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Abstract—We introduce a new drift model for slow 

environmental perturbation affecting modal coupling in optical 

multi-mode fibers. This model preserves the mode coupling 

strength asymmetries characteristic to mode pairs of different 

mode groups while decorrelating the fiber transmission matrix. 

Existing drift models were derived for the strong coupling regime, 

in which case the coupling matrix elements are identically 

distributed, and not suitable for the weak to intermediate 

coupling regime as shown here. The models’ impact on the 

inherent crosstalk characteristic of a fiber were evaluated for all 

linear coupling regimes and for fibers with up to 42 spatial and 

polarization modes. Moreover, transmission performance of 

32 GBd 16-QAM (per polarization mode) over the dynamic 

channel is studied considering singular value decomposition 

(SVD) pre-coding for the multiple-input multiple-output 

multi-mode fiber channel. The impact of slow drift on channel 

equalization performance is evaluated in terms of residual 

crosstalk. A large discrepancy is observed for fiber channels in 

the weak and intermediate coupling regimes, while converging in 

the strong coupling regime. Furthermore, we show that 2 × 1 

multiple-input single-output equalizers can be sufficient to 

compensate for the residual crosstalk in the weak to intermediate 

linear coupling regime and achieve optimal performance.  

 
Index Terms⎯Space-division multiplexing, multi-mode fiber, 

linear mode coupling, dynamic channel. 

 

I. INTRODUCTION 

pace-division multiplexing is one of the advanced 

technologies being considered to fulfil the increased 

demand of information transfer where data co-

propagates in the parallel spatial pathways making the use of 

shared resources [1-5] and which includes parallel cabled 

single-mode fibers, multi-core fibers (MCFs), multi-mode 

fibers (MMFs) as well as few-mode multi-core fibers. MMFs 

allow for tenths-to-hundreds of spatial pathways while keeping 

to a standard cladding diameter of 125 μm – allowing for 

higher production yield and smaller mechanical failure rates 

[6-8]. While coupled-core MCFs allow for only ~19 spatial 

pathways [2] when keeping to a standard cladding diameter. 

Despite larger bandwidth density, multi-mode fibers have 

significant modal walk-off (~10-100 ps/km) and linear mode 

coupling (LMC) due to fiber imperfections [9]. The 
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combination of these effects increase the equalization 

complexity requirements at the receiver end [10]. 

Nevertheless, these impairments can be overcome in systems 

using coherent detection with digital signal processing (DSP) 

including multiple input multiple output (MIMO) equalizers. 

Several works model the LMC as small deviation in the core-

cladding boundary that arises from the perturbations 

introduced in the fabrication process [9-11]. In these models, 

the fiber channel is divided into multiple sections of small step 

length with LMC, and dispersion being applied separately, 

following the split-step Fourier method.  

Environmental processes such as temperature fluctuations 

affect the overall fiber transfer function [12-16]. And so, the 

study of these effects in transmission systems is required to 

understand the effect of slow and fast time varying perturbations 

in field deployment where the channel is not stable [17-25]. 

These perturbations directly impact the need for channel re-

estimation implying increase in the DSP latency and power 

consumption or decrease in the spectral efficiency. Recently, 

the effect of environmental perturbations on multi-mode SDM 

transmission systems was studied for channels in the strong 

linear coupling regime [26]. Whereas, multi-mode fibers, and 

in particular few-mode fibers operate in the weak to 

intermediate regime (for metro-haul distances) [27-29].  

In our previous work, we have proposed a stochastic model 

taking account of channel drift keeping the modal coupling 

strength asymmetries between mode pairs (e.g., intra-mode 

group vs inter-mode group) [30]. Here, we extend our previous 

work by expanding the description and analysis of the fiber 

model to include the polarization treatment and analyze the 

required perturbation strength for different numbers of sections 

and modes. Critically, the analysis here considers data 

transmission (as opposed to single-frequency operation) for a 

singular value decomposition (SVD) system over the MIMO 

fiber channel. With an SVD-MIMO system, channel state 

information (CSI) is needed at the transmitter, and so latency 

in the CSI transmission means that channel diagonalization 

will be based on an outdated channel estimate. The impact of 

the latter is evaluated by the new drift model proposed.  

