAC for different numbers of communication users
with M = 14 and Pmax = 30 dBm.
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Fθ̂θ̂ =
2

σ2
s

Re

[(
αe−j2πfcτcvec

(
Ξ̇X

))H (
αe−j2πfcτcvec

(
Ξ̇X

))]
=

2|α|2L
σ2
s

tr(Ξ̇RXΞ̇H), (54a)

Fθ̂τc =
2

σ2
s

Re

[(
αe−j2πfcτcvec

(
Ξ̇X

))H (
−j2πfcαe−j2πfcτcvec (ΞX)

)]
=

4πfc|α|2L
σ2
s

Re
[
−jtr(ΞRXΞ̇H)

]
, (54b)

Fτcτc =
2

σ2
s

Re
[(
−j2πfcαe−j2πfcτcvec (ΞX)

)H (−j2πfcαe−j2πfcτcvec (ΞX)
)]

=
−8π2f2c |α|2L

σ2
s

tr(ΞRXΞH). (54c)

target cases. We reformulated the objective function using
the quadratic-transform-Dinkelbach method and solved the
sub-problem by leveraging the Schur complement and semi-
relaxation techniques. In the second part, we introduced
a novel performance metric for measuring sensing-centric
EE. We iteratively approximated the objective function as
a convex program exploiting SCA to address this problem.
Finally, we investigated the tradeoff between the two EE
metrics and provided an effective solution. Numerical re-
sults showed an improvement compared to the benchmark
on both communication-centric EE and sensing-centric EE
performance, and we also demonstrated the tradeoff between
communication-centric and sensing-centric EE. Future works
can consider the energy-efficient ISAC system design for bi-
static or multi-static sensing systems.

APPENDIX A

In this section, we discuss multi-parameter estimation, re-
garding the time delay and target angle, to achieve location
estimation of the target. Considering the time delay, the
target response matrix is presented as Hr = e−j2πfcτcA =
αe−j2πfcτ̄car(θ̂)a

H
t (θ̂), where τc and fc denote the time delay

and the carrier frequency, respectively. Then, the received
target echoes can be rewritten as ỸR = HrX+Zs. Compared
with the sensing model in Section II-B, where only θ̂ is the
to-be-estimated parameter, there are two parameters of interest
here, i.e., θ̂ and τc. To this end, the CRB of θ̂ and τc, denoted
as CRBθ̂ and CRBτc , respectively, should be both considered
in the performance metric and in the optimization problem.

To derive CRBθ̂ and CRBτc , we first vectorize ỸR as
ỹR = vec(ỸR) = vec(HrX)+ z̃s =

(
XT ⊗ IN

)
+ z̃s, where

z̃s = vec(Zs). Given the observation ỹR that depends on the
to-be-estimated parameter χ = [θ̂, τc]

T , the Fisher information
matrix can be given as [F]ij = 2

σ2
s
Re
[
∂µH(χ)
∂χi

· ∂µ(χ)
∂χj

]
,

where χi and µ(χ) represent the i-th component of χ and
the mean of ỹR dependent on χi, respectively. For brevity,
let Ξ = ar(θ̂)a

H
t (θ̂) and Ξ̇ = ∂Ξ

∂θ̂
denoting the partial

derivative of Ξ with respect to θ̂. Then, the partial derivations
can be calculated as ∂µ(χ)

∂θ̂
= αe−j2πfcτcvec

(
Ξ̇X

)
and

∂µ(χ)
∂τ = −j2πfcαe−j2πfcτcvec (ΞX) . Then, the elements in

F can be derived as in (54a), (54b), and (54c) at the top of
this page, respectively.

Next, following [27], we give the CRB of angel estimation
as

CRBθ̂ =
[
F−1

]
11
. (55)

Combining (54) and (55), the CRB of angel estimation can be
derived as (56) at the top of next page. Similarly, the CRB of
time delay estimation can be given as (57) at the top of the
next page.

