
Column-Randomized Linear Programs: Performance
Guarantees and Applications

Yi-Chun Akchen
School of Management, University College London, London E14 5AB, United Kingdom, yi-chun.akchen@ucl.ac.uk

Velibor V. Mǐsić
UCLA Anderson School of Management, University of California, Los Angeles, California 90095, United States,

velibor.misic@anderson.ucla.edu

We propose a randomized method for solving linear programs with a large number of columns but a relatively
small number of constraints. Since enumerating all the columns is usually unrealistic, such linear programs
are commonly solved by column generation, which is often still computationally challenging due to the
intractability of the subproblem in many applications. Instead of iteratively introducing one column at a
time as in column generation, our proposed method involves sampling a collection of columns according to
a user-specified randomization scheme and solving the linear program consisting of the sampled columns.
While similar methods for solving large-scale linear programs by sampling columns (or, equivalently, sampling
constraints in the dual) have been proposed in the literature, in this paper we derive an upper bound on
the optimality gap that holds with high probability. This bound converges at a rate 1/

√
K, where K is the

number of sampled columns, to the optimality gap of a linear program related to the sampling distribution.
We analyze the gap of this latter linear program, which we dub the distributional counterpart, and derive
conditions under which this gap will be small. Finally, we numerically demonstrate the effectiveness of the
proposed method in the cutting-stock problem and in nonparametric choice model estimation.

Key words : linear programming, column generation, constraint sampling, randomized algorithm
History : First version: July 20, 2020. Second version: July 28, 2022. Third version: June 21, 2023.

Forthcoming in Operations Research.

1. Introduction
We consider solving a linear program (LP) in standard form:

minimize
x∈Rn

cTx (1a)

such that Ax= b, (1b)

x≥ 0, (1c)

where x∈Rn, c∈Rn, A∈Rm×n, and b∈Rm. In various applications of linear programming, such
as the cutting-stock problem (Gilmore and Gomory 1961), the vehicle routing problem (Dumas
et al. 1991), and the choice-based network revenue management (Bront et al. 2009), it is often the
case that the number of variables n is significantly larger than the number of constraints m. For
example, in the choice-based network revenue management problem, n = O(2N) and m = O(N),
where N is the number of products in a market and each column corresponds to a subset of these N
products. In the cutting stock problem, the number of columns n represents the number of feasible
cutting patterns and it grows exponentially with respect to m. In both cases, one can easily observe
instances of LP (1) such that m is on the scale of a few hundred while n is more than a billion.
Moreover, since the constraint matrix A is too large in these large-scale LPs, one usually cannot
explicitly write it down but only specify it as a matrix that consists of all columns satisfying a
certain property.

1

ar
X

iv
:2

00
7.

10
46

1v
5

 [
m

at
h.

O
C

]
 2

8
N

ov
 2

02
3

Akchen and Mǐsić : Column-Randomized Linear Programs
2

Given that there are many more columns than constraints and enumerating all of the columns,
i.e., obtaining the full constraint matrix A, is impossible in most cases, a standard solution method
is column generation (CG), which works as follows: (i) start with an initial set of columns from A;
(ii) solve the corresponding restricted linear program to optimality; (iii) solve a subproblem to find
the column with the lowest reduced cost; (iv) add the new column to the current set of columns;
(v) go back to step (i) until problem (1) is solved to optimality (i.e., the minimum reduced cost
in step (iii) is nonnegative). The subproblem that ones solves to introduce a new column is often
computationally challenging. For example, in the cutting-stock problem, which is a well-known
large-scale LP that is typically solved using column generation, the subproblem is a knapsack
problem that is known to be NP-hard (Garey and Johnson 1979). In practice, the subproblem is
often formulated as an integer program, and can be difficult to solve at a large scale. In addition,
CG is a sequential method, that is, the subproblem that one solves to introduce the ith column
depends on the computational results of the previous i− 1 iterations. Such a structure prohibits
one from applying parallel computing techniques to implement the column generation method.
Instead of searching for columns by a subproblem that is potentially NP-hard, we propose a

randomized method, called column randomization. In this method, one first samples a collection
of columns according to a user-specified randomization scheme, and then solves the correspond-
ing restricted linear program. We refer to this restricted linear program that consists of sampled
columns as the column-randomized linear program. This approach is attractive because compu-
tationally, it is often significantly easier to randomly sample columns than it is to optimize over
columns (as is the case in CG). In addition, while CG operates sequentially, the sampling step in
column randomization is well-suited to parallelization.
We note that similar sampling-based methods for large-scale LPs have been previously considered

in the operations research literature. In particular, there is a significant literature on solving prob-
lems with large numbers of constraints by randomly sampling constraints (De Farias and Van Roy
2004, Calafiore and Campi 2005). By strong duality of linear programs, sampling the columns of
problem (1) is equivalent to sampling the constraints of its dual problem. However, the behavior
of the sampled LP in terms of its optimality gap – the difference in objective value between the
sampled problem and the complete problem – has received scarce attention in the literature. In
this paper, our main goal is to answer the following question: Given a user-specified randomization
scheme for sampling columns from a linear program, is it possible to probabilistically bound the
optimality gap of the column-randomized linear program?
We provide theoretical results to answer this question and demonstrate how these results can be

applied to common applications of large-scale linear programming. We make the following specific
contributions:
1. Theoretical Guarantees. We show that with high probability over the sample of columns,

the optimality gap of the column-randomized linear program is bounded by the sum of two
terms: the optimality gap of a linear program related to the sampling distribution and a term
that is of order 1/

√
K, where K is the number of sampled columns. To best of our knowledge,

this is the first simple theoretical result that addresses the behavior of the optimality gap of
the column sampling technique for general linear programs using only elementary arguments
(in particular, LP sensitivity analysis and McDiarmid’s inequality).

2. Analysis of the Distributional Counterpart. A key component of our bound is the opti-
mality gap of an LP related to the sampling distribution that we refer to as the distributional
counterpart. We undertake a detailed analysis of this quantity. We show theoretically that this
gap will be small when there exist many diverse near-optimal basic feasible solutions, where
diversity is measured by how infrequently a column appears in the bases. We also study this
gap in a probabilistic setting, where we assume that the LP (1) is generated according to a
random generative model. We show that under three different generative models, the distri-
butional counterpart gap scales like O(1/

√
n) or O(logn/

√
n) with high probability, where n

is the number of columns in the complete LP.

Akchen and Mǐsić : Column-Randomized Linear Programs
3

3. Extensions. We extend our main performance guarantee in two ways. First, we apply the
proposed method to several applications of large-scale linear programming and derive problem-
specific upper bounds for the optimality gap. The problems include LPs with totally unimod-
ular constraints, Markov decision processes (MDP), covering problems and packing problems.
We also extend our approach to the portfolio optimization problem, in which the objective
function is only assumed to be Lipschitz continuous (and is not necessarily linear or convex).
Second, we generalize our column randomization approach to the case where the sampled
columns are no longer i.i.d. and may be statistically dependent. In particular, we develop
a theoretical guarantee for when the dependency of the sampled columns is described by a
dependency graph, and an alternate guarantee for the case when columns are sampled uni-
formly without replacement.

4. Numerical Results. We numerically demonstrate the effectiveness of the proposed method
on two optimization problems that are commonly solved by CG: the cutting-stock problem,
which is a classical application of linear programming; and the nonparametric choice model
estimation problem, which is a modern application of linear programming. We compare the
performance of the column randomization method to that of the CG method and show that
for a fixed positive optimality gap, the column randomization method can attain the same
optimality gap within a fraction of the time required by CG. Thus, for some problems, the
column randomization method can be a viable alternative to CG or can otherwise be used to
provide a good warm start solution for CG.

We organize the paper as follows. In Section 2, we review the related literature and highlight
our contribution. In Section 3, we state our theoretical results and discuss their implications.
In Section 4, we present our detailed analysis of the distributional counterpart. Due to space
constraints, our extensions to special problem structures/applications of large-scale LP and to non-
i.i.d. column sampling are presented in Sections D and E of the ecompanion. Section 5 presents
our numerical experiments with the cutting stock problem and Section 6 presents our numerical
experiments with the nonparametric choice model estimation problem. We conclude in Section 7.
Omitted proofs are provided in the electronic companion.

2. Literature Review
In this section, we review four streams of literature.
Column Generation. CG has been widely used to solve optimization problems that have a

huge number of columns compared to the number of constraints (Ford Jr and Fulkerson 1958,
Dantzig and Wolfe 1960, du Merle et al. 1999). Applications include vehicle routing (Dumas et al.
1991, Feillet 2010), facility location problems (Klose and Drexl 2005), and choice model estimation
(van Ryzin and Vulcano 2015, Mǐsić 2016); we refer readers to Desrosiers and Lübbecke (2005)
for a comprehensive review. By strong duality of linear programs, CG is equivalent to constraint
generation that solves linear programs with a large number of constraints (Bertsimas and Tsitsiklis
1997). A key component of both methods is the subproblem that one solves to iteratively introduce
columns or constraints. Usually, this subproblem is computationally challenging and is often solved
by integer programming. For example, in the cutting-stock problem, the CG subproblem is a
knapsack problem, which is NP-hard (Gilmore and Gomory 1961, Garey and Johnson 1979).
Sampling Columns/Constraints. Another approach to solving LPs with huge numbers of

columns (or equivalently, with huge numbers of constraints), is by sampling (De Farias and Van Roy
2004, Calafiore and Campi 2005, 2006, Campi and Garatti 2008, 2018). Specifically, one first
samples a set of columns (or constraints) according to a given distribution then solves a linear
program that consists of the sampled columns (or constraints). The seminal paper of De Farias
and Van Roy (2004) proposed the constraint sampling method for linear programs that arise in
approximate dynamic programming (ADP). Given a distribution for sampling the constraints,
the paper showed that with high probability over the sampled set of constraints, any feasible
solution of the sampled problem is nearly feasible for the complete problem (that is, there is a high

Akchen and Mǐsić : Column-Randomized Linear Programs
4

probability of satisfying a new random constraint, sampled according to the same distribution).
Under the additional assumption that the constraint sampling distribution is a Lyapunov function,
the paper also develops a specific guarantee on the error between the optimal value function and the
approximate value function that is obtained by solving the sampled problem, but does not provide
a bound on the gap between the objective values of the sampled and complete linear programs. In
contrast, the results of our paper pertain specifically to the objective value of the sampled problem,
are free from any assumptions on the sampling distribution and are applicable to general linear
programs beyond those arising in ADP. Around the same period, Calafiore and Campi (2005, 2006)
pioneered the sampling approach to robust convex optimization. With a different perspective from
De Farias and Van Roy (2004), Calafiore and Campi (2005, 2006) also characterized the sample
complexity needed for the optimal solution (as opposed to an arbitrary feasible solution) of the
sampled problem to be nearly feasible for the original problem. However, the performance of the
sampled problem in terms of the objective value, and its dependence on the number of samples,
was not addressed.
Since the works of Calafiore and Campi (2005) and De Farias and Van Roy (2004), there has been

some work that has quantified the dependence of the objective value on the number of sampled
constraints. In particular, the paper of Mohajerin Esfahani et al. (2014) considers a convex program
where the decision variable x satisfies a family of convex constraints, which are later sampled, and
is also constrained to lie in an ambient set X. The paper develops a probabilistic bound on the
difference in objective value between the complete problem and its sampled counterpart in terms
of a uniform level-set bound (ULB), which is a quantile function of the worst-case probability over
all feasible solutions in set X. Our work differs significantly from Mohajerin Esfahani et al. (2014)
in two aspects. First, in terms of the problem setting, Mohajerin Esfahani et al. (2014) assumes
that even before any constraints are sampled, the decision variable is already constrained in the
convex compact (and thus bounded) set X, and the associated performance guarantees also rely
on properties of X. In our setting, this corresponds to the dual solutions of problem (1) being
bounded, which need not be the case in general. Consequently, the result of Mohajerin Esfahani
et al. (2014) is not directly applicable to the research question discussed in this paper. Second, as
noted earlier, the performance bound in Mohajerin Esfahani et al. (2014) relies on the ULB function
of the sampling distribution. While sufficient conditions for the existence of a ULB are provided in
the paper, in general a ULB cannot be represented explicitly and thus the resulting performance
guarantee is less interpretable. In contrast, our theoretical results do not require a ULB or other
related functions, and have a more interpretable dependence on the sampling distribution (via the
distributional counterpart; see problem (5) in Theorem 1). In addition, we also believe our results
are more straightforward technically: one only needs McDiarmid’s inequality and standard linear
programming results to prove them. As we will show in Section D, our theoretical results and proof
technique can be applied to many common types of LPs to derive application-specific guarantees.
Randomized Projection, Stochastic Optimization and Online Linear Programming.