The manuscript is organized as follows. Section II 

introduces the modelling of the multi-mode fiber channel, 

neglecting the dynamic effects. Section III describes the 

procedure to model slowly time varying changes in the multi-
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mode fiber channel. This section also discusses the effect of 

perturbation strength in the lumped and distributed manner, 

deriving a relationship between them. Section IV discusses the 

implications on crosstalk for single-frequency transmission 

over time-varying fiber channel. Section V presents the 

simulation results for the transmission of polarization mode 

multiplexed 16-QAM signals over a dynamic channel, 

quantifying the performance in terms of signal-to-noise ratio. 

And we draw conclusions in Section VI. Note that throughout 

the manuscript, mode counting refers to spatial modes: this is, 

a fiber which supports LP01 and LP11 will normally be said to 

support two LP modes, three spatial modes and six polarization 

modes. 

II. MODELLING THE MULTI-MODE FIBER CHANNEL 

For the unperturbed dielectric waveguide, the propagating field 

can be expressed in the frequency domain as a linear 

combination of the ideal modes Ẽ(x,y,z,ω) = ∑Ãm(z,ω)Ẽm(x,y) 

where m is the polarization mode index, Ãm(z,ω) is the Fourier 

transform of the slowly varying mode field envelope Am(z,t) 

and Ẽm(x,y) is the Fourier transform of the ideal electric field 

distribution (Em(x,y)) – assuming the waveguide is constant 

along z. In the presence of a time-invariant dielectric 

perturbation Δε(x,y,z), the coupling between the ideal modes is 

described by the following coupled-mode equations [11, 31-

34], expressed here in the matrix form: 
 

∂z Ã(z,ω) = -j[β(z,ω) + K(z) + R(z)] Ã(z,ω) (1) 
 

where Ã(z,ω) is a column matrix whose m-th element is 

Ãm(z,ω); β is a diagonal matrix whose m-th element is the 

frequency dependent propagation constant (βm) of mode m at a 

frequency ω. K is the mode coupling matrix where the (m,n) 

element is given by the area integral of the inner product of the 

electrical fields of mode m and mode n, over the area where the 

permittivity perturbation Δε(x,y,z) ≠ 0 as shown below  
 

Km,n(z) = ωε0/4 ∫∫ Δε(x,y,z) Em
*(x,y)∙En(x,y)dx dy (2) 

 

and, ε0 represents the permittivity in free space. And, R is a 

block diagonal matrix composed of 2×2 submatrices, where m 

submatrix is defined by αm(z)∙σ(z) [12, 13] with αm = θm âm, θm 

is angular displacement between [0,π) over a 3-dimensional 

vector âm in an unit sphere, and finally σ = (σ1, σ2, σ3) is a 

tensor of the Pauli spin matrices with σ1 = [1  0; 0  -1], 

σ2 = [0  1; 1  0] and σ3 = [0  -j; j  0]. 

An approximate solution of (1) can be obtained by 

assuming that modal dispersion and linear mode coupling act 

independently in the fiber for a sufficiently small step [11]. 

This is, that over dz, the walk-off induced by chromatic or 

modal dispersion is much smaller than the pulse width. Finally, 

for a given fiber section i of length dz, by neglecting dispersive 

effects and assuming β, K and R constant over dz, the fiber 

transfer matrix is given by the exponential matrix [32] as 
 

M̃i(ω) = expm(-j[β0 + K + R]dz) (3) 
 