To measure the performance of multiple parameters (loca-
tion) estimation, we follow [45] and reformulate (33) as

EEs ≜

ρ̃θ̂
CRBθ̂

+
ρ̃τc

CRBτc

L
(

1
ϵ

∑K
k=1 ∥wk∥22 + P0

) , (58)

where ρ̃θ̂ and ρ̃τc are added for unifying the units [45]. It
can be noted that (58) shares a nearly identical form as (33).
Therefore, our proposed algorithm can be generalized to the
case considering the joint estimation of angle and distance,
whose details are omitted for brevity.

APPENDIX B
First, we provide the matrix inequality Wk ⪰ wkw

H
k ,

which satisfies either of the following cases:
Case I: Wk ≻ wkw

H
k . Then, we have

tr(Wk) > tr(wkw
H
k ).

Case II: Wk = wkw
H
k . In this case, we have tr(Wk) =

tr(wkw
H
k ).

By combining Wk ⪰ wkw
H
k with an additional LMI

constraint, given as tr(Wk) ≤ tr(wkw
H
k ), we can guarantee

that Case II always holds. We remark that tr(wkw
H
k ) =

tr(wH
k wk) = wH

k wk. Further applying the Schur comple-
ment, Wk = wkwH

k can be equivalently transformed into

the following LMI, given as
[
Wk wk

wH
k 1

]
⪰ 0,∀k, tr(Wk)−

wH
k wk ≤ 0,∀k, which completes the proof.

APPENDIX C
For K = 1, we can derive that hHk Ŵ∗hk = hHk W∗hk.

Hence, the received SNR and the transmission rate at the
user does not decrease. Besides, we have W∗ − Ŵ∗ =

(W∗)
1
2

(
I− (W∗)

1
2 hkh

H
k (W∗)

1
2

hH
k W∗hk

)
(W∗)

1
2 ⪰ 0, indicating

that the power constraint is satisfied due to W∗ ⪰ Ŵ∗.
Additionally, replacing W∗ by Ŵ∗ would not decrease
the transmission rate or increase the total power, showing
that Ŵ∗ is the optimum to the objective function. Then,
we discuss the case of K > 1 . We introduce r =
hHk

(
Wk +

∑K
i=1,i̸=kWi +RW̃ + σ2

C

)
hk − 1 and equiva-

lently reformulate (30) as problem (59) shown on the top of
the next page.

We note that with the fixed λ, problem (59) is jointly convex
of variables {Wk, bk}Kk=1,RW̃. Thus, it can be proved that
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CRBθ̂=
[
F−1

]
11
=

σ2
str(ΞRXΞH)

2|α|2L
(
tr(Ξ̇RXΞ̇H)tr(ΞRXΞH)−Re

[
jtr(ΞRXΞ̇H)

]
Re
[
jtr(ΞRXΞ̇H)

]T) . (56)

CRBτc =
σ2
str(Ξ̇RXΞ̇H)

2|α|2L
(
tr(Ξ̇RXΞ̇H)tr(ΞRXΞ)− Re

[
jtr(Ξ̇RXΞH)

]
Re
[
jtr(Ξ̇RXΞH)

]T) . (57)

max
{Wk,bk}K

k=1,RW̃,λ

K∑
k=1

log (1 + r)−λ

(
1

ϵ
tr

(
K∑
k=1

Wk +RW̃

)
+P0

)
+

K∑
k=1

log bk−bk

 K∑
i=1,i̸=k

hHk Wihk+h
H
k RW̃hk+σ

2
C


(59a)

s.t. r = hHk

Wk +

K∑
i=1,i̸=k

Wi +RW̃ + σ2
C

hk − 1, (59b)

(30b), (30c), (30d), (30e), (30f). (59c)

L(Wk) =−ϖk,1h
H
k Wkhk +

K∑
i=1,i̸=k

ϖi,1h
H
i Wkhi +ϖk,2h

H
k Wkhk −

K∑
i=1,i̸=k

ϖi,2γkh
H
i Wkhi

− tr(WkΨk) + µ tr(Wk) + ξ, (60)