Besides column/constraint sampling, many other randomized methods have been proposed to solve
large-scale optimization problems, including methods based on random walks (Bertsimas and Vem-
pala 2004) and random projection (Pilanci and Wainwright 2015, Vu et al. 2018). Specifically, the
random projection method of Vu et al. (2018) involves selecting a matrix T ∈ Rk×m, with k <m
and then left-multiplying the constraint matrix and the right-hand side vector. This transforms
the original LP min{cTx |Ax = b,x ≥ 0} into the problem min{cTx |TAx =Tb,x ≥ 0}, which
is a problem with fewer rows. Although there are a number of important differences between this
approach and ours, the most significant is the philosophical difference in the intended use case for
each approach. In order to apply the random projection approach, one needs to be able to form the
full constraint matrix A and the projection matrix T in order to carry out the multiplication TA.
Consequently, the random projection approach applies to LPs where A is large, but not so large
that it cannot be formed and stored in computer memory. In contrast, our approach can be used
for truly large-scale LPs where the matrix A is defined implicitly, as a matrix whose columns obey

Akchen and Mǐsić : Column-Randomized Linear Programs
5

some property, and cannot be formed explicitly because the number of columns n is astronomically
large (e.g., the set of patterns for the cutting stock problem, as in our experiments in Section 5).
For this type of large-scale LP that is ordinarily solved via column generation and that can be
solved by our approach, the random projection cannot be applied, because it is computationally
infeasible to form the matrix A. We discuss this difference, and other differences, in more detail in
Section H.2 of the ecompanion.
In addition to these randomized methods, there is also a separate literature on optimization

problems where stochasticity is part of the problem definition; some examples include stochastic
programming (Birge and Louveaux 2011, Shapiro et al. 2021), contextual optimization (Elmach-
toub and Grigas 2017), and online optimization (Shalev-Shwartz 2012). Within this literature, the
problem setting of online linear programming, where columns of a linear program are revealed
sequentially to a decision maker, bears a resemblance to ours; some examples of papers in this area
include Agrawal et al. (2014), Eghbali et al. (2018), Li and Ye (2019). Despite this similarity, this
problem setting differs significantly from ours in that a decision maker is making irrevocable deci-
sions in an online fashion: the decision maker must decide how much to use of a variable/column at
the time that it is revealed, and cannot revise this decision in the future. With regard to Agrawal
et al. (2014) specifically, we note that this paper comments on the possibility of applying the pro-
posed procedure (the one-time learning algorithm, or OLA) in an offline manner. Deploying OLA
in such a manner would involve iterating through all n columns of the LP; although this could be
accomplished when n is of a medium scale, it is untenable when n is combinatorially large (e.g.,
the number of patterns in a cutting stock problem, as in our experiments with the cutting stock
problem in Section 5, or the number of rankings in the nonparametric choice estimation problem
in Section 6, which is (N + 1)! for a set of N products). For a more detailed comparison of the
differences between our work and Agrawal et al. (2014), we refer readers to Section H.1 of the
ecompanion.
Other Related Literature. Our proof technique is inspired by the literature on random feature

selection in machine learning (Moosmann et al. 2007, Rahimi and Recht 2008, 2009). In particular,
our paper generalizes the result of Rahimi and Recht (2009), which considers the problem of
learning a predictive model that is a weighted sum of random feature functions, to the problem of
solving linear programs that consist of random columns. The major difference between our setup
and that of Rahimi and Recht (2009) is that the decision variables in a linear program must satisfy
constraints (i.e., constraints (1b) and (1c)), while the weights of random feature functions in the
setup of Rahimi and Recht (2009) are not constrained in any way. Because of this difference, the
results of Rahimi and Recht (2009) cannot directly be applied to our problem setting. To overcome
this feasibility issue, we utilize classical LP sensitivity analysis and relate a possibly infeasible
solution constructed using the random sample of columns to a feasible solution of the sampled LP
(see Section B.2).

3. Column-Randomization Method
In this section, we first describe the basic notations and definitions that will be used throughout
the paper (Section 3.1). Then we formally define the column randomization method and investigate
its theoretical properties (Section 3.2). We end this section by discussing implications and inter-
pretations of the theoretical results (Section 3.3). Proofs of the results are relegated to Section B.

3.1. Notation and Definitions
For any positive integer n, let [n] ≡ {1,2, . . . , n}. Let ei be the ith standard basis vector for Rn;
that is, ei = (eij) where ei,j = 1 if j = i and ei,j = 0 if j ̸= i. Thus, for any x∈Rn, we can represent
it as x=

∑
i∈[n] xiei. We consider a linear program in standard form:

P : min{cTx |Ax= b, x≥ 0}, (2)

Akchen and Mǐsić : Column-Randomized Linear Programs
6

where A is an m×n matrix and c ∈Rn. We will refer to the problem P as the complete problem
throughout the paper, as it contains all of the columns of A.
We make two assumptions on problem P . First, we assume that problem P is feasible and

bounded; this assumption is not too restrictive, since the cases where the complete problem P is
either unbounded or infeasible are not interesting to consider. The second assumption we make is
that rank(A) =m, i.e., the rows of A are linearly independent. This is also not too restrictive, as
one can remove any rows of A that are linear combinations of the other rows without changing
the problem.
We define the dual problem D of problem (2) as max{pTb | pTA≤ cT}. For any optimization

problem P ′, we denote its optimal objective value by v(P ′) and its feasible region by F(P ′). By
LP strong duality and the assumption that P is feasible and bounded, we have v(P) = v(D).
Furthermore, for any optimization problem P ′′ that shares the same objective function as the
complete problem P and satisfies F(P ′′) ⊆ F(P), we define ∆v(P ′′) ≡ v(P ′′) − v(P), which is
nonnegative and can be interpreted as the optimality gap of solving P ′′ instead of P .

For each i∈ [m] and j ∈ [n], we use Ai and Aj to denote the ith row and jth column of matrix
A, respectively. For any collection of indices J ⊆ [n], we let AJ represent the submatrix of A that
consists of columns whose indices belong to J . In this paper, instead of solving either the complete
problem P or its dual D, we consider solving a linear program whose columns are randomly
selected. We call such a linear program a column-randomized linear program, which we formally
define below.
Definition 1. (Column-Randomized Linear Program) Let J be a finite collection of random

indices, i.e., J ≡ {j1, j2, . . . , jK} for an integer K, where jk ∈ [n] is a random variable for k =
1,2, . . . ,K. Then the problem

PJ : min{cTJ x̃ |AJ x̃= b, x̃≥ 0} (3)

is called a column-randomized linear program.
Clearly, PJ is equivalent to min{cTx |Ax= b, x≥ 0, xj = 0 ∀j /∈ J.}. With this reformulation,

any feasible solution of PJ can be represented as an element in F(P). We can thus define ∆v(PJ)
for the column-randomized LP PJ . We sample random indices in J by a randomization scheme
ρ, which is a computational procedure that randomly selects indices from [n], or equivalently,
randomly generates columns fromA. Let ξ be the probability distribution over [n] that corresponds
to ρ; that is, the jth component of ξ, denoted by ξj, is the probability that index j is selected
by ρ. Throughout this section, we assume ρ samples each index independently and identically
according to ξ. We will relax this assumption in Section E. We denote the dual problem DJ of PJ

as max{pTb | pTAJ ≤ cTJ }.
We will also require the notions of a basis, basic solutions and reduced costs in our theoretical

results. A collection of indices B ⊆ [n] of size m is called a basis if the matrix AB is nonsingular,
i.e., the collection of m columns {Aj}j∈B is linearly independent. A basic solution x of the primal
problem P corresponding to the basis B is the solution x obtained by setting xB =A−1

B b, where
xB is the subvector corresponding to the columns in B, and xN = 0, where xN is the subvector
corresponding to the columns in [n] \B. A solution x is called a basic feasible solution of P if it
is a basic solution for some basis B and satisfies x≥ 0. For the dual problem, a basic solution p
corresponding to the basis B is the solution p defined by setting pT = cTBA

−1
B ; if it additionally

satisfies pTA≤ cT , then it is also a basic feasible solution. Given a basis B, we define the reduced
cost vector c̄ for that basis as c̄≡ cT − cTBA

−1
B A.

Finally, we use ∥ · ∥ to denote norms. For a vector v ∈Rn, we let ∥v∥1 =
∑n

j=1 |vj| be its ℓ1 norm,

∥v∥2 =
√∑n

j=1 v
2
j be its Euclidean or ℓ2 norm, and ∥v∥∞ =maxj=1,...,n |vj| be its ℓ∞ norm. For a

matrixA, we let ∥A∥max =maxi,j |Ai,j|. Without loss of generality, we assume that the cost vector c
has unit Euclidean norm, i.e., ∥c∥2 = 1. This is not a restrictive assumption, because by normalizing
the cost vector c to have unit Euclidean norm, the objectives of the complete problem P and
the column-randomized problem PJ are both scaled by 1/∥c∥2. Thus, the relative performance of
problem PJ to the complete problem P , which is the main focus of our paper, remains the same.

Akchen and Mǐsić : Column-Randomized Linear Programs
7

3.2. Performance Guarantees
We propose the column randomization method in Algorithm 1. We first sample K indices,
j1, j2, . . . , jK , by a randomization scheme ρ and let J = {j1, . . . , jK}. We then collect the corre-
sponding columns of A as matrix AJ and the corresponding components of c as vector cJ . After
forming AJ and cJ , we solve the LP (4) and return its optimal value v(PJ) and optimal solution.

Algorithm 1 The Column Randomization Method

1: Sample K indices as J ≡ {j1, . . . , jK} by a randomization scheme ρ.
2: Define AJ = [Aj1 , . . . ,AjK] and cJ = [cj1 , . . . , cjK].
3: Solve the column-randomized linear program, which only has K columns:

PJ : min
{
cTJ x̃ |AJ x̃= b, x̃≥ 0

}
. (4)

4: return optimal objective value v(PJ) and an optimal solution x̃∗.