where βl is a diagonal matrix whose m-th element is the l-th 

order coefficient of a Taylor series expansion of mode m 

propagation constant βm(ω) centered at the carrier frequency 

ω0. In this manuscript, βm and Km,n are obtained from the 

refractive index profiles optimized for low modal group delay, 

for a graded index fiber with a cladding trench as described in 

[5] with core radius of 22.90 µm, core to trench distance as 

1.75 µm, trench width as 5.25 µm, trench depth as -0.0021 µm, 

α core graded-index exponent as 1.96 and core-cladding 

refractive index relative difference as 0.0045. In our previous 

work, we have considered for R, that αm∙σ is the same across 

all modes, for the given i-th fiber section. It has been reported 

that when polarized light is launched in a multi-mode fiber, 

each spatial mode experiences different polarization evolution 

[34-36]. Therefore, we consider here different αm∙σ for every 

mode, at each i-th fiber section. βm are kept constant over all 

fiber sections while Km,n changes given a random radial and 

azimuth offset in each section [11]. Finally, the end-to-end 

fiber transfer matrix is obtained as the product of each section’s 

transfer matrix given by M̃i(ω) in (3), this is 

H = M̃N(ω)∙M̃N-1(ω)∙M̃N-2(ω)…∙M̃1(ω), where N represents 

the total fiber sections [37].  

In MMFs, the mode coupling strength can be quantified as 

the ratio between the average power in all the other modes and 

that remaining in the launching mode(s), after a certain 

distance. However, mode coupling strength should also take 

into consideration the receiver architecture. Take the following 

scenario: (A) For mode group division multiplexing with 

separate MIMO equalizers for each mode group and with 

MIMO order matching each mode group cardinality [24, 38, 

39], intra-mode group coupling can be fully compensated and 

so only interference from outside the group limits transmission 

performance. In this case, one can define crosstalk as the ratio 

between the average power of all the modes in the other mode 

groups and that remaining in the targeted mode group. 

 
Fig. 1. Power coupling between modes (a) without drift, (b) with HoP-drift (κ = 7.77 × 10-5 per section) and (c) with ∆β-drift model (κ = 4.67 × 10-4 per section) 

for a fiber with 42 polarization and spatial, 10 km long, crosstalk strength as -40 dB/km, dz = 1 m and δt/Tenv = 1. 
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(B) Another potential scenario considers MIMO equalization 

on groups of degenerate modes only, e.g.: (LP21ax, LP21ay, 

LP21bx, LP21by) or just (LP21ax, LP21ay). In this case, one can 

define crosstalk as the ratio between the average power of all 

the other modes that are non-degenerate and that of the modes 

that are degenerate with given target mode(s). So, the mode 

coupling strength definition for all the cases in multi-mode 

fibers is:  
 

XTm = ∑v≠m Pv / Pm (4) 
 

where Pv is the power of mode set v, after a given fiber segment 

under test, when only the mode set m is (partially or fully) 

launched – where mode set m is specific to the scenario under 

consideration, see scenario (A) and (B) above. Typical XT 

values of experimentally characterized few-mode fibers range 

from -40 dB/km to -30 dB/km for graded index fiber profiles 

[11, 40, 41], while for coupled-core fibers these can be 

substantially larger -18dB/km to -7dB/100m [42, 43]. Here, we 

consider mode set of interest as the polarization-degenerate 

modes together (e.g., LP21ax, LP21ay) for each mode m. 

Fig. 1 (a) shows a 21-mode fiber transmission matrix for 

10 km length with XT strength as - 40 dB/km where each 

section length is considered as 1 m. It is observed that the 

coupling matrix in Fig. 1 (a) is more sparse and structured from 

the one shown in [28](supplementary material), for the 

experimental characterization of fiber. But characterization of 

fibers is challenging as one would require perfect mode 

multiplexer and demultiplexer such as one consisting of an 

aberration free system and a set of phase masks with infinite 

resolution. Instead in many cases, one uses an LCoS spatial 

light modulator (SLM) with as many as 8-bit / 10-bit phase 

resolution and a limited filling factor, among other 

shortcomings – which is the case in [28]. Here, we have 

assumed a perfect mode launching condition. Also, the authors 

in [28] have considered Laguerre Gaussian mode basis which 

are approximate solutions assuming weak guidance with the 

infinite core radius, whereas we have considered transmission 

of linearly polarized modes with a finite radius graded core 

including a cladding trench as described in [5].  

