
Citation: Wang, Z.; Li, X.; Sun, L.;

Zhang, H.; Liu, H.; Wang, J. Learning

State-Specific Action Masks for

Reinforcement Learning. Algorithms

2024, 17, 60. https://doi.org/

10.3390/a17020060

Academic Editor: Mircea-Bogdan

Radac

Received: 18 December 2023

Revised: 17 January 2024

Accepted: 23 January 2024

Published: 30 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Learning State-Specific Action Masks for Reinforcement Learning
Ziyi Wang 1,2, Xinran Li 1,2, Luoyang Sun 1,2, Haifeng Zhang 1,2,3,∗, Hualin Liu 4 and Jun Wang 5

1 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; wangziyi2021@ia.ac.cn (Z.W.);
lixinran2022@ia.ac.cn (X.L.); sunluoyang2022@ia.ac.cn (L.S.)

2 School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 101408, China
3 Nanjing Artificial Intelligence Research of IA, Jiangning District, Nanjing 211135, China
4 Key Laboratory of Oil & Gas Business Chain Optimization, Petrochina Planning and Engineering Institute,

CNPC, Beijing 100083, China; liuhualin08@petrochina.com.cn
5 Computer Science, University College London, London WC1E 6BT, UK; jun.wang@cs.ucl.ac.uk
* Correspondence: haifeng.zhang@ia.ac.cn

Abstract: Efficient yet sufficient exploration remains a critical challenge in reinforcement learning
(RL), especially for Markov Decision Processes (MDPs) with vast action spaces. Previous approaches
have commonly involved projecting the original action space into a latent space or employing envi-
ronmental action masks to reduce the action possibilities. Nevertheless, these methods often lack
interpretability or rely on expert knowledge. In this study, we introduce a novel method for auto-
matically reducing the action space in environments with discrete action spaces while preserving
interpretability. The proposed approach learns state-specific masks with a dual purpose: (1) eliminat-
ing actions with minimal influence on the MDP and (2) aggregating actions with identical behavioral
consequences within the MDP. Specifically, we introduce a novel concept called Bisimulation Metrics
on Actions by States (BMAS) to quantify the behavioral consequences of actions within the MDP
and design a dedicated mask model to ensure their binary nature. Crucially, we present a practical
learning procedure for training the mask model, leveraging transition data collected by any RL
policy. Our method is designed to be plug-and-play and adaptable to all RL policies, and to validate
its effectiveness, an integration into two prominent RL algorithms, DQN and PPO, is performed.
Experimental results obtained from Maze, Atari, and µRTS2 reveal a substantial acceleration in the RL
learning process and noteworthy performance improvements facilitated by the introduced approach.

Keywords: reinforcement learning; exploration efficiency; space reduction

1. Introduction

Reinforcement Learning (RL) is a powerful method for solving long-term decision-
making tasks, often performing well in virtual environments such as video games [1,2].
However, applying RL training for strategies in the real world has proven challenging.
On tasks such as scheduling [3], power system decision and control problems [4], and
recommendation [5], training an RL policy is inefficient and can take days, if not weeks.
One of the main reasons is that most real-world problems involve many possible actions,
and RL’s performance is highly dependent on how efficiently it explores these possibilities.
For instance, in the crude oil chain scheduling problem, there are over 2500 actions daily,
making RL policy implementation difficult [6]. Hence, action space reduction is crucial for
RL on tasks with extensive choices.

Traditionally, space representation has been a commonly employed technique to
reduce dimensionality. While numerous approaches have been developed to handle high-
dimensional state spaces through state representation [7–10], a distinct line of research has
concentrated on action space reduction. Typically, these methodologies involve training
a policy within a lower-dimensional latent action space and subsequently projecting the
actions back into the original action space [11–14]. However, utilizing a latent action space in

Algorithms 2024, 17, 60. https://doi.org/10.3390/a17020060 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17020060
https://doi.org/10.3390/a17020060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a17020060
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17020060?type=check_update&version=1

Algorithms 2024, 17, 60 2 of 15

RL presents two notable challenges. First, the latent space often lacks interpretability. Many
traditional control methodologies, such as PID control [15] and Model Predictive Control
based on Linear Programming [16], rely on explicit action values, rendering the use of a
latent action space ineffective in directly providing meaningful instructions. Furthermore,
maintaining transparency in the output of a policy is important for ensuring safety and
accuracy. Second, action representations become closely entwined with the policy itself,
resulting in an inseparable connection between the action representation and the policy
learning process, hindering the independent use of the action representation network.

On the contrary, we observe that action masking, also known as removing actions,
has demonstrated its efficacy in RL training, as indicated by previous studies [17,18]. To
illustrate, in games such as Minecraft [19], actions such as “sneak” are often deemed
non-critical for gameplay and are, thus, excluded. By intuitively constraining the action
space, action masks enhance exploration efficiency and expedite the RL learning process
by reducing the time the agent wastes exploring those unnecessary actions. They not only
provide a robust means of interpretability but also offer potential standalone utility, such
as assistance in crafting rule-based strategies and integration with state representation
algorithms. Nevertheless, prior works have predominantly relied on expert knowledge
and environmental engineering to design these masks. Consequently, there is a pressing
need for automatic learning algorithms that can generate action masks.

Inspired by this, we aim to develop a method to learn state-specific action masks
automatically. The masks are expected to endow two properties: (1) they filter out useless
actions that do not affect the MDP and (2) actions with identical behavioral consequences
in the MDP are filtered to one action by them. To ensure low computational complexity in
generating action masks while maintaining their robustness, we propose an action mask
model tailored for RL tasks. Prior work on mask learning has been predominantly within
the realm of computer vision [20,21], often employing Multi-Layer Perceptron (MLP) layers
with clipping to the [0, 1] range or Sigmoid activations. However, in the context of RL,
the action mask must be strictly binary along each dimension; otherwise, the agent still
should explore all actions with positive probabilities in the distribution. To address this,
we introduce a categorical mask model and employ supervised learning to update the
probabilities of 0 and 1.