Notice that an optimal solution x̃∗ of problem PJ can be immediately converted to a feasible
solution for the complete problem P by enlarging x̃∗ to length n and setting x̃∗

j = 0 for j ∈ [n] \J .
We now present two theorems that bound the optimality gap ∆v(PJ)≡ v(PJ)−v(P) of problem

PJ ; we defer our discussion of these two theorems to Section 3.3. Since several preliminary results
are needed before we prove the theorems, we also relegate the proofs of the theorems to Section B.

Theorem 1. Let C be a positive constant and define the linear program Pdistr as

Pdistr : minimize
x∈Rn

cTx (5a)

such that Ax= b, (5b)

0≤ x≤C · ξ. (5c)

Let PJ be the column-randomized LP solved by Algorithm 1, and AJ be the corresponding constraint
matrix. For any δ ∈ (0,1), with probability at least 1− δ over the sample J , the following holds: if
PJ is feasible and rank(AJ) =m, then

∆v(PJ)≤∆v(Pdistr)+
C (1+mγ∥A∥max)√

K

(
1+

√
2 log

2

δ

)
, (6)

where γ is an upper bound on ∥p∥∞ for every basic solution p of the dual problem D and ∥A∥max =
maxij |Aij|.

Theorem 1 shows that, with probability at least 1−δ, the optimality gap ∆v(PJ) of the column-
randomized LP PJ is upper bounded by the sum of two terms. The first term is the optimality gap
∆v(Pdistr) of the problem Pdistr, which we refer to as the distributional counterpart. The second
term involves ∥A∥max, the largest absolute value of elements in the constraint matrix; γ, the upper
bound of the ℓ∞ norm of any basic solution of the dual problem; δ, the confidence parameter; and
K, the number of sampled columns. Most importantly, the second term converges to zero with a
rate 1/

√
K. In Section D, we will see how γ and ∥A∥max can be further bounded for certain special

cases.
We now present our second theorem, which relates the optimality gap to the reduced costs of

the complete problem.

Akchen and Mǐsić : Column-Randomized Linear Programs
8

Theorem 2. Define C, Pdistr, PJ and AJ as in Theorem 1. For any δ ∈ (0,1), with probability
at least 1− δ over the sample J , the following holds: if PJ is feasible and rank(AJ) =m, then

∆v(PJ)≤∆v(Pdistr)+
C√
K
·χ ·

(
1+

√
2 log

1

δ

)
(7)

where χ is an upper bound on ∥c̄∥2 for every basic solution of the complete problem P .

Theorem 2 has a similar structure to Theorem 1. Compared to Theorem 1, the upper bound
in Theorem 2 does not involve γ and ∥A∥max, but instead requires a bound on the norm of the
reduced cost vector for all the bases of P .

3.3. Discussion
Both Theorem 1 and 2 provide bounds on the optimality gap ∆v(PJ) of the following form:

∆v(PJ)≤∆v(Pdistr)+
C ·CP ·Cδ√

K
, (8)

where CP only depends on properties of the complete problem P and Cδ only depends on the
confidence parameter δ. In Theorem 1, CP = 1+mγ∥A∥max and Cδ = 1+

√
2 log(2/δ); in Theorem 2,

CP = χ and Cδ = 1+
√
2 log(1/δ). In the following discussion, we first focus on the general structure

of the upper bounds given in (8), and subsequently we address the differences between Theorem 1
and Theorem 2.

Role of Problem Pdistr: The distributional counterpart Pdistr is the restricted version of the
complete problem P , which includes the additional constraint x ≤ Cξ. Ignoring the value of the
constant C, which we will discuss in more detail below, Pdistr can be interpreted as a modification
of P where the most we can use each variable j is proportional to the probability of that variable
being sampled, ξj. Therefore, in a certain sense, Pdistr measures how well the induced distribution
ξ is aligned with columns that are used in good or optimal solutions of P . As a crude example,
for a fixed C, if ξ is such that ξj is large for every column j that appears in an optimal basis and
small for any other j, then we should expect Pdistr to be small. On the other hand, for a fixed C, if
ξ is such that ξj is small for columns j that appear in optimal or near optimal bases, and large for
j’s that appear in highly suboptimal bases, then we should expect ∆v(Pdistr) to be large. However,
this simple discussion highlights just one aspect of how Pdistr behaves, and in general Pdistr has
a complex dependence on the structure of P and the distribution ξ. When ξ corresponds to the
uniform distribution over [n], ∆v(Pdistr) can be viewed as measuring how well solutions that are
non-sparse and have low ℓ∞ norm – i.e., solutions that will satisfy x≤Cξ=C/n – perform in the
problem P . We discuss this perspective on Pdistr in much greater detail in Section 4.

Role of Constant C: Given a randomization scheme ρ and its corresponding distribution ξ,
as the constant C increases, the optimality gap ∆v(Pdistr) of problem Pdistr decreases since its
feasible set F(Pdistr) is enlarged. On the other hand, the second term on the RHS of bound (8)
increases since it is proportional to C. To interpret this phenomenon, we can view bound (8) as
a type of bias-complexity/bias-variance tradeoff, which is common in statistical learning theory
(Shalev-Shwartz and Ben-David 2014):

∆v(PJ)≤ ∆v(Pdistr)︸ ︷︷ ︸
Approximation Error

+
C ·CP ·Cδ√

K︸ ︷︷ ︸
Sampling Error

. (9)

When the constant C increases, the feasible set F(Pdistr) gradually becomes a better approximation
of the feasible set F(P), as more feasible solutions in F(P) are included in F(Pdistr). The optimality

Akchen and Mǐsić : Column-Randomized Linear Programs
9

gap ∆v(Pdistr), which can be viewed as the approximation error, is thus narrowed. On the other
hand, as the set F(Pdistr) expands, one needs more samples to ensure that the sampled feasible set
F(PJ) can approximate F(Pdistr). In that sense, as we increase C, the second term of the right-hand
side of (9) also increases.
Since the constant C can be arbitrary in Theorem 1, we can in theory minimize the right-hand

side of the inequality (9) (or more precisely, inequality (6)) to obtain a tighter bound, which results
in the following corollary.

Corollary 1. Define Pdistr, PJ , AJ , γ, and ∥A∥max as in Theorem 1. Define a function Φ :
(0,1)×N→R as

Φ(δ,K)≡ inf
C≥0

{
∆v(Pdistr)+

C (1+mγ∥A∥max)√
K

(
1+

√
2 log

2

δ

)}
.

For any δ ∈ (0,1), with probability at least 1− δ over the sample J , the following statement holds:
if PJ is feasible and rank(AJ) =m, then ∆v(PJ)≤Φ(δ,K).

Unfortunately, this result is in general difficult to apply, because the function Φ is difficult to
obtain in closed form. However, in Section 4, we will later see how under certain conditions, a
choice of C that is small will be sufficient to ensure that ∆v(Pdistr) is small, leading to an overall
small bound on ∆v(PJ).

Computational Strengths and Weaknesses: We compare the column randomization
method to the CG method from a computational viewpoint. An obvious characteristic of the CG
method is that it is a serial algorithm: to introduce a new column, one needs the dual solution of
the restricted problem that consists of columns generated in previous iterations. This sequential
nature unfortunately prevents the CG method from being parallelized. In contrast, the column ran-
domization method is amenable to parallelization. Given a collection of processors, each processor
can be used to sample a column and compute the constraint and objective coefficients in parallel,
until K columns in total are sampled across all processors. This can be especially advantageous
in cases where the objective or constraint coefficients require significant effort compute, such as
solving a dynamic program or integer program. For example, Bertsimas et al. (2019) considers a
set partitioning model of a pickup and delivery problem arising in airlift operations, where each
decision variable xv,S corresponds to an aircraft v being assigned to a collection of shipments S and
the cost coefficient cv,S is the optimal value of a scheduling problem that determines the sequence
of pickups and dropoffs of the shipments in S.
An obvious disadvantage of the column randomization method is that it does not guarantee

optimality. Even if there exists an optimal solution of the complete problem P that belongs to
the feasible set F(Pdistr) of problem Pdistr, the optimality gap still converges with rate 1/

√
K,

which implies that the “last-mile” shrinkage of the optimality gap requires an increasing number
of additional sampled columns. If optimality is a concern, instead of solely using the column
randomization method, one could use it as a warm-start for the CG method. Specifically, let
Jnz = {j | x̃∗

j > 0}, where x̃∗ is the solution returned by Algorithm 1. Then, the set of variables
(xj)J∈Jnz and the columns AJnz can be used as the initial solution for the CG method. We test such
a hybrid “column-randomization-then-column-generation” method in both of our numerical case
studies (see Sections F.3 and G.2 in the ecompanion) and show that this hybrid method reaches
provably optimal solutions in significantly less time than ordinary CG.

Additional Comments: Considering space constraints, we relegate the following discussions
to Section A of the e-companion: the lower bound on v(PJ), the feasibility of PJ , interpretation
of γ and ξ, the comparison of Theorems 1 and 2, and the design of the randomization scheme ρ.
Furthermore, in Section E, we explore the extension of our results to non-IID sampling of columns
and sampling without replacement.

Akchen and Mǐsić : Column-Randomized Linear Programs
10

4. Analysis of the distributional counterpart
A key component of the theoretical guarantees presented in the previous section is the term
∆v(Pdistr), which measures the gap between the distributional counterpart Pdistr and the complete
problem P . In this section, we provide more insight on the behavior of this term. In Section 4.1,
we consider a toy example to provide some intuition for how this term behaves. Armed with this
insight, in Section 4.2 we formalize a result, Theorem 3, which relates the gap ∆v(Pdistr) to the
abundance of nearly optimal, “diverse” basic feasible solutions of P . Lastly, in Section 4.3, we
consider three different random generative models for the complete problem P and show that with
high probability, a choice of C that scales gracefully in n (either O(1) or O(logn)) is sufficient to
ensure that ∆v(Pdistr) is small in terms of n (either O(1/

√
n) or O(logn/

√
n)).

4.1. A simple example
Consider the following full LP P and its distributional counterpart:

P : min{cTx | 1Tx= 1,x≥ 0}, (10)

Pdistr : min{cTx | 1Tx= 1,x≤Cξ,x≥ 0}. (11)

Suppose also that we set the probability distribution ξ to be the uniform distribution on [n], that is,
we set ξn = 1/n, so that all columns have the same probability to be chosen by the randomization
scheme. Note that although the constraint coefficients and the right-hand side of the only equality
constraint in P are all equal to 1, it is possible to transform many LPs with a single constraint to
this form. Specifically, consider the problem

P ′ : min{c′Tx′ | aTx′ = b,x′ ≥ 0}

where a≥ 0 and b > 0. We first divide both sides of the constraint aTx′ = b by b; we then divide
each variable’s constraint coefficient and objective coefficient by ai/b; and finally, we normalize the
objective coefficient vector to have unit norm. This results in a problem of the form (10), where
each ci is defined as ci = vi/∥v∥ and v= (c′1 · a1/b, . . . , c

′
n · an/b). The two problems P ′ and P are

then equivalent, in the following way: x = (x1, . . . , xn) is an optimal solution of P if and only if
x′ = ((b/a1) ·x1, . . . , (b/an) ·xn) is an optimal solution of P ′.