III. MODELLING OF ENVIRONMENTAL PERTURBATION  

A. Homogenous perturbation drift model 

The slow drift perturbation model proposed in [26] considers a 

channel in the strong coupling regime with the i-th section of 

the drifted channel described as:  
 

M̃i(ω,δt) = expm (Msh + Mpert (κ δt / Tenv)1/2 ) (5) 
 

where Msh and Mpert are random skew-Hermitian matrices for 

fiber channel and drift perturbation, respectively. In [26], Msh 

and Mpert are generated in the same manner: the real part and 

imaginary part of the elements in these matrices follow 

independent Gaussian random variables of zero mean and 

variance one. However, instead of Msh, here we 

have -j[β0 + K + R]dz following our fiber channel model. And, 

κ is the perturbation variance required for channel matrix 

correlation to become smaller than e-2 when the change in time 

δt equals the characteristic time (Tenv). We refer to this model 

as homogenous perturbation drift model (HoP-drift). The HoP 

model has been proven reliable for fibers in the strong coupling 

regime and with all guided modes being quasi-degenerate [25]. 

However, in the weak-to-intermediate coupling regime the 

variance of the elements of the coupling matrix is not 

homogeneous as crosstalk is strongest for modes in the same 

group, followed by coupling between modes of adjacent 

groups. Thus, applying a homogeneous perturbation artificially 

introduces coupling between sets of modes whose coupling 

strength should have remain negligible otherwise. We 

investigate this model for the physics-informed channel 

transmission matrix as discussed in section II. Fig. 1 (b) shows 

the 21-mode fiber transmission matrix from Fig. 1(a) after 

applying HoP-drift while considering δt/Tenv = 1 (to achieve 

decorrelation, κ = 7.77 ×10-5 per section). Comparing Fig. 1 (b) 

to Fig. 1 (a), the enhanced crosstalk is evident overall and for 

intra-mode groups and neighboring mode groups due to the 

homogeneous perturbation added in the HoP-drift. 

B. Proposed drift model: propagation constant based 

Here, we propose an alternative slow-drift model to 

accommodate multi-mode optical fibers operating in all 

coupling regimes. The drift perturbation is applied only to βm 

keeping Km,n unchanged by the effect of time-varying 

perturbation. In this way, we are accounting for slow drift 

perturbations such as temperature drift that are known to 

directly lead to changes on fibers refractive index and so on 

modes propagation constant βm ≈ n∙2π/λ. While Km,n changes 

are neglected here since these are mostly determined by 

relative refractive index, see (2). The model proposed here, 

referred to as Δβ-drift model, can be described as:  
 

M̃i(ω,δt) = expm(-j[(β0 + K + R) dz  

+ ∆β (κ δt / Tenv)1/2 ]) 
(6) 

 

where ∆β is a diagonal matrix containing the perturbation in 

the propagation constants, for the i-th section, whose elements 

are independent real Gaussian random variables of unit 

variance, and κ is the perturbation strength required to achieve 

correlation of e-2 between the non-drifted and drifted channel 

for δt = Tenv, as defined in the previous section. Typical values 

for the characteristic timescale of channel drift in multi-mode 

fibers are still a subject of research with a wide range of values 

reported, from long-term stability of principal modes in [28] to 

shorter timescales associated with the digital holography 

characterization acquisition time (∼ 0.1 − 100s) [44]. Fig. 1 (c) 

shows the fiber transmission matrix after 10 km with XT 

as - 40 dB/km when drift is introduced using Δβ-drift model, 

for δt/Tenv = 1 (to achieve decorrelation, κ = 4.67 × 10-4 per 

section). Comparing Fig. 1 (c) to Fig. 1 (a), it can be observed 

that the XT asymmetries between mode groups remain 

unchanged with time despite having a decorrelated channel 

matrix.  