In addition, we propose a novel metric known as Bisimulation Metrics on Actions by
States (BMAS), which leverages the concept of bisimulation [22] to gauge the behavioral
dissimilarity between actions. Our principal contribution lies in the practical learning
procedure for updating the mask model, comprising two alternative stages. In the initial
stage, we acquire transition and reward models to forecast the consequences of all actions.
Subsequently, we refine the mask model with supervised learning while the mask labels
are generated through aggregating states and rewards. We also introduce an auxiliary
feature vector for simultaneous aggregation, ensuring that the labels inherit both properties.
When training the mask model, transition data can be collected by any policy, indicating
that the mask model is separated from the learning procedure of an RL policy. Therefore,
our framework can be seamlessly integrated into various RL algorithms. For illustration,
we apply it to two representative algorithms, namely Deep Q-Network (DQN) and Proxi-
mal Policy Optimization (PPO). We conduct extensive experiments in environments with
discrete action spaces, including Maze, Atari, and µRTS2.

To the best of our knowledge, this work represents the pioneering effort in the auto-
matic learning of action masks for RL, and the key contributions are summarized as:

• Bisimulation Metrics on Actions by States (BMAS): The paper introduces a novel
metric, BMAS, based on the concept of bisimulation, which quantifies the behavioral
differences between actions by states.

• Automatic Action Masking: The paper introduces a method for automated acquisition
of state-specific action masks in RL for environments with discrete action spaces, allevi-
ating the need for expert knowledge or manual design. This contributes to making RL

Algorithms 2024, 17, 60 3 of 15

more applicable in real-world scenarios by accelerating exploration efficiency while
preserving strong interpretability.

• Experimental Validation: The paper demonstrates the effectiveness of the proposed
approach through comprehensive experiments conducted in environments with dis-
crete spaces, including Maze, Atari, and µRTS2. The results showcase compelling
performance, complemented by visualizations that underscore the interpretability of
the proposed method.

2. Related Work

In this section, we provide an overview of relevant research that forms the foundation
for our work. Specifically, we discuss three key areas in the literature related to action space
manipulation in RL.

2.1. Action Space Factorization

A common strategy to enhance the efficiency of RL involves managing the action space
by decomposing it into subspaces and solving the problem using multi-agents. Inspired by
Factored Action space Representations (FAR), proposed by Sahil et al. [23], existing action
space decomposition methods can be theoretically analyzed in two forms. One approach is
to select subactions simultaneously and independently, while the other involves selecting
them in order [24,25]. In either case, automatically decomposing the origin action space
into smaller components is important and challenging. Wang et al. [26] investigated the de-
composition of action spaces by clustering them based on their effects on the environment
and other agents. Another approach, proposed by Wang et al. [27], automatically identifies
roles in an RL problem. It encodes roles through stochastic variables and then associates
them with responsibilities using regularizers. Zeng et al. [28] proposed to discover roles
by clustering the embedded action space, using three phases called structuralization, spar-
sification, and optimization. Furthermore, Mahajan et al. [29,30] introduced a tensorized
formulation for accurate representations of the action-value function, addressing the chal-
lenge of exponential growth in the action space in multi-agent RL scenarios. While each RL
policy in the multi-agent system trains more rapidly with a diminished action space, it is
important to note that there is no actual reduction in the size of the problem’s action space.

2.2. Action Space Reduction

Diverse strategies have emerged in the quest to streamline action spaces, involv-
ing shifts between discrete and continuous representations. Dulac-Arnold et al. [31]
seamlessly integrated extensive discrete choices into a continuous space by leveraging
prior information. They discern approximate discrete decisions from prototype actions
within the continuous action space, employing the k-Nearest Neighbors algorithm (k-NN).
Tang et al. [32] affirmed the effectiveness of discretization in enhancing the performance
of on-policy RL algorithms for continuous control. They showed that organizing dis-
cretized actions into a distribution improves overall performance. In contrast to these
approaches, our work distinctively focuses on directly reducing the dimensions of dis-
crete action spaces. An alternative avenue explores representation learning to construct a
more compact latent action space. Chandak et al. [11] proposed decomposing the action
space into a low-dimensional latent space, transforming representations into actionable
outcomes. This involves training the action encoder model, action decoder model, and
policy model alternately, estimating actions at given states st and st+1. Zhou et al. [13]
and Allshire et al. [12] employed variational encoder–decoder models to project original
actions into a disentangled latent action space in manipulation environments, enhancing
exploration efficiency. While these methods, as the mainstream in action space reduction,
exhibit good performance, they sacrifice interpretability by projecting actions into a latent
space. Some works employ hierarchical learning to select a role at the upper level and
decide subspace actions belonging to the role at the lower level. OpenAI Five [24], for in-
stance, sequentially chooses primary actions and parameter actions, where the parameters

Algorithms 2024, 17, 60 4 of 15

include unit selection from 189 visible units in the observation. Although these methods to
some extent reduce the action space by dimensional selection, they rely on predefined roles
based on expert knowledge, whereas our approach learns these roles automatically. An
approach akin to our objectives is presented by Wang et al. [33], who eliminated redundant
actions directly and automatically by selecting key particles in the action space using a
Quadratic Programming Optimization. However, their method is task-specific, tailored
solely for deformable object manipulation tasks in 1D and 2D spaces. Our work stands out
in its emphasis on dimensionality reduction within discrete action spaces in all tasks while
preserving interpretability.

2.3. Action Mask

The utilization of action masks has emerged as a potent strategy for refining action
spaces and expediting RL processes. A comprehensive investigation by Kanervisto et al. [18]
explored diverse modifications to the action space in RL within video game environments.
These modifications included actions such as removal, discretization of continuous actions,
and conversion of multi-discrete actions to discrete representations. Their experiments, par-
ticularly in the context of the CollectMineralsAndGas mini-game in µRTS2, demonstrated
the significant performance enhancement achieved through action masking. In a related
vein, Huang et al. [17] systematically analyzed the impact of action masks in a real-time
strategy (RTS) game. Their study illuminated the crucial role of action masks, especially
as the number of invalid actions increased. The authors not only examined the working
principle of action masking through a state-dependent differentiable function, but also
highlighted its scalability with the expansion of the action space compared to adding a
reward penalty of exploring invalid actions, substantiated by experiments. It is noteworthy
that, in all action mask implementations, the masks are typically crafted based on expert
knowledge, often provided by the environment.