With this simple LP defined, we now wish to understand how we should set C so that ∆v(Pdistr) =
v(Pdistr)− v(P) is equal to zero. Let us consider two extreme cases.
1. When c = −e1, where e1 = (1,0, . . . ,0), then v(P) = −1. This optimal value can be only

achieved by a single optimal solution, x∗ = e1, which is a basic feasible solution. Therefore, to
ensure that ∆v(Pdistr) = 0, we must set C = n. Otherwise, if C < n, then the feasible region
of Pdistr will not contain x∗, and the optimality gap ∆v(Pdistr) will not be zero.

2. On the other hand, when c = (−1/
√
n)1, then we have v(P) = −1/

√
n. As in the previous

example, x∗ = (1,0,0, . . . ,0) is an optimal basic feasible solution, and we can again set C = n
so that the set {x | 0≤ x≤ C · ξ} contains this optimal solution, resulting in ∆v(Pdistr) = 0.
However, upon closer inspection, one can see that there are actually multiple optimal non-basic
solutions to the problem (in fact, every feasible solution is optimal). For example, another
optimal solution is x∗ = (0.5,0.5,0, . . . ,0), which would imply that we can use the smaller
value C = 0.5n to guarantee that ∆v(Pdistr) to be zero.
Note that although the non-sparse nature of this solution helps us, the infinity norm

of the solution is also important. For example, if we consider the optimal solution x∗ =
(0.7,0.3,0, . . . ,0), then we would need to set C = 0.7n. In general, we need to set C = n∥x∗∥∞
to ensure that x∗ ∈ {x′ ∈Rn | 0≤ x′ ≤C · ξ}.
Following this logic, it turns out that the optimal solution with the lowest infinity norm

is x∗ = (1/n,1/n, . . . ,1/n). For this solution, setting C = 1 is sufficient to ensure that the set
{x | x≤C · ξ} can still include an optimal solution, resulting in ∆v(Pdistr) = 0.

Akchen and Mǐsić : Column-Randomized Linear Programs
11

By comparing these two cases, we can see that in the former case that we must have C =O(n) to
ensure ∆v(Pdistr) = 0, whereas in the latter case, having C =O(1) is sufficient to ensure ∆v(Pdistr).
What helps to ensure that C can be small in the latter case is the existence of optimal solutions
that are non-sparse and in particular, have low infinity norm. Thus, we should intuitively expect
that a small gap ∆v(Pdistr) can be achieved with a low value of C when there exist optimal or
nearly-optimal solutions with low infinity norm. In the following two sections, we build on this
intuition to provide two different types of guarantees. First, in Section 4.2, we show that such
nearly-optimal solutions with low infinity norm exist when there exist many near-optimal basic
feasible solutions with low overlap in their bases, guaranteeing that ∆v(Pdistr) will be small for a
particular choice of C. Second, in Section 4.3, we propose three different random generative models
for the complete LP P , and show that with high probability, a small value of C (either O(1) or
O(logn)) is sufficient to ensure ∆v(Pdistr) will be small (either O(1/

√
n) or O(logn/

√
n)); in all

three models, the key will be to show the existence of solutions to P with small infinity norm.

4.2. Bounding the distributional counterpart gap for a fixed P
Building on the intuition obtained in the prior section, we now present our first theoretical result
on ∆v(Pdistr), which depends on the structure of P in terms of the behavior of nearly-optimal basic
feasible solutions to P .

Theorem 3. Suppose that:
• ξ is the uniform distribution on [n], i.e., ξj = 1/n for all j;
• There exist M basic feasible solutions, x1, . . . ,xM , of P that are within ϵ≥ 0 of the optimal

objective value, i.e., cTxi− v(P)≤ ϵ;
• Each variable j ∈ [n] appears in at most R of the corresponding bases B1, . . . ,BM ; and
• There exists a value xmax such that ∥xi∥∞ ≤ xmax for all M BFSs.

Then for C = (nR/M) ·xmax, we have ∆v(Pdistr)≤ ϵ.

The proof of this result follows by showing that the average of the M BFSs that are ϵ-optimal is
also an ϵ-optimal feasible solution, and that the infinity norm of this solution is at most Rxmax/M .

This result formalizes some of the insight from the stylized single-constraint example in Sec-
tion 4.1. In particular, the choice of C that achieves the gap of ϵ is O(nR/M). Thus, the larger
the number M of ϵ-optimal BFSs, the smaller the sampling effort K needs to be to guarantee that
the gap of the column-randomized problem ∆v(PJ) will be within ϵ. This, however, is modulated
by R, which measures the diversity of the BFSs. When R is small, it implies that the BFSs are
different, in that the same column only appears in a small number of BFSs, and that the M bases
actually span a large set of columns. When this is the case, it makes sense that the sampling effort
should be small, as there are many columns that we could use to form one of the BFSs or a convex
combination of the BFSs. On the other hand, when R is large, this implies that there are one or
more columns that are common across many of the BFSs. In this case, it is reasonable that the
sampling effort should be large, as we would need to sample these specific columns in order to be
able to form one of the BFSs or a convex combination of them.
We note that a limitation of this result is that the existence of nearly optimal BFSs is taken as

an assumption; our result does not provide conditions on P which would ensure that this is the
case. In general, it seems that for many types of large-scale LPs, it should be the case that there
are many nearly-optimal BFSs. In Section F.4 of the ecompanion, we show empirically that this is
indeed the case for the cutting stock problem, which is a classical example of a large-scale LP that
is usually solved via column generation. In particular, we demonstrate that M can be much larger
than R, indicating that the factor nR/M in C from Theorem 3 could exhibit sublinear growth in
n. Additionally, note that the following holds:

Mm=
M∑
t=1

m=
M∑
t=1

n∑
j=1

I{j ∈Bt}=
n∑

j=1

M∑
t=1

I{j ∈Bt} ≤
n∑

j=1

R= nR,

Akchen and Mǐsić : Column-Randomized Linear Programs
12

where the second equality follows the fact that each basis Bt consists of m columns and the
inequality follows the definition of R. Along with the fact R≤M , we have m≤ nR/M ≤ n. Thus,
the smallest possible value that C can take in Theorem 3 is mxmax, indicating that a C that is
constant or sublinear in n would lead to a small ∆v(Pdistr) for large-scale LPs. On the other hand,
the largest possible value of C is nxmax, in which case a large sampling effort K would be required
to achieve a small overall gap. We note that this latter case occurs when R is close to or equal to
M , which corresponds to the case where there is at least one column that appears in most or all
near-optimal bases. While such a scenario can occur in some specially constructed LPs, we believe
that this will not be the case for a large class of LPs that arise in practice. As noted above, this is
not the case in the cutting stock problem (see the aforementioned Section F.4 of the ecompanion),
and is also generally not the case in the nonparametric choice model estimation problem (see our
discussion on multiplicity of optimal solutions at the end of Section 6). Beyond these two crude
bounds, it is challenging to give a more precise bound on C without any further assumptions on
the LP structure. For this reason, in Section 4.3 we will establish that, by assuming that the LP
instances are randomly generated by three reasonable models, a carefully selected C of O(1) or
O(logn) can indeed result in a small distributional counterpart gap of O(1/

√
n) or O(logn/

√
n).

Lastly, we note here that the assumption of ξ being the uniform distribution, i.e., ξj = 1/n for all
j ∈ [n], is not a restrictive assumption in analyzing the distributional counterpart, since the result
can be used to bound the performance of the column randomization method under a general class
of distributions. We demonstrate this as follows. Let us first define P unif

distr as

P unif
distr : min

{
cTx |Ax= b, 0≤ x≤ (C/n) ·1

}
.

Now we consider a class of distributions with respect to a constant α> 0:

Ξα =
{
ξ ∈Rn | 1Tξ= 1, ξj ≥ α/n, ∀j ∈ [n]

}
.

The set Ξα is a general class of distributions. Note that for every distribution ξ in Ξα, the probability
ξj is bounded away from zero, which means that every column has a positive probability of being
sampled. Additionally, compared to the uniform distribution, it allows each column to be sampled
with a different probability.
Suppose PJ is a column-randomized LP that is obtained by sampling K columns under a distri-

bution ξ from Ξα. Following the notation in expression (9) and letting C ′ =C/α, with probability
at least 1− δ, we have the following statement: if PJ is feasible and rank(AJ) =m,

v(PJ)≤min
{
cTx |Ax= b,0≤ x≤C ′ξ

}
+

C ′ ·CP ·Cδ√
K

≤min
{
cTx |Ax≤ b,0≤ x≤C ′ · (α/n) ·1

}
+

C ′ ·CP ·Cδ√
K

= v
(
P unif

distr

)
+

1

α
·
(
C ·CP ·Cδ√

K

)
,

which implies that the gap of PJ satisfies ∆v(PJ)≤∆v (P unif
distr)+ (1/α) ·

(
C ·CP ·Cδ/

√
K
)
.

In other words, the second term O(1/
√
K) is scaled by a factor of 1/α. Therefore, the analysis

of Pdistr when ξ is the uniform distribution can be used to provide performance guarantees for the
column-randomized LP sampled by any ξ ∈Ξα. We will thus continue to use this uniform sampling
assumption in our analyses in Section 4.3.

Akchen and Mǐsić : Column-Randomized Linear Programs
13

4.3. Analysis of the distributional counterpart under random generative models
In this section, we present three different random generative models for large-scale linear programs,
and investigate the behavior of the distributional counterpart gap ∆v(Pdistr) under these three
models. The idea is to assume that the complete LP P is generated randomly according to a
certain procedure, and to then develop a high probability bound for ∆v(Pdistr) for a particular
choice of the constant C. We will show that for all three models, the corresponding choice of C is
either constant (does not have an explicit dependence on n) or logarithmic in n, while ∆v(Pdistr)
is correspondingly either O(1/

√
n) or O(logn/

√
n) with high probability.

In each generative model that we present, the final output is the triple (A,b,c) which fully
defines the complete problem P . Some of the steps will involve randomly generating some of these
objects, while others may involve choosing these objects in any arbitrary way that satisfies certain
conditions; for any such case of the latter, the manner in which the object is chosen is not important,
as the ensuing analysis of ∆v(Pdistr) will not depend on how that object is chosen. It will, of course,
depend on the probabilistic behavior of the objects chosen randomly.

4.3.1. Generative model 1 The first generative model that we will consider is generative
model 1. This procedure is formalized as Algorithm 2. The idea in this procedure is that we start
from some arbitrarily chosen set of columns A1, . . . ,An and a scaling factor η. We then set the
right-hand side vector b as b= η

∑n

j=1 θjAj, where (θ1, . . . , θn) is drawn uniformly from the (n−1)-
dimensional unit simplex or equivalently, drawn from a Dirichlet(α1, . . . , αn) distribution where
α1 = · · ·= αn = 1. We then choose c as any arbitrary unit norm vector that ensures that the optimal
value v(P) of the complete problem is nonnegative.

Algorithm 2 Generative Model 1

1: Fix any nonnegative constant η≥ 0.
2: Fix any matrix A= [A1 · · ·An] of columns.
3: Generate a random vector θ= (θ1, . . . , θn)∼Dirichlet(α1, . . . , αn), where α1 = · · ·= αn = 1.
4: Set b=

∑n

j=1 ηθjAj = ηAθ.
5: Fix any c∈ {v ∈Rn | ∥v∥2 = 1} such that v(P)≥ 0.
6: return (A,b,c).