C. Correlation vs perturbation strength: single fiber section 

First, we analyzed the perturbation strength required in each 

model to decorrelate the end-to-end fiber propagation matrix 

for a single fiber section. The scalar correlation metric C(δt) is 
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defined as in [26], C(δt) = trace(H(t)[H(t + δt)]H) / (2M), 

where H is the end-to-end transfer matrix as described in 

Section II accounting for the drift following M̃i(ω,δt) given by 

(5) or (6), for 2M polarization modes (e.g. For the modes in a 

fiber with LP01, LP11a, and LP11b, 2M corresponds to 6 

polarization modes) supported in a given fiber. Importantly, 

here we define the perturbation variance required κ to achieve 

channel matrix decorrelation as C(Tenv) ≈ e-2. This is similar to 

polarization mode dispersion theory [45] where the correlation 

length is defined to be the length at which the average power 

in the orthogonal mode is within e-2 of the power in the starting 

mode. 

Fig. 2 shows the channel correlation, as a function of the 

applied perturbation strength, between the non-drifted channel 

at δt = 0 and the channel drifted with the varying perturbation 

strength – for a single fiber section of length 1 m with XT 

strength as -40 dB/km and different number of spatial mode 

fibers, considering δt/Tenv = 1. For the Δβ-drift model, we 

observe that the correlation decays exponentially with the 

perturbation strength and that such decay is not impacted by 

the number of modes or crosstalk (shown by further results 

over all coupling regimes). The exponential decay follows that 

of correlated log-normal random variables, but it deviates 

given β and K characteristic to a given fiber profile type. In 

Fig. 2, and for the group of fibers considered, correlation 

approximately follows exp(-x/e) where x is the applied 

perturbation variance to the fiber. For the HoP-model, the 

correlation dependency on the perturbation strength follows 

that in [26], except that here by including β (so, diagonal terms 

are now much larger than the off-diagonal) the dependency on 

the number of modes is much reduced. Moreover, in Fig. 2, we 

also observe that the perturbation strength required for 

decorrelation is larger for the Δβ-drift model than that for the 

HoP-model. This can be understood by noting that in the 

former case the perturbation takes the form of a diagonal 

matrix while in the latter case the perturbation takes the form 

of a dense matrix, see Section II. 

D. Correlation vs perturbation strength: multi fiber section 

For the multi-section dynamic fiber model discussed here, 

independent perturbation sources (Gaussian random variables) 

of the same perturbation variance (κ) are assumed acting on 

each fiber section. Correlation between the non-drifted channel 

(t = 0) and drifting channel is calculated for a given length of 

the fiber from the end-to-end fiber transfer matrix as described 

in Section III-C. κ is the perturbation variance required per 

section to decorrelate the full-length fiber channel. Therefore, 

the κ value per section decreases as number of fiber sections 

increases (L/dz), which is the case when increasing the fiber 

length (L) or reducing the section length (dz). This is confirmed 

in Fig. 3 that shows the variation of κ with fiber length for a set 

of fibers with (6, 10, 15, 21) spatial modes and considering 

section length as 1 m. We observe that κ per section required 

for decorrelation of a given fiber length in a multi-section 

model follows κ of single section fiber length by dz/L (i.e., 

1/#sections) – doubling the number of sections corresponds to 

halving κ. This implies that the product of random matrices (5) 

or (6) has its central limit as the exponent of a Gaussian unitary 

ensemble. That would be the case when (5) and (6) can be 

approximated by I + δX with a very small δ [37], such that: 

log AB ≈ log A + log B, where A and B are given by (5) or (6). 

We noticed that the required κ only deviates from a dz/L 

dependency for dz ≈ L, it deviates by over 5%. For this reason, 

we take the required κ for 10 m as the reference, and in the 

following, the required κ for an arbitrary length L is obtained 

as: κ (10 m) × 10 m / L.  

IV. EFFECT OF SLOW PERTURBATIONS ON SINGLE 

FREQUENCY CHANNEL 

In this section, we discuss the effect of the proposed drift model 

on the multi-mode fiber channel for single-section and 

multi-section fiber cases as well as for an SVD system case; 

always considering single-frequency operation. 