3. Background
3.1. MDP Problem

We consider a Markov Decision Process (MDP) with finite discrete action space,
represented by the tuple M = (S ,A, p, r, p0, γ, T). Here, S is the state space, A is the
action space, p: S ×A× S 7→ R denotes the transition probability, r: S ×A 7→ R denotes
the reward function, p0: S 7→ R denotes the probability distribution of the initial state s0,
γ ∈ [0, 1) is the discounted factor, and T is the episode horizon. In our work, the action
space is restricted to be finite and discrete, so we define the action space size as |A|. At each
timestep t, the agent chooses an action at according to its policy π(·|st), which updates the
environment state st+1 ∼ p(·|st, at) and yields a reward rt ∼ r(·|st, at). The objective of
the agent is to maximize its expected accumulated discounted reward, as expressed by the
following Equation (1):

J(θ) = E[
T

∑
t=1

γtr(st, at)] (1)

3.2. Bisimulation

Bisimulation describes the behavioral equivalency of the state space. If si and sj cause
the same probability of the accumulated reward for any actions, then si and sj are bisimilar
states. A recursive version of this concept is that bisimilar states get the same reward at
this timestep and the same transition distribution to the next bisimilar states.

Definition 1 (Bisimulation Relations [34]). The equivalence relation B on the state space of
taskM is a bisimulation relation if, for si ∈ S and sj ∈ S and si = sj under B, the following
conditions hold:

r(si, a) = r(sj, a) a ∈ A
p(SB|si, a) = p(SB|sj, a) a ∈ A, SB ∈ SB

(2)

Algorithms 2024, 17, 60 5 of 15

where SB is a group of bisimilar states, SB is the partition of states under B, and p(SB|s, a) =

∑s′∈SB
p(s′|s, a).

4. Approach

In this paper, our objective is to autonomously acquire a comprehensive and practical
action mask for an RL task characterized by a discrete action space. We define an action
mask, represented by I ∈ I , as a binary vector of the same size as A. The quantity of ones
in the mask I is specified as |I|, and maskϕ(It|st) denotes a mask model parameterized by
ϕ, where It ∼ maskϕ(It|st). Given that the action space A is discrete, each dimension’s
meaning in the action space is fixed, and we designate the action with index i in the action
space as ai. Similarly, the individual mask with index i in mask I is denoted as Ii. We
employ πθ(at|st) to represent the original policy and π̃θ,ϕ(ãt|st) to represent the composite
policy with masks. Here, ãt ∈ Ãt, where Ãt signifies the masked action space at timestep t.
Typically, the action mask model operates on a per-state basis. If a mask is identified as
global based on expert knowledge, a straightforward modification to the mask model as Iϕ

is adequate (as illustrated in an experimental example in Section 5.2.1).
The objective of the action mask is to reduce the action space, thereby preventing the

agent from exploring unnecessary actions. We aim to learn action masks with two key
properties: (1) filtering out invalid actions that do not influence the task and (2) filtering
out actions that are redundant to the task, meaning other actions can replace them. This
problem poses several challenges, including how to define a proper metric to measure the
’validity’ of actions, how to construct the mask model to output a binary vector, and how to
design a practical algorithm to learn the mask model. We introduce our work by answering
these three fundamental questions.

4.1. Bisimulation Metric on Actions

Bisimulation, as defined by Givan [34], is a widely used concept applied to the state
space, signifying behavioral equivalence among states. To establish a reasonable metric for
the action mask, we introduce a concept akin to bisimulation, aiming to indicate behavioral
equivalence among actions.

Definition 2 (Bisimulation Relations on Actions (BRA)). In taskM with discrete action space
A, for ai ∈ A and aj ∈ A, define ai and aj is equivalent under Bisimulation Relation B if:

r(s, ai) = r(s, aj) ∀s ∈ S (3)

p(s′|s, ai) = p(s′|s, aj) ∀s ∈ S (4)

and we define AB as a partition of action space A that ai = aj under bisimulation relation B are
separated in the same set, and AB ∈ AB is an action group.

In taskM, it is obvious that if ai and aj belong to the same bisimilar action set AB,
then ai and aj have the same behavioral consequences. In other words, removing aj does
not affect the MDP.

While a global definition of behavioral equivalence on actions is reasonable, in most
tasks, each action group AB typically contains only one element, implying that not all
actions can be removed. For example, in a Maze task with four actions stands for four di-
rections, no two actions yield the same behavioral consequences across all states. However,
when the agent moves to a corner, there may be more than one action that leads to staying
in the same place and receiving no reward, which causes identical behavioral consequences.
Therefore, we adopt a variant of BRA that defines the equivalence relation of actions based
on states.

Algorithms 2024, 17, 60 6 of 15

Definition 3 (Bisimulation Relations on Actions by States (BRAS)). In taskM with discrete
action space A, given state s, for ai ∈ A and aj ∈ A, define ai and aj is equivalent under
Bisimulation Relation B if:

r(s, ai) = r(s, aj)

p(s′|s, ai) = p(s′|s, aj)
(5)

and we define ABs as the partition of action space A that ai = aj under bisimulation relation Bs are
separated in the same set, and ABs ∈ ABs is an action group.

We now present our proposition, asserting that equivalent actions under BRAS yield
the same behavioral consequence in the MDP, signifying that actions within the set are
interchangeable.

Proposition 1. In taskM with discrete action space A, given state s, if ai, aj ∈ ABs , then the
optimal policy of taskM = (S ,A, p, r, p0, γ, T) and taskM′ = (S ,A′, p, r, p0, γ, T) are same,
where:

A′ = A\(aj|s) (6)

The proof of Proposition 1 can be found in Appendix A.
Filtering actions strictly according to BRAS is impractical, since BRAS is sensitive

to the next state and the reward. Therefore, we propose to measure the distance among
actions to soften the BRAS constraints based on the smooth transition assumption that in
taskM, if si ≈ sj, then ∀a ∈ A, p(·|si, a) ≈ p(·|sj, a).