Before presenting our theoretical result on generative model 1, we pause to make three important
comments about the generative model. First, the P generated in this way is always feasible by
construction (x= ηθ is a feasible solution). Second, with regard to an interpretation of generative
model 1, note that the right-hand side vector b is synthesized as a (scaled) convex combination of
the columns A1, . . . ,An. Thus, we can think of the complete optimization problem P as making the
decision x so that it has the same resource requirements as some reference or status quo decision
given by ηθ, that is, it satisfies Ax = A(ηθ), while minimizing the objective function cTx. By
assuming that θ ∼Dirichlet(1, . . . ,1), we are making the assumption that all decisions in the set
{y ∈ Rn |

∑n

j=1 yj = η,y ≥ 0} are equally likely to be the status quo decision. For a particular
choice of A, we can also interpret the resulting P as an estimation problem over the space of
discrete probability distributions, which relates to one of the numerical experiments we consider
(on nonparametric choice model estimation; see Section 6). Furthermore, it is worth noting that
Step 5 in Algorithm 2 is always achievable, and even when P is such that v(P)< 0, it is possible
to transform P into an equivalent problem for which v(P)≥ 0; hence the requirement that v(P) is
nonnegative comes without loss of generality. Additional details regarding these two observations
can be found in Section C.2 of the e-companion.
Under generative model 1, we have the following result, which bounds ∆v(Pdistr) with high

probability.

Akchen and Mǐsić : Column-Randomized Linear Programs
14

Theorem 4. Suppose that P is generated according to generative model 1. Assume that ξ is the
uniform distribution over [n], that is, ξj = 1/n for all j ∈ [n]. Let t≥ 1. Suppose that C is set as

C = t · η · (logn+1).

Then with probability at least 1− 1/t, Pdistr is feasible and

∆v(Pdistr)≤
tη(1+ logn)√

n
.

In words, Theorem 4 states that for most problems P , setting C to be logarithmic in n is sufficient
to ensure ∆v(Pdistr) =O(logn/

√
n). This result is particularly attractive because while n may be

unmanageably large, logn can be much smaller.
The proof of Theorem 4 relies on an alternate characterization of the Dirichlet(1, . . . ,1) distribu-

tion as the distribution of uniform spacings, and then using results on ordered uniform spacings,
which are the order statistics of uniform spacings, to obtain a high probability bound on the ran-
dom variable maxj∈[n] θj. This, together with a result that relates ∆v(Pdistr) to a bound β on the
minimum infinity norm of any feasible solution of P , yields the result.

4.3.2. Generative model 2 We now consider our second generative model. In generative
model 2, we assume that b is chosen arbitrarily, and then we generate the columns of the A
matrix. In particular, each of the n columns, A1, . . . ,An, are drawn independently from a standard
multivariate normal distribution. Upon selecting b and drawing the columns A1, . . . ,An, we finally
choose the objective coefficient vector c. We assume that c is chosen as any vector with unit norm
and that ensures that v(P)≥ 0, if P is feasible; if P is not feasible, we then simply select any c
with unit norm. This procedure is formalized below as Algorithm 3.

Algorithm 3 Generative Model 2

1: Fix any b∈Rm.
2: Generate n i.i.d. random vectors A1, . . . ,An ∼ Normal(0, I), where Normal(0, I) denotes a

standard multivariate normal distribution with 0 ∈ Rm as the mean vector and the m-by-m
identity matrix I as the covariance matrix.

3: Set A= [A1 · · · An].
4: If {x |Ax= b,x≥ 0} is non-empty, fix any c ∈ {v ∈Rn | ∥v∥2 = 1} such that v(P)≥ 0; other-

wise, fix any c∈ {v ∈Rn | ∥v∥2 = 1}.
5: return (A,b,c).

For this generative model, we have the following guarantee on the distributional counterpart
gap. Note that unlike generative model 1, the problem P generated by generative model 2 need
not be feasible. However, this guarantee also ensures that both P and Pdistr are feasible.

Theorem 5. Suppose that P is generated according to generative model 2. Assume that ξ is the
uniform distribution over [n], that is, ξj = 1/n for all j ∈ [n]. Let t≥ 1, and suppose that n> 4πt2m.
Suppose that C is set as

C = ∥b∥2 ·
1

√
2

2
√
π
− t

√
2m√
n

.

Then, with probability at least 1− 1/t, both P and Pdistr are feasible, and

∆v(Pdistr)≤
∥b∥2√

n
· 1

√
2

2
√
π
− t

√
2m√
n

.

Akchen and Mǐsić : Column-Randomized Linear Programs
15

The proof of Theorem 5 follows by bounding the minimum infinity norm problem min{∥x∥∞ |Ax=
b,x≥ 0}. To obtain a bound, it turns out that the dual problem can be written as a maximization
problem over a variable p subject to a constraint that can be written as a sample average of
a certain function of the columns that depends on the dual variable p. The true expectation of
this function of a random column at a given p can be found in closed form and turns out to be
∥p∥2 multiplied by a scaling constant, which gives rise to a dual problem that is essentially the
optimization of a linear function pTb subject to a constraint that looks like C ′∥p∥2 ≤ 1/n, where
C ′ is a constant. This is what gives rise to the ∥b∥2 part of the definition of C, and the ∥b∥2/

√
n

part of the bound on ∆v(Pdistr). To ensure that the sample average is close to this true expectation,
we consider the Rademacher complexity of a certain function class, which allows us to bound with
high probability the difference between the aforementioned sample average and its true expectation
using a term of the form C ′′∥p∥2 where C ′′ is a constant that depends on

√
n. The two constants

C ′ and C ′′ are what gives rise to the factor [
√
2/(2
√
π)− t

√
2m/
√
n]−1 in the bound.

As with our previous generative model result, Theorem 5 states that when the columns of A
are drawn i.i.d. from a standard multivariate normal distribution, then a choice of C that is O(1)
will result in a distributional counterpart gap that is O(1/

√
n). Since C directly translates into the

sampling effort K, this implies that a constant sampling effort should be sufficient to ensure that
the gap of the column-randomized LP ∆v(PJ) is O(1/

√
n).

With regard to the generality of generative model 2, we make the following two remarks. First,
generative model 2 is quite general, in the following informal sense. For any linear program P ≡
min{cTx |Ax= b,x≥ 0} where the columns A1, . . . ,An have arbitrary non-zero Euclidean norm,
we can transform the problem into an equivalent problem with columns that are normalized to
have unit norm. In particular, let A′ = [A′

1 · · · A′
n], where A′

j =Aj/∥Aj∥2, define c′ = (c′1, . . . , c
′
n)

as c′j = cj/∥Aj∥2, and define the new problem P ′ as P ′ ≡min{c′Tx′ |A′x′ = b,x′ ≥ 0}. Observe
that for every feasible solution x of P , the solution x′ = (∥A1∥2 · x1, . . . ,∥An∥2 · xn) is a feasible
solution whose objective in P ′ is the same as the objective of x in P , so by solving P ′ we can solve
P , and vice versa. Now, recall that when Aj follows the standard multivariate normal distribution,
then Aj/∥Aj∥2 is uniformly distributed on the m-dimensional unit sphere Sm = {v ∈Rm | ∥v∥2 =
1}. Thus, by assuming that the columns of A are drawn from the standard multivariate normal
distribution, we ensure that each column of the transformed matrix A′ is uniformly distributed on
the unit sphere Sm.

Second, building on the intuition in the prior remark, we can consider a modification of generative
model 2, where instead of sampling columns A1, . . . ,An independently from a standard multi-
variate normal distribution, we sample them from the uniform distribution on Sm. The resulting
generative model is described in Section C.5 of the ecompanion. The same proof machinery used for
Theorem 5, with a few careful (albeit tedious) modifications, goes through for this new generative
model, resulting in a similar guarantee for this new model (Theorem EC.4 in Section C.5). The main
difference in the new guarantee is that the factor [

√
2/(2
√
π)− t

√
2m/
√
n)]−1 that appears in The-

orem 5 is replaced by the factor [
√
2/(2
√
πµm)− t

√
2/
√
n)]−1, where µm =

√
2Γ((m+1)/2)/Γ(m/2)

is the mean of a chi distributed random variable with m degrees of freedom.

4.3.3. Generative model 3 Lastly, we turn our attention to our final generative model,
generative model 3. For this generative model, we deviate slightly from the previous two models
by considering a covering LP, as opposed to a standard form LP. The covering LP is defined as

P covering : min{cTx |Ax≥ b,x≥ 0},

where each entry of A is nonnegative, b is a nonnegative m-dimensional vector and c is a non-
negative n-dimensional vector, which we again assume to be normalized to have unit norm, i.e.,
∥c∥2 = 1. The distributional counterpart of this problem, P covering

distr is defined as

P covering
distr : min{cTx |Ax≥ b,x≤Cξ,x≥ 0},

Akchen and Mǐsić : Column-Randomized Linear Programs
16

and the distributional counterpart gap can be defined as ∆v(P covering
distr) = v(P covering

distr)− v(P covering).
It can be shown that a modified version of Theorem 1, which bounds the gap of the column-
randomized LP in terms of the gap of the distributional counterpart plus a O(1/

√
K) term that

depends on the maximum infinity norm of any dual basic solution, holds for P covering (see Sec-
tion D.3).
Our final generative model, generative model 3, is defined below as Algorithm 4. In this model,

each entry of Ai,j is 0 or 1, generated as an independent Bernoulli random variable with a row-
dependent probability qi.

Algorithm 4 Generative Model 3

1: Fix m probabilities, q1, . . . , qm ∈ (0,1).
2: Fix any b∈Rm such that b≥ 0.
3: Generate n i.i.d. random vectors A1, . . . ,An, where each Ai,j ∼Bernoulli(qi).
4: Set A= [A1 · · · An].
5: If {x |Ax≥ b,x≥ 0} is non-empty, fix any c ∈ {v ∈Rn | ∥v∥2 = 1} such that v(P)≥ 0; other-

wise, fix any c∈ {v ∈Rn | ∥v∥2 = 1}.
6: return (A,b,c).

For this generative model, we have the following result which bounds ∆v(P covering
distr) with high

probability.

Theorem 6. Suppose that P is generated according to generative model 3. Assume that ξ is
the uniform distribution over [n], that is, ξj = 1/n for all j ∈ [n]. Let δ ∈ (0,1) and that n >
log(m/δ)/[2(mini∈[m] qi)

2]. Suppose that C is set as

C =max
i∈[m]

bi ·
1

mini′∈[m] qi′ −
√

1
2n

log m
δ

then with probability at least 1− δ, both P and Pdistr are feasible and

∆v(P covering
distr)≤

maxi∈[m] bi√
n

· 1

mini′∈[m] qi′ −
√

1
2n

log m
δ

.

Similarly to our previous results, we establish this result by bounding (the dual of) the infinity
norm problem min{∥x∥∞ |Ax≥ b,x≥ 0}. Although the dual is generally challenging to analyze
due to the presence of the (·)+ =max{0, ·} function, we can leverage the fact that the dual variable
is nonnegative (due to the primal covering constraint Ax≥ b, as opposed to the equality constraint
Ax= b in the standard form LP) and that the columns of A are nonnegative. This allows us to
bound the dual optimal objective in closed form in terms of the row sums of A. An application of
Hoeffding’s inequality and the union bound allows us to then bound the deviation of the row sums
of A with high probability, leading to the above result.
An attractive aspect of generative model 3 is that the constraint matrix that one obtains is

a sparse 0-1 matrix; in contrast, under generative model 2, the matrix A is almost surely not
sparse. A limitation of generative model 3 and Theorem 6 is that it only applies to the covering
LP P covering, as opposed to the general standard form LP P . Unfortunately, it seems difficult to
generalize the proof approach to the case where A is used in the standard form LP P , as the dual
variable of the constraint Ax= b in the infinity norm problem min{∥x∥∞ |Ax= b,x≥ 0} is no
longer forced to be nonnegative.