 
Fig. 2. Transmission matrix correlation as a function of the perturbation 

strength for a single section fiber with (6,10,15,21) spatial modes and 

XT = -40 dB/km, considering dz = L = 1 m – for both drift models. Results 
averaged over for 10,000 fiber realizations. 

 

Fig. 3. Variation of κ with fiber length for both drift models considering 

fibers with (6,10,15,21) spatial modes, dz = 1 m, and XT = -40 dB/km. 
Results averaged over 1000 different fiber runs. 
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A. Single- and multi-section analysis 

First, by considering a single step of 1 m length, we analyze 

the crosstalk for a 6 spatial mode fiber considering 

δt/Tenv = 10-2. Fig. 4 shows the evaluated XT for each mode set 

m, composed by both polarizations of a given spatial mode, as 

a function of the normalized radial displacement, where each 

point has been averaged over the range of azimuthal 

displacement and polarization rotation values, following [11] 

for a random realization of drift each time. We observe that 

with ∆β-drift model, XT strength remains the same as for the 

case without drift for all the radial displacement values. 

Whereas for small values of radial displacement (≲10-2), it can 

be observed that with the HoP-drift model degenerate modes 

have highest crosstalk, followed by the modes in higher mode 

groups. These modes are characterized by small propagation 

constant differences and small Km,n, and therefore when 

applying homogeneous perturbation these are most affected. 
However, from the experimental work in [28], one expects the 

overall mode coupling strength should remain identical over 

time – note that the principal modes associated with a given 

fiber coupling matrix remain “quite stable” over long periods 

of time as long as 6 months apart. But this would not be the 

case with the drift-induced crosstalk increase observed for the 

HoP-model in Fig. 4, and this conveys that HoP-drift model is 

not suitable for the weak to intermediate coupling regimes.  
Further, we investigate the effect of drift with time evolution 

for a multi-section fiber case with drift being applied to each 

section for both the drift models as discussed in Sections II and 

III. Fig. 5 shows XT as a function of δt/Tenv for a 10 km long 

fiber with a crosstalk strength of -40 dB/km and -30 dB/km – 

results averaged over 100 different fiber realizations. We can 

observe from the Fig. 5 that XT remains at the crosstalk 

strength level inherent to the fiber for the Δβ-drift model and 

this coincides with the experimental work shown in [28] – as 

discussed in the previous paragraph, whereas XT with the HoP-

drift model increases quickly beyond this level for δt/Tenv 

values larger than 10-5 and 10-4 for the fibers considered 

respectively, with (6, 10, 15, 21) spatial modes. We also observe 

in Fig. 5 that HoP-drift model produces equivalent results to 

those of Δβ-drift even in weak-to-intermediate coupling for 

smaller δt/Tenv (≲10-4), limiting the range of slow perturbations 

that can be accounted.  

B. Transmission system analysis 

In transmission systems, channel equalization is necessary to 

unravel the coupling introduced by the channel and recover the 

 
Fig. 6 Simulation setup considered for signal transmission over multi-mode fibers and DSP steps involved in the processing of data. Tx and Rx represents 

transmitter and receiver respectively. 
 

 
Fig. 5 XT at the fiber output averaged over all modes as a function of δt/Tenv 

for a 10 km fiber with (6, 10, 15, 21) spatial modes considering a crosstalk 

strength of -40 dB/km and -30 dB/km for both drift models. Results averaged 

over 100 different fiber realizations.  

 
Fig. 4. XT for mode m as a function of radial displacement (and averaged over 

the angular displacement) for a fiber with 6 spatial modes and δt/Tenv = 10-2. 

Results averaged over 100 different drift realizations. 
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spatial tributaries launched. An optimal solution to 

interference-limited MIMO systems is the singular value 

decomposition (SVD) approach – used here for simplicity and 

without lack of generality. In the SVD approach, one 

diagonalizes a given channel matrix into two unitary matrices 

(U and V), and a diagonal matrix (Λ). The unitary matrices V 

and UH can be applied at the transmitter and the receiver, 

respectively, to diagonalize the channel response. Further, we 

calculate the unitary matrices U(δt=0) and V(δt=0) in SVD for 

the channel without drift perturbation, which is H = UΛVH, 

and then apply these to the drifted channel after a certain time 

(δt). This time delay accounts for the fact that in the SVD 

approach channel the state of information must be exchanged 

between the transmitter and the receiver as illustrated in Fig. 6. 