Definition 4 (Bisimulation Distance on Actions by States). Given discrete action ai and aj and
taskM, define bisimulation distance d(ai, aj) as the "behavioral distance" between ai and aj in
taskM:

d(ai, aj|s) = |r(s, ai)− r(s, aj)|+ |p(·|s, ai)− p(·|s, aj)| (7)

When d(ai, aj|s) = 0, it is evident that ai and aj belong to the same bisimulation
group ABs . Additionally, when d(ai, aj|s) is close to 0, it indicates that ai and aj result in
approximately the same behavioral consequence on state s. Therefore, we define ÂBs as
the approximate action group, and ai, aj ∈ ÂBs if d(ai, aj) < ϵ, where ϵ is a small value and
ÂBs represents the action partition under d.

4.2. A Perfect Mask Model

The main contribution of this work is to learn a mask model maskϕ(It|st) with two
objectives.

Firstly, the action masks It ∼ maskϕ(It|st) should filter out all invalid actions that do
not influence state s, e.g., the “up” action when an agent in Maze goes to the top-right
corner. Formally, given state s, an invalid action ai is the action that leads to p(s|s, ai) = 1.
Therefore, the perfect mask It ∼ maskϕ(It|st) should satisfy:

Ii
t = 0 i f p(st|st, ai) = 1 (8)

where ϵ is a small value.
Secondly, the action masks should aggregate actions with the same behavioral conse-

quences and only reserve actions distinct from each other. We use soft BRAS to illustrate
this relation. Formally, given state s, the mask model maskϕ(It|st) should satisfy:

∑
i∈I

maskϕ(Ii
t |st) = 1∧∏

i∈I
maskϕ(Ii

t |st) = 0,

I = index(ABs), ∀ABs ∈ ÂBs

(9)

where index(·) is the index of all actions in the action space.

Algorithms 2024, 17, 60 7 of 15

Different from the mask model commonly used in many computer vision (CV)
works [20,21], the mask I on action space for RL serves a more intricate role than a simple
attention layer. In prior research, Huang et al. [17] delved into the impact of action masks
on the learning process through extensive experiments on µRTS2. Their findings revealed
that even if an RL agent samples actions within a masked action space but updates the
policy using the original gradients, it still experiences accelerated exploration. This sug-
gests that the primary role of an action mask is to prevent the agent from sampling invalid
actions, necessitating a binary mask.

Therefore, to ensure the mask model outputs a binary vector, we design the mask
model as a categorical model, as illustrated in Figure 1.

The mask model outputs real numbers of 2|A| dimensions indicating logits of the
masks and It is sampled from them. This design allows the model to achieve an exact
binary mask and a differentiable output simultaneously.

Figure 1. The categorical mask model. The squares represent vector values, and in grayscale,
colors represent numerical values, where white corresponds to 0, and black corresponds to 1. The
encoder layer produces 2× |A| probabilities, forming the logits of |A| groups, each containing 2
mask categories. For each dimension i, the mask Ii is sampled from categorical i.

4.3. Learning the Action Mask Supervised

We train the action mask with supervised learning, and the labels are generated
through the DBSCAN clustering algorithm [35], as outlined in Algorithm 1. The objective
of the mask model is to minimize the Hamming Distance between It and label Lt, and the
loss function of the mask model is:

L(ϕ) = log maskϕ(It|st)dHamming(maskϕ(It|st), Lt) (10)

To achieve (9), a natural method is to aggregate all vectors [st+1, rt], grouping actions
with small d(ai, aj) as defined in (7) into ÂBs . Additionally, we construct [st, 0] as an extra
vector lead by the invalid action a|A|+1 and aggregate it with other [st+1, rt] vectors. Then,
those actions that lead to [st+1, rt] in the same group with [st, 0] are also invalid actions
whose masks should be set to 0.

Algorithms 2024, 17, 60 8 of 15

Algorithm 1 Training an action mask model

Input: batch data B, clustering parameter ϵ and minPts = 1
for st ∈ B do

for ai ∈ A do
Get the next states: si

t+1 ∼ p̂(st, ai)

Get the reward: ri
t ∼ r̂(st, ai)

end for
Build the behavioral vectors: Vt = [[si

t+1, ri
t+1]i=0,...,|A|]

Add the extra feature: Vt = Vt
⋃
[st, 0]

Aggregate Vt using DBSCAN with parameter ϵ and minPts: Ct = [c0
t , . . . , c|A|+1

t]
Build mask label Lt to achieve (8) and (9)
Update the mask model with Hamming Distance error: L(ϕ) Equation (10)

end for

At each step, we update the mask model on a sampled batch of states. For each state
st in the batch, we estimate si

t+1 and ri
t for each action ai ∈ A and concatenate them as the

behavioral vectors v0, . . . , v|A| of action ai. Then, we construct v|A|+1 = [st, 0] as an extra
vector indicating the unchanged situation, and aggregate [v0, . . . , v|A|, v|A|+1] as clusters C,
where ci is the cluster index number for feature vi. In each cluster, we appoint the action
with the lowest index as a kernel whose mask label is 1 and others as alternatives whose
mask labels are 0. In particular, all actions cause [si

t+1, ri
t] clustered with the extra vector

[st, 0] are seen as invalid actions, and thus, the action masks of them are all 0.
The mask model training is plugged into the vanilla RL training procedure to get

a training loop, shown in Algorithm 2. The RL policy πθ(at|st), the transition model
p̂(st+1|st, at), the reward model r̂(rt+1|st, at) and the mask model maskϕ(It|st) are trained
in turn. The blue lines are individualized for the RL algorithms and we combine our
method with two popular RL algorithms, DQN and PPO, as examples (see implementation
details in Appendix B). When employing the untrained mask model, we eliminate lines 6
and 7 from the Algorithm 2.

Algorithm 2 RL with action mask

1: for t = 0 to T do
2: Get masked action ãt ∼ π̃θ,ϕ(ãt|st)
3: Record data: D ← D⋃(st, at, st+1, rt+1, It)
4: Sample data: B ∼ D
5: Update policy: EB[J(θ)]
6: Update transition model and reward model:

EB[p̂(st, at)− st+1]
EB[r̂(st, at)− rt+1]

7: Update mask model: EB[J(ϕ)] Algorithm 1
8: end for

5. Experiments

Our main objective is to present an algorithm capable of acquiring action masks to filter
out unnecessary actions, thereby expediting the RL process. To validate its effectiveness,
we integrated our proposed action mask model learning approach into two vanilla RL
algorithms, DQN and PPO. We conducted experiments in three environments with discrete
action spaces where unnecessary actions may exist.