Akchen and Mǐsić : Column-Randomized Linear Programs
17

4.3.4. Concluding remarks Overall, the main takeaway from this section is that under three
different and reasonably broad generative models for the complete LP P , there exists a choice of C
that (1) scales gracefully in n and (2) ensures that the distributional counterpart gap, ∆v(Pdistr),
will be small in terms of n with high probability. A limitation of these results is that many type
of LPs in practice are highly structured, and may not look like LPs that would be produced by
our generative models. For example, as discussed above, under generative model 2 the matrix A
is almost surely not sparse, whereas this is the case for many LPs with special structure, such as
network flow problems. Similarly, under generative model 1, the right hand side vector b arises as
a scaled random convex combination of the columns, but of course b could be chosen in a way that
is unlikely to come about from such a combination (e.g., a scaled convex combination of a small
set of columns). Nevertheless, we believe that our results are useful in providing intuition for how
∆v(Pdistr) will behave under three stylized models for how the complete LP is formed.

5. Numerical experiments with the cutting stock problem
In this section, we apply the column randomization method to the cutting-stock problem, a well-
known large-scale linear program that is commonly solved by CG. We follow the notation in
Bertsimas and Tsitsiklis (1997) and briefly review the problem for completeness.
A paper company needs to satisfy a demand of bi rolls of paper of width wi, for each i ∈ [m].

The company has supply of large rolls of paper of width W such that W ≥wi for i∈ [m]. To meet
the demand, the company slices the large rolls into smaller rolls according to patterns. A pattern is
a vector of nonnegative integers (a1, a2, . . . , am) that satisfies

∑m

i=1 aiwi ≤W , where each ai is the
number of rolls of width wi to cut from the large roll. Let n be the number of all feasible patterns
and let (a1j, a2j, . . . , amj) be the jth pattern for j ∈ [n]. Let A be the matrix such that Aij = aij

for i∈ [m] and j ∈ [n]. The cutting-stock problem is to minimize the number of large rolls of papers
used while satisfying the demand, which can be formulated as the following covering LP:

PCS : minimize
x∈Rn,x≥0

{
n∑

j=1

xj

∣∣∣∣ n∑
j=1

aijxj ≥ bi, ∀i∈ [m]

}
. (12)

Explicitly representing the constraint matrix A in full is usually impossible: the number
of feasible patterns n can be huge even if the number of demanded widths m is small.
A typical solution method is column generation, in which each iteration proceeds as fol-
lows. Given a set of patterns J = {j1, j2, . . . , jK}, solve the restricted problem PCS(J) :

minimize
x̃∈RK

{∑K

k=1 x̃k |
∑K

k=1Ajk x̃k ≥ b, x̃≥ 0
}

and let p be the optimal dual solution. Then find a

new pattern jK+1 such that the corresponding new column has the most negative reduced cost
1−pTAjK+1

. If the reduced cost is nonnegative, the current solution is optimal and the procedure
terminates; otherwise, we add jK+1 to the collection J and repeat the procedure. The problem
of finding the column with the most negative reduced cost is equivalent to solving the following
subproblem:

PCS-sub : maximize
a∈Nm

+

{
m∑
i=1

p∗i ai

∣∣∣∣ m∑
i=1

wiai ≤W

}
, (13)

where N+ is the set of nonnegative integers; if the optimal value v(PCS-sub) is smaller than 1, then
we terminate the column generation procedure; otherwise, we let pattern jK+1 correspond to the
optimal solution of PCS-sub and add it to J .
Instead of column generation, we can consider solving the cutting-stock problem by the column

randomization method. In our implementation of the column randomization method, we consider
the randomization scheme described in Algorithm 5. The randomization scheme essentially starts
with an empty pattern, i.e., (a1, . . . , am) = (0, . . . ,0) and at each iteration, it increments ai for a

Akchen and Mǐsić : Column-Randomized Linear Programs
18

randomly chosen i, while ensuring that it does not exceed the available width W . We refer to this
randomization scheme as the incremental randomization scheme and denote it by ρI . We note that
Algorithm 5 is not the only way to sample columns of A, and one can consider other randomization
schemes that would lead to potentially better performance of the column randomization method.
In Sections F.1 and F.2, we will see two other randomization schemes for this problem.

Algorithm 5 Incremental randomization scheme ρI for the cutting-stock problem.

1: Column a is a zero vector of length m and ζ←W .
2: while ζ > 0 do
3: I←{i |wi ≤ ζ}.
4: if |I| ≥ 1 then
5: Sample an index i uniformly at random from I.
6: Update ai← ai +1 and ζ← ζ −wi.
7: else
8: Break the while loop
9: return Column a.

In Figure 1, we illustrate the performance of column-randomized linear programs for the cutting-
stock problem with respect to number of columns K ∈ {2×104,4×104,6×104,8×104} and number
of required widths m∈ {1000,2000,4000}. We note that the value of m significantly affects size and
complexity of the problem: as m increases, there are more possible patterns and thus n increases as
well. For the CG approach, m defines the number of integer variables in the subproblem (13); as it
increases, the subproblem becomes more challenging. We set W = 105; we draw each wi uniformly
at random from {W/10,W/10 + 1, . . . ,W/4− 1,W/4} without replacement; and we draw each bi
independently uniformly at random from {1, . . . ,100}. We measure the performance of column-
randomized linear programs PCS

J , where each column is obtained by Algorithm 5, by its relative
optimality gap ∆v(PCS

J)/v(PCS). For each value of m and K, we run the column-randomized
method 20 times and compute the average optimality gap, which is plotted in Figure 1. Before
continuing, we note here that there are many ways to randomly generate cutting-stock instances.
Our goal is not to exhaustively evaluate the numerical performance of the column randomization
method on every possible family of instances, but rather to understand its performance on a
reasonably general set of instances.
We first observe that the curves in Figure 1 approximately match the convergence rate of 1/

√
K

in Theorems 1 and 2. In addition, the speed of convergence significantly slows down after the
optimality is smaller than 2%; see the curve for m= 1000. Second, as the problem size increases, we
need more samples to return comparable performance in terms of optimality gap. This is reflected
by the fact that for a fixed number of columns K, the optimality gap is larger for larger m.
We further compare the runtime of the column randomization method to that of the CG method

in Table 1. The first column of the table indicates the value of m, which quantifies the problem size
and subproblem complexity. The second column indicates the number of sampled columns K in
the column-randomized linear program. The third and fourth columns indicate relative optimality
gap ∆v(PCS(J))/v(PCS) and runtime of the column randomization method, respectively; for both
of these metrics, we report the average over 20 runs of the column-randomized method. The fifth
column shows the time required by the CG method to reach the same (average) relative optimality
gap. We also list the total duration for CG (i.e., the time required for CG to reach a 0% optimality
gap) in the fifth column, and denote it by “(total)”.
Table 1 shows that, when the problem is small (m= 1000), the column randomization method

returns a high-quality solution with an optimality gap below 1%, within 30 seconds and with
2×104 sampled columns. Doubling or tripling the number of sampled columns does not significantly
improve the performance, as the optimality gap is already small. Meanwhile, CG also works well

Akchen and Mǐsić : Column-Randomized Linear Programs
19

2 4 6 8

0

5

10

15

Number of Sampled Columns K (in units of 104)

O
p
ti
m
a
li
ty

G
ap

(i
n
u
n
it
s
10

−
2
)

m = 1000
m = 2000
m = 4000

Figure 1 Performance of the column randomization method on the cutting-stock problem with respect to number
of columns K and number of required widths m.

Demand Types (m) Columns (K) Optimality Gap (%) Runtime (s) CG Runtime (s)

1000 2× 104 0.78 28.4 365.5
4× 104 0.36 56.4 411.7
6× 104 0.20 89.3 456.4
8× 104 0.16 122.5 475.1

(total) 775.4

2000 2× 104 1.65 58.9 1330.6
4× 104 0.65 120.1 1622.8
6× 104 0.43 197.9 1732.2
8× 104 0.31 287.6 1805.0

(total) 2932.92

4000 2× 104 5.10 139.4 4979.8
4× 104 1.59 314.2 7175.2
6× 104 0.95 527.1 7670.1
8× 104 0.68 768.6 7940.0

(total) 13336.1

Table 1 Performance of the column randomization method on the cutting stock problem for different problem
sizes and numbers of sampled columns.

whenm= 1000, obtaining the optimal solution in a reasonable time (within fifteen minutes). On the
other hand, when the problem is large (m= 4000), the runtime of CG dramatically increases, as it
needs almost 5000 seconds (just under 1.5 hours) to reach a 5% optimality gap. The computational
limiting factor comes from solving the subproblem, which becomes more difficult asm increases. On
the other hand, the column randomization method only needs ten minutes to reach a 1% optimality
gap. This demonstrates the value of solving linear programs by the column randomization method
in lieu of CG when the subproblem is intractable.
Finally, we have included additional numerical experiments in Section F of the e-companion.

Specifically, we compare the column randomization method under different sampling schemes in
Sections F.1 and F.2. Furthermore, we investigate the combined effectiveness of the column ran-
domization method with CG in Section F.3. In Section F.4, we offer further insights into the
strong performance of the column randomization method in the cutting stock problem, drawing
connections to Theorem 3.

Akchen and Mǐsić : Column-Randomized Linear Programs
20

6. Numerical experiments with nonparametric choice model
estimation

The second problem we consider is nonparametric choice model estimation, which is a modern
application of large-scale linear programming and CG. In particular, we consider estimating the
ranking-based choice model from data (Farias et al. 2013, van Ryzin and Vulcano 2015, Mǐsić
2016). For completeness, we first briefly review the problem.
In the ranking-based nonparametric choice model, we assume that a retailer offers N different

products, indexed from 1 to N . We use the index 0 to represent the no-purchase alternative,
which is always available to customer. Together, we refer to the set [N]+ ≡ {0,1, . . . ,N} as the set
of purchase options. A ranking-based choice model (Σ,λ) consists of two components. The first
component Σ is a collection of rankings over options [N]+, in which each ranking represents a
customer type. We use σ(i) to indicate the rank of option i, where σ(i) < σ(j) implies that i is
more preferred to j under the ranking σ. When a set of products S ⊆ [N] is offered, a customer of
type σ selects option i from the set S∪{0} with the lowest rank, i.e., the option argmini∈S∪{0} σ(i).
The second component λ is a probability distribution over rankings in the set Σ; the element λσ

can be interpreted as the probability that a random customer would make decisions according to
ranking σ.
To estimate a ranking-based model, we utilize data in the form of past sales rate information.

Here we consider the type of data described in Farias et al. (2013); we refer readers to that paper
for more details. Assume that the retailer has provided M assortments S = {S1, S2, . . . , SM} in the
past, where each Sm ⊆ [N]. For each assortment Sm, the retailer observes the choice probability
vi,m for assortment Sm and option i, which is the fraction of past transactions in which a customer
chose i, given that assortment Sm was offered. We let v(i,m) ≡ 0 if i /∈ S ∪{0}.