With this approach, the residual channel at the input of the 

receiver becomes, 
 

Hres(ω,δt) = Λ−1(ω,0)V(ω,0)Hdrifted(ω,δt)UH(ω,0) (7) 
 

where (.)H is the Hermitian operator. From Hres in (7) one can 

evaluate the residual XT induced by channel drift.  

Fig. 7 shows the difference in XT residual between the HoP-

drift model and the ∆β-drift model varying the crosstalk 

strength of the fiber, considering the δt/Tenv = 10-3 and 10-1 for 

a 10 km fiber. We observe that the difference in residual XT is 

particularly high (as much as 25 dB to 5 dB) in the weak to 

intermediate range (-40dB/km to -20dB/km) and decreases 

with the increase in the crosstalk strength of the fiber. As the 

crosstalk strength increases, the modal coupling between the 

modes of all the groups tends to become uniform and applying 

a uniform drift perturbation (HoP model) would behave similar 

to applying perturbation in the propagation constants (∆β-drift 

model). This confirms that the performance of both the drift 

models coincide in the strong coupling regime, whereas there  

is a large difference in the weak to intermediate coupling 

regime. Finally, in Fig. 7, the residual XT level for ∆β-drift 

model is not following a specific trend with the number of 

modes, this is not unexpected since the fibers used here were 

optimized for minimum group delay only [5], no consideration 

on linear mode coupling is included during fiber profile 

optimization. 

V. EFFECT OF SLOW PERTURBATIONS  

ON MODULATED SIGNAL TRANSMISSION 

In this section, we quantify the effect of slow perturbations 

when a 16-QAM signal is transmitted over a fiber channel of 

length 10 km with a step length of 1 m. Simulation setup is 

shown in Fig. 6 where an initial transmission of 32 GBd 

16-QAM is performed, considering an ideal transmitter, the 

signal is launched in the fiber experiencing the modal 

dispersion, modal coupling and polarization rotation at each 

step. The amplified spontaneous emission (ASE) noise is 

added to the signal just before coherent detection such that 

OSNR in the reference bandwidth of 12.5 GHz is set to 35 dB 

for all detected modes. The received signal is then processed 

for the dispersion compensation, and the (residual) channel 

matrix is acquired – since in this manuscript the focus is on the 

drift-induced performance penalty, the calculated channel is 

used at this point. This channel matrix is then used to 

diagonalize the end-to-end channel using SVD as discussed in 

Section IV. In this way, the generated 32 GBd 16-QAM signal 

is pre-processed by multiplying it with the unitary matrix (V) 

in frequency domain, before transmission over the fiber. But 

on this turn around, the fiber channel has been perturbed in the 

manner discussed in Sections II and III. All the modes 

experience the chromatic and modal dispersion as presented in 

[5]. After fiber transmission, the received signal is then 

equalized using unitary matrix (UH) of SVD for compensating 

the fiber channel. The residual received signal is then 

processed using frequency domain equalizer for chromatic 

dispersion compensation taking account the mean value of 

chromatic dispersion coefficient for all the modes. And, to 

compensate for the residual modal coupling after SVD we use 

MISO equalization. A frequency domain based MISO 

equalizer utilizing an overlap-save method with a 1024-point 

fast Fourier transform and an overlap of 2 samples [46]. The 

input mode set to the MISO equalizer for a particular output 

spatial polarization tributary is chosen by the maximum cross-

correlation (this is, the largest interferers). Finally, the signal-

to-noise ratio (SNR) is calculated from the received 

constellation with respect to the transmitted signal given as 

SNR = [X|2] / |Y – X|2] where X and Y are the transmitted 

and received symbols after equalization, respectively, and [.] 

denotes the expectation operator. 