5.1. Implementation Details

We implemented our algorithms using PyTorch 2.1 and executed them on CUDA
12. The baseline algorithms, classical RL algorithms generated within each environment
codebase, were refined into our algorithms by incorporating a three-layer mask model,
a three-layer transition model, and a three-layer reward model. We set the clustering

Algorithms 2024, 17, 60 9 of 15

parameter ϵ for the DBSCAN algorithm as 0.1, a well-established hyper-parameter for the
standard neural networks. In cases where the environment possesses prior-known dense or
sparse invalid actions in states, we recommend experimenting with adjusting ϵ within the
range of 0.02 to 0.2 to find the optimal solution. The code for our experiments will be made
publicly available at https://github.com/Elvirawzy/auto_mask/tree/master accessed on
14 January 2024.

5.2. Domains
5.2.1. Maze

A continuous maze environment is situated within a square space with a width
of 1 unit, as depicted in Figure 2a. Both the dot agent and the small square target are
consistently spawned at fixed positions, while the blocks are randomly generated within
the environment. The state space is defined across eight dimensions, encompassing the
coordinates of the dot agent and contextual information represented by a maximum of
six radar readings. The agent is equipped with n equally spaced directional actuators
emanating from its position, allowing the toggling of each actuator on or off. All actuators
share an identical vector length and the agent’s heading is determined by the direction
of the vector sum of all open actuators, resulting in a discrete action space of 2n, despite
redundancies within this space. The agent receives a reward of +1 when it reaches the
target square, incurs a penalty of −0.1 for collisions with blocks, and experiences a cost of
−0.05 for each movement step. We tested our method in Maze environments with n = 10
and n = 12, respectively.

(a) Maze (n = 8) (b) Breakout (c) Asterix (d) µRTS2

Figure 2. (a) The agent (red dot) is equipped with eight actuators (thin black lines) of equal length for
control. The combination of the up and upright actuators (thick black lines) determines the agent’s
actual direction (red line). (b) The player maneuvers a paddle at the bottom of the screen, aiming
to rebound a ball (pink) to break the bricks (light blue) positioned along the top. The player can
observe a trail of the ball (green) and breaking a brick yields a reward of +1. A minimal action space
includes staying still, moving left, and moving right. (c) The player controls a cube (dark blue) to
move up, down, left, and right, with enemies (brown and green) and treasures (white and pink)
randomly appearing from each side. The player observes trails (dark green) as well, receives a +1
reward for picking up a treasure, and the turn ends upon colliding with an enemy. (d) The player
selects one of the units (in our settings, the bases or the workers) to control at each step. The bases
(white squares) can produce workers (dark grey rounds) that harvest resources (green squares), and
the bases produce workers using resources returned by the workers. The barracks (shown as dark
grey squares) produce military units (blue rounds). We employ a 4× 4 map, and the workers receive
a +1 reward when harvesting resources or returning resources to their base.

5.2.2. MinAtar

MinAtar implements scaled-down renditions of various Atari 2600 games, employing
feature maps with 4 to 10 channels to represent states. The full action space across all Mi-
nAtar games encompasses 18 dimensions, including movement and shooting components.
However, individual games typically feature minimal action spaces with fewer dimensions.
In our study, we focused on two games: Breakout (minimal action space of 3) and Asterix
(minimal action space of 5). For further details, please refer to Figure 2b,c.

https://github.com/Elvirawzy/auto_mask/tree/master

Algorithms 2024, 17, 60 10 of 15

5.2.3. µRTS2

µRTS2 constitutes a minimalistic real-time strategy (RTS) game, as illustrated in Figure 2d.
Given a map of dimensions h× w, the observation is represented as a tensor with dimen-
sions (h, w, n f), where n f = 27 denotes a set of features with binary values. The action
space is an eight-dimensional vector of discrete values, forming a flattened action space of
2hw + 29 dimensions. The first dimension designates the unit selected to perform an action,
and the last dimension designates the unit selected for an attack. The second dimension
encompasses action types, including move, harvest, return, produce, and attack, with their
respective parameters constituting the remaining dimensions of the action space. In our
configuration, following [17], only the base unit and the workers are considered worth
selecting, leading to large invalid action spaces in the first and last dimensions.

5.3. Results
5.3.1. Main Results

Within each environment, we initially trained an action mask model using the pro-
posed Algorithm 2 and preserved the acquired mask model. Subsequently, we re-trained
the RL policy using the loaded action mask model without further updates. Performance
comparisons between the RL policy with and without the integrated mask model are
presented, showcasing improvements in Figure 3. To ensure robustness, defined as the
stability and consistency of the obtained results, different random seeds were employed for
initialization across all training sessions. In each setting, we conducted a total of five trials.

In the Maze environment, we integrated the mask model into the vanilla DQN al-
gorithm. As depicted in Figure 3a,b, the vanilla DQN algorithm exhibits suboptimal
performance as the action space expands from 210 to 212, despite identical map size, obser-
vation, and goal configurations. However, the learned action mask model discerns that the
necessary actions in these environments do not grow exponentially, effectively filtering out
actions with identical behavioral consequences as their counterparts. Consequently, while
the vanilla DQN algorithm experiences a nearly 40 reduction in total rewards, DQN with
the trained mask model achieves significantly higher rewards in less time with lower devi-
ations, experiencing only a loss of two units of final rewards. This outcome substantiates
the effectiveness of our learned action mask model.

In MinAtar games, specifically Breakout and Asterix in our experimental setup, mini-
mal action spaces within the full 18-dimensional action space can be identified as superior
baselines. Notably, these minimal action spaces remain consistent across states in MinAtar
games. In this unique scenario, we made a simple modification to our mask model by
directly learning the probabilities of 0 for 1 in each action dimension (output of the last
layer of the original mask model). Additionally, we utilized the vanilla DQN algorithm
as a baseline in MinAtar settings. Analysis of Figure 3c,d reveals that DQN with our
learned mask model achieves performance comparable to the superior baselines, signifying
the effectiveness of our algorithm in obtaining near-optimal action masks. Our method
eventually obtains an additional 0.55 rewards in Breakout (85% better) and 0.7 rewards in
Asterix (35% better) than the vanilla DQN algorithm.