Slater’s condition holds such that strong duality holds. By in-
troducing the Lagrange multipliers ϖk,1 ≤ 0, ϖk,2 ≤ 0, µ ≤ 0
and Ψk ⪰ 0, we provide the Lagrangian function of Wk as
(60), where ξ represent the terms that do not involve Wk.
Then, the KKT conditions of (59) is given as

L̇(W∗
k) = 0,W∗

kΨk = 0. (61)

Then, we have Ψ∗
k = A∗

k − ϖk,1h
H
k hk and A∗

k =∑K
i=1,i̸=kϖi,1h

H
i hi+ϖk,2h

H
k hk−

∑K
i=1,i̸=kϖi,2γkh

H
i hi+

µIM . Nest, we discuss the rank of A∗
k under the following

cases.
1) Case I: rank(A∗

k) = M . In this case, we have
rank(Ψ∗

k) ≥ M − 1 with the inequality rank(X + Y) ≥
rank(X) − rank(Y) [46]. For rank(Ψ∗

k) = M , the first
condition in (61) implies W∗

k = 0. For rank(Ψ∗
k) = M − 1,

we have rank(W∗
k) = 1.

2) Case II: rank(A∗
k) = ra < M . In this case, we

exploit [47, Theorem 2] to construct a rank-1 solution W∗
k. We

give
{
q∗
k,i

}M−ra

i=1
to denote the columns of orthonormal basis

of Ω∗
k, which represents the nullspace of A∗

k. As Ψ∗
k ⪰ 0,

we have (q∗
k,i)

HΨ∗
kq

∗
k,i = −ϖk,1|hHk q∗

k,i|2 ≥ 0. Since (59b)
should be active at optimum indicating ϖk,1 ≥ 0, we have
hHk q∗

k,i = 0 and Ψ∗
kΩ

∗
k = 0. Thus, the M − ra dimensions

of Ψ∗
k’s null space can be represented by Ω∗

k. We further
denote Ω̃∗

k as the null-space of Ψ∗
k, we have rank(Ω̃∗

k) ≥
M − ra. Additionally, since rank(A∗

k) = ra, we have
rank(Ψ∗

k) ≥ ra−1, which shows that rank(Ω̃∗
k) ≤M−ra+1.

Then, it can be readily noted that rank(Ω̃∗
k) = M − ra

or rank(Ω̃∗
k) = M − ra + 1. When rank(Ω̃∗

k) = M − ra
, we have W∗

k =
∑M−ra
i=1 λ∗k,iq

∗
k,i(q

∗
k,i)

H with λ∗k,i ≥ 0.
In such a case, hHk W∗

khk = 0, which contradicts the opti-
mality. Hence, we conclude that rank(Ω̃∗

k) = M − ra + 1.
Denoting Ω̃∗

k as [Ω∗
k,p

∗
k], the optimal solution W∗

k can be
given as W∗

k =
∑M−ra
i=1 λ∗k,iq

∗
k,i(q

∗
k,i)

H + λ̃∗kp
∗
k(p

∗
k)
H with

λ̃∗k ≥ 0. Therefore, a rank-1 solution can be constructed as
Ŵ∗

k = W∗
k−
∑M−ra
i=1 λ∗k,iq

∗
k,i(q

∗
k,i)

H = λ̃∗kp
∗
k(p

∗
k)
H , R̂∗

W̃
=

R∗
W̃

+
∑M−ra
i=1 λ∗k,iq

∗
k,i(q

∗
k,i)

H .
In the following, we show that the reconstructed solu-

tion, Ŵ∗
k and R̂∗

W̃
satisfy the constraints. Firstly, we have

hHk W∗
khk = hHk Ŵ∗

khk,h
H
k

(∑K
i=1,i̸=kW

∗
i +R∗

W̃

)
hk =

hHk

(∑K
i=1,i̸=k Ŵ

∗
i + R̂∗

W̃

)
hk. Therefore, the right-hand

side term in (59b) and the left-hand side term in (27d) remain
unchanged. Besides, it can be readily verified that constraints
(27b) and (27c) hold, since W∗

k +R∗
W̃

= Ŵ∗
k + R̂∗

W̃
, which

completes the proof.
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