Fig. 8 shows the SNR of the received signal (after SVD and 

MISO equalization), averaged over the modes, as a function of 

the number of inputs to the MISO equalizer with both the drift 

models, considering δt/Tenv = 10-1 for 32 GBd, 16-QAM 

transmission per spatial polarization for 10 km long fibers 

supporting (6, 10, 15, 21) spatial modes and XT as -40 dB/km 

at an OSNR of 35 dB. We can observe that for the Δβ-drift 

model SNR approaches the maximum possible value (given the 

OSNR) with just 2 × 1 MISO – this is when the drift leads 

residual crosstalk among two polarization modes mostly. 

While for the HoP-drift model, the required equalizer size to 

approach maximum SNR is 4 or more given the model’s impact 

on four-fold degenerate modes (e.g., LP21), see Fig. 4. And so, 

 
Fig. 7 XT residual averaged over all modes as a function of fiber crosstalk 

strength considering δt/Tenv = 10-3 and 10-1 respectively. Results averaged 

over 500 fiber realizations.  

 



 

 

7 

for 2 × 1 MISO, the SNR difference between the two models 

for the system described in Fig. 8 can be as larger as 12 dB for 

δt/Tenv = 10-1, as in for 21 spatial modes. For smaller δt/Tenv 

values, the SNR difference becomes smaller, but it remains 

larger than 3dB at δt/Tenv = 10-3. This difference illustrates the 

importance of the drift modelling assumptions for system 

performance estimation. The Δβ-drift model indicates that a 

SVD-like approach may remain effective in suppressing the 

modal mixture of non-degenerate modes for large δt/Tenv (e.g., 

δt/Tenv ≈ 0.1). Furthermore, we believe that low order MISO 

approach would still be effective for other fibers, for example, 

Figure S5(b) in [28] shows that by applying a conjugated 

transpose manipulation only a few off-diagonal interferers 

remained visible for a 72-mode fiber. This is expectable even 

for longer lengths (~10km) since the modes of graded-index 

fibers can be organized into mode groups that are effectively 

independent, even over kilometers of fiber [39, 47, 48]. 

Further, we analyze the effect of fiber mode crosstalk on the 

system performance but with fixed MISO cardinality at 2 × 1, 

keeping fiber length at 10 km and δt/Tenv = 10-1. Fig. 9 shows 

the difference in averaged SNR between the Δβ-drift model and 

HoP-drift model as a function of fiber crosstalk strength, when 

applying SVD and using 2 × 1 MISO to compensate for the 

residual modal coupling. We observe that the difference in SNR 

after equalization is large for lower crosstalk values, and then 

decreases as the fiber crosstalk strength increases towards the 

strong coupling regime (> -10 dB/km) as observed for the 

single-frequency case in Section IV.  

VI. CONCLUSION 

This paper develops a solution method for the coupled linear 

differential equations that describe the linear modal coupling 

in multi-mode fibers to account for environmentally induced 

slow channel drifting. The drift model is shown to be 

applicable to all linear coupling regimes, including to the 

intermediate regime that is most relevant to conventional few-

mode fibers. The model proposed is shown to decorrelate the 

channel while keeping the mode coupling strength 

characteristic to all mode pairs, which is similar to the 

experimental observation in [28]. The dynamic channel model 

applicability is confirmed considering 16-QAM transmission 

and equalization using an SVD-based MISO system. We show 

the advantage that if intermodal coupling is compensated by 

SVD, then even in the presence of environmental drift just a 

2 × 1 MISO equalizer is sufficient to compensate for the 

residual coupling reducing the complexity.  

The drift model introduced here offers new insight into the 

modelling and development of future high-capacity SDM 

systems, in particular for few-mode and multi-mode fibers 

operating in the intermediate coupling regime. Critically, it 

supports the applicability of channel diagonalization schemes 

to increase spatial cardinality in SDM transmission systems at 

reduced MISO equalization complexity. In future, we will be 

looking towards verifying the presented model experimentally 

in our laboratory. 
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