Within the µRTS2 environment, we employ the vanilla PPO algorithm as a baseline
and incorporate our mask model into it. Optimal action masks in µRTS2, provided by
environmental engineering, serve as the superior baseline. As depicted in Figure 3e, the
vanilla PPO algorithm encounters challenges in achieving satisfactory performance within
this intricate environment characterized by extensive state and action spaces. Conversely,
our learned mask model effectively accelerates the RL training process, enhancing both
reward and deviation performance. Numerically, while the superior baseline can obtain
the utmost returns at 40 and the vanilla PPO algorithm achieves 30 with ±8 deviations,
our method achieves 35 returns with ±3 deviations. Nevertheless, a performance gap
persists when compared to the optimal action masks, indicating opportunities for further
refinement in the mask model quality.

Algorithms 2024, 17, 60 11 of 15

(a) Maze (n = 10) (b) Maze (n = 12)

(c) Breakout (d) Asterix (e) µRTS2

Figure 3. (a,b): Results on Maze with action space of 210 and 212, respectively. (c,d): Results on
Breakout and Asterix in the MinAtar environment where the baseline RL algorithm is DQN. (e): Result
on µRTS2 with 4× 4 map, where the baseline RL algorithm is PPO. The red lines represent the reward
curves of RL algorithms integrated with our learned mask models, that is π̃θ,ϕ(ãt|st). The blue lines
correspond to the superior baselines with optimal action spaces, while the green lines illustrate the
reward curves of vanilla baseline RL algorithms, that is πθ(at|st). Shaded regions indicate standard
deviations obtained from five trials.

We also assess the Time to Threshold metric and present the results in Table 1. The
Time to Threshold metric denotes the duration it takes for the baseline to complete training
minus the time our method requires to achieve the same performance as the baseline’s
final performance. This metric is commonly used to evaluate the improvement in training
efficiency. In the Maze and Breakout environments, our method only utilizes around 1/5th
to 1/3rd of the time to achieve equivalent performance to the baseline algorithm. In the
Asterix and µRTS2 environments, it takes approximately 2/3rd to 3/4th of the time to
reach the same performance. This outcome indicates that, with the same tools and device,
our method attains comparable performance with reduced computational time, effectively
accelerating the learning procedure.

Table 1. The Time to Threshold performance comparison between vanilla RL algorithms and our
proposed method. Refer to the main text for detailed descriptions.

Env Baseline Training Time Time to Threshold

Maze (n = 10) 10.3 m ± 183 s 7.8 m ± 192 s
Maze (n = 12) 24.4 m ± 237 s 17.8 m ± 239 s

Breakout 27 m ± 130 s 22.5 m ± 121 s
Asterix 45.3 m ± 162 s 14.3 m ± 153 s
µRTS2 10.8 m ± 80 s 3.1 m ± 82 s

5.3.2. Visualization

To visually illustrate the effectiveness of our approach in reducing the action space
size while maintaining interpretability, we generated visualizations of the masked action
spaces. In the Maze environment with n = 10, resulting in a total of 1024 actions at state
s0, as shown in Figure 4a,b, the learned mask model adeptly filters out numerous invalid

Algorithms 2024, 17, 60 12 of 15

actions while retaining almost all useful actions. A statistical count reveals that the mask
model excludes approximately 2/3rd of invalid actions at s0.

In Figure 4c,d, where actual invalid actions are known through expert knowledge in
MinAtar and µRTS2, we evaluate the percentage of encountered invalid action numbers by
the agent with and without the learned mask model while training. This analysis provides
insights into the learning process of our mask model. In Breakout, our method achieves the
optimal global action mask, ensuring that the agent avoids exploring any invalid action
space by the end of the process. In Asterix, our method attains a near-optimal global action
mask. In µRTS2, our model learns to mask out approximately 45% of invalid actions by the
end of the training process. Across both MinAtar and µRTS2 environments, the proposed
algorithm, when learning with the mask model, significantly enhances the efficiency and
smoothness of reducing exploration in the invalid action space.

(a) Original action space in Maze (b) Masked action space in Maze

(c) Invalid action num ratio in MinAtar (d) Invalid action num ratio in µRTS2

Figure 4. (a,b): Visualization of the action space in the Maze environment at s0, where |A| = 1024 and
|Ã| = 53. Each blue actuator with transparency represents an action in the action space, and the color
of the actuators darkens due to overlapping. (c): Changes in the ratio of invalid actions encountered
by the agent in one episode during MinAtar training. The dark blue line and the dark red line are
obtained by Algorithm 2 integrated with DQN, while the light blue line and the light red line are
obtained by the vanilla DQN algorithm. (d): Changes in the ratio of invalid actions encountered by
the agent in one episode during µRTS2 training. The dark blue line and the light blue line represent
Algorithm 2 integrated with PPO and the vanilla PPO, respectively. Shaded regions indicate standard
deviations obtained from five trials.

6. Conclusions

This study introduces an innovative approach to tackle the exploration challenge in
RL, particularly in environments characterized by extensive discrete action spaces. The
incorporation of Bisimulation Metrics on Actions by States (BMAS) enables the quantifi-
cation of behavioral differences among actions, forming the basis for our Automatical
Action Masking method. We devised a refined action mask model and an effective learning
procedure that seamlessly integrates with diverse RL policies. The experiments conducted
across Maze, Atari, and µRTS2 environments illustrate the significant reduction in action
space achieved by the learned mask model, thereby accelerating the RL learning process
and enhancing overall performance.

Algorithms 2024, 17, 60 13 of 15

Our contributions lay the groundwork for more efficient and interpretable RL al-
gorithms, offering promising prospects for applications in complex real-world scenarios.
Nevertheless, there remain gaps between the learned masks and the optimal masks, present-
ing an opportunity for the design of improved mask models. Additionally, our method is
currently limited in its application to environments with discrete action spaces, as it reduces
discrete spaces by cutting dimensions rather than managing distributions. Future research
endeavors could focus on bridging these gaps and further refining our understanding of
automatic action masking for continued advancements in reinforcement learning.

Author Contributions: Conceptualization, Z.W. and H.Z.; Methodology, Z.W., L.S. and J.W.; Software,
Z.W., X.L. and L.S.; Validation, Z.W. and X.L.; Formal analysis, Z.W. and J.W.; Investigation, Z.W.
and X.L.; Resources, H.Z. and H.L.; Data curation, H.L.; Writing—original draft, Z.W. and X.L.;
Writing—review & editing, L.S., H.Z., H.L. and J.W.; Visualization, Z.W., X.L. and L.S.; Supervision,
H.Z. and J.W.; Project administration, H.Z.; Funding acquisition, H.L. All authors have read and
agreed to the published version of this manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in https://github.
com/Elvirawzy/auto_mask/tree/master accessed on 14 January 2024.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Proposition 1

Proposition A1 (Proven in Appendix A). In taskM with discrete action space A, given state
s, if ai, aj ∈ ABs , then the optimal policy of task M = (S ,A, p, r, p0, γ, T) and task M′ =
(S ,A′, p, r, p0, γ, T) are same, where:

A′ = A\(aj|s) (A1)

Proof. Firstly, if π(·|st) represents the optimal policy on taskM and the probability of
taking ai and aj on state s are π(ai|s) and π(aj|s), respectively, then the policy π

′
(·|st)

where π
′
(ai|s) = π(ai|s) + π(aj|s) and π

′
(aj|s) = 0 is optimal for both taskM and task

M′
. Secondly, if π

′
(·|st) is the optimal policy for taskM′ with the probability of taking ai

on state s as π
′
(ai|s), then π

′
is also an optimal policy for taskM, with the supplementary

definition of π
′
(aj|s) = 0.

Appendix B. Implementation Details of Masked DQN and PPO

Appendix B.1. DQN with Action Mask

With the action mask, the optimal policy obtained by the Q function is:

π∗θ,ϕ(ãt|st) = arg max
at∈Ãt

Qθ(st, at)

= arg max
at∈A

Iϕ,t ·Qθ(st, at)
(A2)

Therefore, the Q-function updating method becomes:

Q(st, ãt)← Q(st, ãt) + α

(
r(st, ãt) + γ max

ãt+1∈Ãt+1

Q(st+1, ãt+1)−Q(st, ãt)

)
(A3)

The updating algorithm is shown in Algorithm A1.
In Algorithm A1, Q̂ denotes the detached Q values.

https://github.com/Elvirawzy/auto_mask/tree/master
https://github.com/Elvirawzy/auto_mask/tree/master

Algorithms 2024, 17, 60 14 of 15

Algorithm A1 Getting actions in DQN with masks

1: Get Q: Qt = Qθ(st, at)
2: Get action masks: Ît ∼ maskϕ(It|st)

3: Get action: at = arg max
at∈A

Ît ·Qt

4: Update Q-network: Equation (A3)

Appendix B.2. PPO with Action Mask

The objective of policy πθ is:

pθ(τ) = p(s0)ΠT
t=1πθ(ãt|st)p(st+1|st, ãt)

J(θ) = Est ,ãt∼pθ(τ)

T

∑
t=1

r(st, ãt)
(A4)

With the action mask, the composite policy is:

πθ,ϕ(ãt|st) = so f tmaxãt∈Ãt
(Iϕ,t · πθ(lt|st))

= so f tmaxat∈A(Iϕ,t · πθ(lt|st))
(A5)

Therefore, the policy updating method becomes:

∇θ log πθ,ϕ(ã|st) = ∇θ log so f tmaxat∈A(Îϕ,t · πθ(lt|st)) (A6)

where Îϕ,t is the detached action mask.
The algorithm is shown in Algorithm A2.

Algorithm A2 Train PPO with action masks

1: Get policy network forward values: πθ(lt|st)
2: Get next mask: It+1 ∼ maskϕ(It+1|st+1)
3: Get action probability: so f tmax(It+1 · πθ(lt|st))
4: Update policy network: J(θ) Equation (A4)

References
1. Ye, D.; Chen, G.; Zhang, W.; Chen, S.; Yuan, B.; Liu, B.; Chen, J.; Liu, Z.; Qiu, F.; Yu, H.; et al. Towards playing full moba games

with deep reinforcement learning. Adv. Neural Inf. Process. Syst. 2020, 33, 621–632.
2. Zhang, Y.; Chen, L.; Liang, X.; Yang, J.; Ding, Y.; Feng, Y. AlphaStar: An integrated application of reinforcement learning

algorithms. In Proceedings of the International Conference on Computer, Artificial Intelligence, and Control Engineering (CAICE
2022), SPIE, Zhuhai, China, 25–27 February 2022; Volume 12288, pp. 271–278.

3. Shyalika, C.; Silva, T.; Karunananda, A. Reinforcement learning in dynamic task scheduling: A review. SN Comput. Sci. 2020,
1, 1–17. [CrossRef]

4. Damjanović, I.; Pavić, I.; Puljiz, M.; Brcic, M. Deep reinforcement learning-based approach for autonomous power flow control
using only topology changes. Energies 2022, 15, 6920. [CrossRef]

5. Afsar, M.M.; Crump, T.; Far, B. Reinforcement learning based recommender systems: A survey. ACM Comput. Surv. 2022, 55, 1–38.
[CrossRef]

6. Ma, N.; Wang, Z.; Ba, Z.; Li, X.; Yang, N.; Yang, X.; Zhang, H. Hierarchical Reinforcement Learning for Crude Oil Supply Chain
Scheduling. Algorithms 2023, 16, 354. [CrossRef]

7. Lesort, T.; Díaz-Rodríguez, N.; Goudou, J.F.; Filliat, D. State representation learning for control: An overview. Neural Netw. 2018,
108, 379–392. [CrossRef] [PubMed]

8. Laskin, M.; Srinivas, A.; Abbeel, P. Curl: Contrastive unsupervised representations for reinforcement learning. In Proceedings of
the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 5639–5650.

9. Zhang, A.; McAllister, R.; Calandra, R.; Gal, Y.; Levine, S. Learning invariant representations for reinforcement learning without
reconstruction. arXiv 2020, arXiv:2006.10742.

10. Zhu, J.; Xia, Y.; Wu, L.; Deng, J.; Zhou, W.; Qin, T.; Liu, T.Y.; Li, H. Masked contrastive representation learning for reinforcement
learning. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 3421–3433. [CrossRef] [PubMed]

http://doi.org/10.1007/s42979-020-00326-5
http://dx.doi.org/10.3390/en15196920
http://dx.doi.org/10.1145/3543846
http://dx.doi.org/10.3390/a16070354
http://dx.doi.org/10.1016/j.neunet.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30268059
http://dx.doi.org/10.1109/TPAMI.2022.3176413
http://www.ncbi.nlm.nih.gov/pubmed/35594229

Algorithms 2024, 17, 60 15 of 15

11. Chandak, Y.; Theocharous, G.; Kostas, J.; Jordan, S.; Thomas, P. Learning action representations for reinforcement learning. In
Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 941–950.

12. Martin-Martin, R.; Allshire, A.; Lin, C.; Mendes, S.; Savarese, S.; Garg, A. LASER: Learning a Latent Action Space for Efficient
Reinforcement Learning. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China,
30 May–5 June 2021.

13. Zhou, W.; Bajracharya, S.; Held, D. Plas: Latent action space for offline reinforcement learning. In Proceedings of the Conference
on Robot Learning, PMLR, London, UK, 8 November 2021; pp. 1719–1735.

14. Pritz, P.J.; Ma, L.; Leung, K.K. Jointly-learned state-action embedding for efficient reinforcement learning. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, Gold Coast, QLD, Australia, 1–5 November
2021; pp. 1447–1456.

15. Åström, K.J.; Hägglund, T. The future of PID control. Control Eng. Pract. 2001, 9, 1163–1175. [CrossRef]
16. Schrijver, A. Theory of Linear and Integer Programming; John Wiley & Sons: Hoboken, NJ, USA, 1998.
17. Huang, S.; Ontañón, S. A closer look at invalid action masking in policy gradient algorithms. arXiv 2020, arXiv:2006.14171.
18. Kanervisto, A.; Scheller, C.; Hautamäki, V. Action space shaping in deep reinforcement learning. In Proceedings of the 2020 IEEE

Conference on Games (CoG), IEEE, Osaka, Japan, 24–27 August 2020; pp. 479–486.
19. Johnson, M.; Hofmann, K.; Hutton, T.; Bignell, D. The Malmo Platform for Artificial Intelligence Experimentation. In Proceedings

of the IJCAI, New York, NY, USA, 9–15 July 2016; pp. 4246–4247.
20. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,

Venice, Italy, 22–29 October 2017; pp. 2961–2969.
21. Nag, S.; Zhu, X.; Song, Y.Z.; Xiang, T. Proposal-free temporal action detection via global segmentation mask learning. In

Proceedings of the European Conference on Computer Vision, Springer, Glasgow, UK, 23–28 August 2022; pp. 645–662.
22. Li, L.; Walsh, T.J.; Littman, M.L. Towards a unified theory of state abstraction for MDPs. In Proceedings of the AI&M, Fort

Lauderdale, FL, USA, 4–6 January 2006; pp. 531–539.
23. Sharma, S.; Suresh, A.; Ramesh, R.; Ravindran, B. Learning to factor policies and action-value functions: Factored action space

representations for deep reinforcement learning. arXiv 2017, arXiv:1705.07269.
24. Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse, C.; et al. Dota 2

with large scale deep reinforcement learning. arXiv 2019, arXiv:1912.06680.
25. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;

et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef] [PubMed]
26. Wang, T.; Gupta, T.; Mahajan, A.; Peng, B.; Whiteson, S.; Zhang, C. Rode: Learning roles to decompose multi-agent tasks. arXiv

2020, arXiv:2010.01523.
27. Wang, T.; Dong, H.; Lesser, V.; Zhang, C. Roma: Multi-agent reinforcement learning with emergent roles. arXiv 2020,

arXiv:2003.08039.
28. Zeng, X.; Peng, H.; Li, A. Effective and Stable Role-based Multi-Agent Collaboration by Structural Information Principles. arXiv

2023, arXiv:2304.00755.
29. Mahajan, A.; Samvelyan, M.; Mao, L.; Makoviychuk, V.; Garg, A.; Kossaifi, J.; Whiteson, S.; Zhu, Y.; Anandkumar, A. Tesseract:

Tensorised actors for multi-agent reinforcement learning. In Proceedings of the International Conference on Machine Learning,
PMLR, Virtual, 18–24 July 2021; pp. 7301–7312.

30. Mahajan, A.; Samvelyan, M.; Mao, L.; Makoviychuk, V.; Garg, A.; Kossaifi, J.; Whiteson, S.; Zhu, Y.; Anandkumar, A. Reinforce-
ment Learning in Factored Action Spaces using Tensor Decompositions. arXiv 2021, arXiv:2110.14538.

31. Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.; Lillicrap, T.; Hunt, J.; Mann, T.; Weber, T.; Degris, T.; Coppin, B. Deep
reinforcement learning in large discrete action spaces. arXiv 2015, arXiv:1512.07679.

32. Tang, Y.; Agrawal, S. Discretizing continuous action space for on-policy optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 5981–5988.

33. Wang, S.; Papallas, R.; Leouctti, M.; Dogar, M. Goal-Conditioned Action Space Reduction for Deformable Object Manipulation.
In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), IEEE, London, UK, 29 May–2
June 2023; pp. 3623–3630.

34. Givan, R.; Dean, T.; Greig, M. Equivalence notions and model minimization in Markov decision processes. Artif. Intell. 2003,
147, 163–223. [CrossRef]

35. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0967-0661(01)00062-4
http://dx.doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
http://dx.doi.org/10.1016/S0004-3702(02)00376-4

	Introduction
	Related Work
	Action Space Factorization
	Action Space Reduction
	Action Mask

	Background
	MDP Problem
	Bisimulation

	Approach
	Bisimulation Metric on Actions
	A Perfect Mask Model
	Learning the Action Mask Supervised

	Experiments
	Implementation Details
	Domains
	Maze
	MinAtar
	RTS2

	Results
	Main Results
	Visualization

	Conclusions
	Appendix A
	Appendix B
	Appendix B.1
	Appendix B.2

	References