The estimation of a ranking-based choice model (Σ,λ) can be formulated in the form of problem
P portfolio (Section D.5). We first notice that there are in total (N +1)! rankings over [N]+, which
we enumerate as σ1, σ2, . . . , σ(N+1)!. We let the kth column of the problem correspond to ranking
σk, for k ∈ [(N + 1)!]. We use α(i,m),k to indicate whether a customer following ranking σk would
choose option k when offered assortment Sm. The estimation problem can then be written as

PEST : minimize
λ0,v̂

D(v̂,v) (14a)

such that

(N+1)!∑
k=1

α(i,m),k ·λk = v̂(i,m), ∀m∈ [M], i∈ [N]+, (14b)

(N+1)!∑
k=1

λk = 1, (14c)

λ≥ 0, (14d)

where v̂ and v are vectors of v̂(i,m) and v(i,m) values, respectively, for i ∈ [N]+ and m ∈ [M].
The function D measures the error between the predicted choice probabilities v̂ and the actual
choice probabilities v. We follow Mǐsić (2016) and set D= ∥v̂−v∥1, which has Lipschitz constant√
M(N +1).
We notice that even if N is merely 10, problem PEST has nearly 4× 107 columns. Given that

problem PEST may have an intractable number of columns, van Ryzin and Vulcano (2015) and Mǐsić
(2016) applied CG to solve the problem. Alternatively, we can apply the column randomization
method. We consider the randomization scheme described in Algorithm 6, where we first randomly
generate a ranking (line 2) and then map its decision under each assortment to form a column (lines
3-5). We refer to this randomization scheme as the uniform randomization scheme and denote it
by ρUniform.
Before continuing, we pause to make three important remarks. First, we note that sampling a

ranking uniformly at random (line 2) requires minimal computational effort, and can be done by a

Akchen and Mǐsić : Column-Randomized Linear Programs
21

single function call in most programming languages. Second, we also note that while in Algorithm 5
we directly sample the coefficients of a column, in Algorithm 6 we instead first sample the underly-
ing “structure” of the column (a ranking) then obtain the corresponding coefficients; this illustrates
the problem-specific nature of the randomization scheme. Lastly, we note that the paper of Farias
et al. (2013) considered a linear program for computing the worst-case revenue of an assortment,
which is effectively the minimization of a linear function of λ subject to constraints (14b)–(14d).
The paper considered a solution method for this problem based on sampling constraints in the
dual (which is equivalent to sampling columns in the primal), but did not compare this approach
to column generation, which will do shortly.

Algorithm 6 Uniform randomization scheme ρUniform for the nonparametric choice estimation
problem.

1: Initialize α(i,m)← 0 for i∈ [N]+ and m∈ [M].
2: Sample a ranking/permutation σ : [N]+→ [N]+ uniformly at random.
3: for m∈ [M] do
4: i∗← argmini∈Sm∪{0} σ(i).
5: α(i∗,m)← 1
6: return Column α= (α(i,m))i∈[N]+,m∈[M].

We compare the performance of the column randomization method to that of CG with the
following experiment setup. We assume that customers follow multinomial logit (MNL) model to

make decision, that is, the choice probability vi,m follows vi,m = exp(ui)/
(
1+

∑
j∈Sm

exp(uj)
)
for

a given assortment Sm, where each parameter ui represents the expected utility of product i. We
choose each ui ∼ U [0,1], i.e., uniformly at random from interval [0,1]. We also choose the set of
historical assortments S = {S1, . . . , SM} uniformly at randomly from all possible 2N assortments
of N products. We examine the performance of the column randomization method under various
problem sizes, using different values of N and M . For the CG method, we use the method in Mǐsić
(2016), and solve the subproblem as an integer program (IP) from van Ryzin and Vulcano (2015).
Table 2 shows the performance of the column randomization method. The first two columns

of the table indicate the problem size. The third column shows the number of sampled columns.
The fourth and fifth columns display the objective value and the runtime, respectively; for both of
these metrics, we report the average value of the metric over 20 runs of the column randomization
method. The sixth column denotes the duration of the CG method to reach the same (average)
objective value as the column randomization method. We remark that the optimal objective value
v(PEST) is always zero, since random utility maximization models such as the MNL model can be
represented as ranking-based models (Block and Marschak 1959). Thus, instead of showing relative
optimality gap as in Table 1, we directly show the objective value of the column-randomized linear
program in Table 2.
In all cases listed in Table 2, the column randomization method outperforms the CG method

by a large margin. It only requires a fraction of the runtime of the CG method to reach the same
optimality level. In particular, when (N,M) = (10,150), the column randomization method only
needs three seconds to reach the optimal objective value, which is zero, while the CG method needs
over ten thousand seconds (almost three hours). In real-world applications, the number of products
N is usually significantly larger than 10. In those cases, the advantage of column randomization
will be even more pronounced. We note that in the IP formulation of the CG subproblem, the
number of binary variables scales as O(N 2 +NM). Thus, as N increases, the subproblem quickly
becomes intractable (van Ryzin and Vulcano (2015) showed this subproblem to be NP-hard).
Lastly, we comment on why column randomization performs well for the ranking-based choice

estimation problem. For the ranking-based choice estimation problem, it is well-known that the

Akchen and Mǐsić : Column-Randomized Linear Programs
22

N M Columns (K) Objective Runtime (s) CG Runtime (s)

6 50 500 0.05 0.03 20.58
1000 0.00 0.07 30.44

8 50 500 0.13 0.10 52.32
1000 0.00 0.12 88.25

8 100 500 0.92 0.21 120.14
1000 0.07 0.45 414.43
1500 0.00 0.66 632.23

10 50 500 0.27 0.17 11.93
1000 0.00 0.22 282.78

10 100 500 1.60 0.28 240.23
1000 0.40 0.53 774.66
1500 0.06 0.71 1423.71
2000 0.00 1.57 2234.52

10 150 500 2.91 0.69 507.63
1000 0.98 1.07 1399.22
1500 0.43 1.33 2635.36
2000 0.18 2.01 4524.72
2500 0.00 3.14 10143.93

Table 2 Performance of the column randomization method on the estimation problem P EST under varying
problem sizes and numbers of sampled columns.

problem is extremely underdetermined. Specifically, for a fixed collection of m assortments with
choice probabilities generated according to a random utility maximization problem, there can be
multiple distributions λ that solve Aλ= v, where A= [α1 α2 · · ·α(N+1)!]; see Farias et al. (2013),
van Ryzin and Vulcano (2015), Mǐsić (2016), Sturt (2021). This multiplicity arises in two ways.
First, we can find two different collections of columns αj1 , . . . ,αjK and αj̃1

, . . . ,αj̃K
, each of which

can be used to perfectly fit the vector v. Second, even for a fixed collection of columns αj1 , . . . ,αjK ,
each column αj could be rationalized by more than one ranking; in other words, there could exist
many rankings that give rise to the same column. (As a simple example of this, suppose that N = 4,
M = 2 and S1 = {1,2}, S2 = {3,4}, and consider the column α= (1,0,0,1,0,0) corresponding to
the option-assortment pairs ((1,1), (2,1), (0,1), (3,2), (4,2), (0,2)). This column can correspond to
the ranking 1≺ 3≺ 2≺ 4≺ 0, which prefers product 1 the most, but can also correspond to the
ranking 3≺ 1≺ 2≺ 4≺ 0, which prefers product 3 the most. In fact, any ranking that obeys 1≺ 2
and 3≺ 4 will be consistent with α.) Consequently, the ranking-based choice estimation problem
will often have an extremely large number of optimal or near-optimal solutions that are diverse
in terms of which variables (rankings) those solutions are supported on. Although PEST is not a
standard form LP, this type of structure and the numerical performance exhibited in Table 2 is
consistent with Theorem 3, which suggests that column randomization will do well in the presence
of many diverse, near-optimal solutions.
Finally, we have included supplementary numerical experiments in Section G of the e-companion.

In Section G.1, we compare the method’s performance under a different sampling scheme. In
Section G.2, we explore the benefits of combining the column randomization method with CG.

7. Conclusion
In this paper, we analyzed the column-randomization method for solving large-scale linear programs
with an intractably large number of columns, which involves simply randomly sampling a collection
of K columns from the constraint matrix, and solving the corresponding problem. We developed
performance guarantees for the solution one obtains from this approach. We derived an upper

Akchen and Mǐsić : Column-Randomized Linear Programs
23

bound on the optimality gap that holds with high probability. This bound converges at a rate
1/
√
K, where K is the number of sampled columns, to the optimality gap of a linear program

that we named as distributional counterpart. We further analyzed the gap of the distributional
counterpart and discussed conditions under which this gap will be small. In numerical experiments
with the cutting stock problem and the nonparametric choice model estimation problem, we showed
that the proposed approach can obtain near-optimal solutions in a fraction of the computational
time required by column generation. Given the computational simplicity of randomly sampling
columns in many problems, we hope that this paper will spur further research into large-scale
optimization that leverages the synergy of randomization and optimization.

Acknowledgments
We sincerely thank the area editor Daniel Kuhn, the associate editor, and the three anonymous
referees for their thoughtful comments that helped to strengthen this work. The authors also thank
Vishal Gupta for helpful comments on an early version of this work.

References
S. Agrawal, Z. Wang, and Y. Ye. A dynamic near-optimal algorithm for online linear programming. Opera-

tions Research, 62(4):876–890, 2014.

I. Bairamov, A. Berred, and A. Stepanov. Limit results for ordered uniform spacings. Statistical Papers, 51
(1):227–240, 2010.

D. P. Bertsekas. Network optimization: continuous and discrete models. 1998.

D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6. 1997.

D. Bertsimas and S. Vempala. Solving convex programs by random walks. Journal of the ACM (JACM), 51
(4):540–556, 2004.

D. Bertsimas, A. Chang, V. V. Mǐsić, and N. Mundru. The Airlift Planning Problem. Transportation Science,
53(3):773–795, 2019.

J. R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Science & Business Media,
2011.

H. D. Block and J. Marschak. Random orderings and stochastic theories of response. Technical report,
Cowles Foundation for Research in Economics, Yale University, 1959.

J. J. M. Bront, I. Méndez-Dı́az, and G. Vulcano. A column generation algorithm for choice-based network
revenue management. Operations research, 57(3):769–784, 2009.

G. Calafiore and M. C. Campi. Uncertain convex programs: randomized solutions and confidence levels.
Mathematical Programming, 102(1):25–46, 2005.

G. C. Calafiore and M. C. Campi. The scenario approach to robust control design. IEEE Transactions on
automatic control, 51(5):742–753, 2006.

M. C. Campi and S. Garatti. The exact feasibility of randomized solutions of uncertain convex programs.
SIAM Journal on Optimization, 19(3):1211–1230, 2008.

M. C. Campi and S. Garatti. Wait-and-judge scenario optimization. Mathematical Programming, 167(1):
155–189, 2018.

Y.-C. Chen and V. V. Mǐsić. Decision forest: A nonparametric approach to modeling irrational choice.
Management Science, Forthcoming, 2022.

G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations research, 8(1):101–111,
1960.

D. P. De Farias and B. Van Roy. On constraint sampling in the linear programming approach to approximate
dynamic programming. Mathematics of operations research, 29(3):462–478, 2004.

J. Desrosiers and M. E. Lübbecke. A primer in column generation. pages 1–32, 2005.

Akchen and Mǐsić : Column-Randomized Linear Programs
24

O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation. Discrete Mathe-
matics, 194(1-3):229–237, 1999.

Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time windows. European
journal of operational research, 54(1):7–22, 1991.

R. Eghbali, J. Saunderson, and M. Fazel. Competitive online algorithms for resource allocation over the
positive semidefinite cone. Mathematical Programming, 170(1):267–292, 2018.

R. El-Yaniv and D. Pechyony. Transductive rademacher complexity and its applications. Journal of Artificial
Intelligence Research, 35:193–234, 2009.

A. N. Elmachtoub and P. Grigas. Smart “predict, then optimize”. arXiv preprint arXiv:1710.08005, 2017.

V. F. Farias, S. Jagabathula, and D. Shah. A nonparametric approach to modeling choice with limited data.
Management science, 59(2):305–322, 2013.

D. Feillet. A tutorial on column generation and branch-and-price for vehicle routing problems. 4or, 8(4):
407–424, 2010.

L. R. Ford Jr and D. R. Fulkerson. A suggested computation for maximal multi-commodity network flows.
Management Science, 5(1):97–101, 1958.

M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. Freeman San Francisco, 1979.

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock problem. Operations
research, 9(6):849–859, 1961.

T. Kitahara and S. Mizuno. A bound for the number of different basic solutions generated by the simplex
method. Mathematical Programming, 137(1-2):579–586, 2013.

A. Klose and A. Drexl. Lower bounds for the capacitated facility location problem based on column gener-
ation. Management Science, 51(11):1689–1705, 2005.

X. Li and Y. Ye. Online linear programming: Dual convergence, new algorithms, and regret bounds. arXiv
preprint arXiv:1909.05499, 2019.

X. Liu, Y. Wang, and L. Wang. McDiarmid-Type Inequalities for Graph-Dependent Variables and Stability
Bounds. In Advances in Neural Information Processing Systems, pages 10889–10899, 2019.

A. S. Manne. Linear programming and sequential decisions. Management Science, 6(3):259–267, 1960.

V. V. Mǐsić. Data, models and decisions for large-scale stochastic optimization problems. PhD thesis,
Massachusetts Institute of Technology, 2016.

P. Mohajerin Esfahani, T. Sutter, and J. Lygeros. Performance bounds for the scenario approach and an
extension to a class of non-convex programs. IEEE Transactions on Automatic Control, 60(1):46–58,
2014.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT press, 2018.

F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using randomized clustering
forests. In Advances in neural information processing systems, pages 985–992, 2007.

S. H. Owen and M. S. Daskin. Strategic facility location: A review. European journal of operational research,
111(3):423–447, 1998.

M. Pilanci and M. J. Wainwright. Randomized sketches of convex programs with sharp guarantees. IEEE
Transactions on Information Theory, 61(9):5096–5115, 2015.

R. Pyke. Spacings. Journal of the Royal Statistical Society: Series B (Methodological), 27(3):395–436, 1965.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in neural information
processing systems, pages 1177–1184, 2008.

A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with randomiza-
tion in learning. In Advances in neural information processing systems, pages 1313–1320, 2009.

S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends® in Machine
Learning, 4(2):107–194, 2012.

Akchen and Mǐsić : Column-Randomized Linear Programs
25

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms. Cambridge
university press, 2014.

A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming: modeling and theory.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2021.

B. Sturt. The value of robust assortment optimization under ranking-based choice models. arXiv preprint
arXiv:2112.05010, 2021.

K. T. Talluri and G. J. van Ryzin. The theory and practice of revenue management, volume 68. Springer
Science & Business Media, 2006.

G. van Ryzin and G. Vulcano. A market discovery algorithm to estimate a general class of nonparametric
choice models. Management Science, 61(2):281–300, 2015.

K. Vu, P.-L. Poirion, and L. Liberti. Random projections for linear programming. Mathematics of Operations
Research, 43(4):1051–1071, 2018.

Y. Ye. A new complexity result on solving the markov decision problem. Mathematics of Operations Research,
30(3):733–749, 2005.

Y. Ye. The simplex and policy-iteration methods are strongly polynomial for the markov decision problem
with a fixed discount rate. Mathematics of Operations Research, 36(4):593–603, 2011.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec1

This page is intentionally blank. Proper e-companion title

page, with INFORMS branding and exact metadata of the

main paper, will be produced by the INFORMS office when

the issue is being assembled.

ec2 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Electronic companion for “Column-Randomized Linear
Programs: Performance Guarantees and Applications” by
Akchen and Mǐsić

Table of Contents

A Additional Discussion on Results in Section 3 ec2

B Omitted Proofs of Results in Section 3 ec6

C Omitted Proofs and Other Results for Section 4 ec13

D Special Structures and Extensions ec29

E Statistically-Dependent Columns ec39

F Cutting Stock Problem Experiments (continued) ec46

G Nonparametric Choice Model Estimation Experiments (continued) ec52

H Comparisons to Other Approaches ec54

The ecompanion is organized as follows. Section A follows Section 3.3 and continues the dis-
cussion of Theorems 1 and 2. Section B completes all omitted proofs for the theoretical results
in Section 3. Section C provides the proofs for all theoretical results in Section 4 regarding the
distributional counterpart and provides additional comments. Section D shows that the parameters
γ in Theorem 1 can be further obtained for several applications. Section E extends the proposed
framework by proposing sampling statistically-dependent columns in the column randomization
method. Section F follows Section 5 and completes the numerical experiments on the cutting stock
problem. Section G follows Section 6 and completes the numerical experiments on the nonpara-
metric choice model estimation. Section H provides a detailed comparison between the proposed
framework and other large-scale LP solvers based on randomized algorithms (Agrawal et al. 2014,
Vu et al. 2018). All of the code is available at the repository Column-Randomized LP at

https://github.com/yi-chun-akchen/Column-Randomized LP.

Appendix A Additional Discussion on Results in Section 3
This section continues the discussion in Section 3.3.

Lower Bound on v(PJ): We note that neither Theorem 1 nor 2 implies that the optimality
gap ∆v(PJ) of the column-randomized linear program PJ can be arbitrarily small with large K.
Indeed, if ξ is not “comprehensive” enough – that is, its support is small, and does not include
the complete set of columns of any optimal basis for P – then ∆v(Pdistr)> 0 no matter what C is,
and one would not expect the column-randomized program PJ to perform closely to the complete
problem P , even if K is large. We can formalize this intuition in the following proposition, where
I+ denotes the support of the distribution ξ.

Proposition EC.1. Define I+ = {j ∈ [n] | ξj > 0} and let P+
distr ≡min{cT

I+
x+ |AI+x

+ = b,x+ ≥
0}. Then v(PJ)≥ v(P+

distr) almost surely, and v(PJ)→ v(P+
distr) almost surely as K→∞.

The proof is straightforward and omitted for brevity, as any solution of PJ can be reformulated as a
feasible solution of P+

distr, and as K→∞, every column in I+ is sampled at least once almost surely,
ensuring that v(PJ) = v(P+

distr). An obvious consequence of this proposition is that if I+ = [n], i.e.,

https://github.com/yi-chun-akchen/Column-Randomized_LP

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec3

every column has a positive probability of being sampled, then v(PJ) will converge to v(P) when
enough columns are sampled. From this perspective, the value of our bounds in Theorems 1 and 2
is that they provide finite sample guarantees, for the case where K≪ n and it is impossible that
one will have sampled all of the n columns.

Feasibility of PJ : We make several important remarks regarding the feasibility of PJ and how
feasibility is incorporated in our guarantee. First, note that in general, the sampled problem PJ

need not be feasible. As a simple example, consider the following complete problem:

P = PI ≡min{1Tx | Ix= 1,x≥ 0},

where I is the n-by-n identity matrix and m= n. In this problem, the only way that the sampled
problem PJ can be feasible is if the collection j1, . . . , jK includes every index in [n]; if any column
j ∈ [n] is not part of the sample J , then the sampled problem PJ is automatically infeasible. Thus,
when K <n, PJ is infeasible almost surely. When K ≥ n, it is still possible that j1, . . . , jK does not
include all indices in [n], and thus PJ is infeasible with positive probability.
For this reason, our guarantee on the optimality gap is stated as a conditional guarantee: with

high probability over the sample j1, . . . , jK , the optimality gap of PJ obeys a particular bound if
the column-randomized LP is feasible. Formally, our two guarantees can be represented as

Pr

[
{PJ is feasible}⇒

{
∆v(PJ)≤∆v(Pdistr)+

C√
K
·CP ·Cδ

}]
≥ 1− δ.

Since the implication A⇒B is logically equivalent to AC∪B, an alternative equivalent restatement
of the general form of our guarantee is

Pr

[
{PJ is infeasible} ∪

{
∆v(PJ)≤∆v(Pdistr)+

C√
K
·CP ·Cδ

}]
≥ 1− δ.

We note that this type of guarantee is distinct from probabilistically conditioning on j1, . . . , jK ,
i.e., our guarantee is not the same as

Pr

[
∆v(PJ)≤∆v(Pdistr)+

C√
K
·CP ·Cδ PJ is feasible

]
≥ 1− δ,

because upon conditioning on the feasibility of PJ , the random variables j1, . . . , jK are in general
no longer an i.i.d. sample. As an example of this, consider again problem PI above, with K = n and
a randomization scheme ρ corresponding to the uniform distribution ξ = (1/n, . . . ,1/n) over [n].
By conditioning on the event that PJ is feasible, the sample J = {j1, . . . , jK} must then be exactly
equal to [n], and we obtain that Pr[jk = t, jk′ = t] = 0 ̸=Pr[jk = t] ·Pr[jk′ = t] for any k, k′ ∈ [K]
with k ̸= k′ and t∈ [n]. In this example, the indices j1, . . . , jK are thus not independent.

With regard to the feasibility of column-randomized LPs, it appears to be difficult to guarantee
feasibility in general. However, one can use similar techniques as in the proofs of our main results
to characterize the near-feasibility of a column-randomized LP. Consider the following complete
problem, and its sampled and distributional counterparts:

P feas =min{∥Ax−b∥1 | x≥ 0},
P feas

J =min{∥AJ x̃−b∥1 | x̃≥ 0},
P feas

distr =min{∥Ax−b∥1 | 0≤ x≤Cξ}.

The objective function in each problem measures how close Ax is to b for a given nonnegative
solution x, and the optimal value measures the minimum total infeasibility, as measured by the
lowest attainable ℓ1 distance between Ax and b. Note that an optimal value of zero for a given
problem implies that the feasible region contains a solution x that satisfies Ax= b. With a slight
abuse of notation, let us use v(P feas), v(P feas

J) and v(P feas
distr) to denote the optimal objective value

of each problem. We then have the following result.

ec4 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Proposition EC.2. Let C be a nonnegative constant. For any δ ∈ (0,1), with probability at
least 1− δ over the sample J ,

v(P feas
J)≤ v(P feas

distr)+
C√
K
·m · ∥A∥max ·

(
1+

√
2 log

1

δ

)
.

The proof of Proposition EC.2 (see Section B.3 of the ecompanion) follows using a similar but
simpler procedure than those used in the proofs of Theorems 1 and 2. The guarantee in Proposi-
tion EC.2 has a similar interpretation to Theorems 1 and 2: the magnitude of the total infeasibility
of the columns J is bounded with high probability by the minimum infeasibility of the distributional
counterpart P feas

distr plus a O(1/
√
K) term.

Feasibility-guaranteed column randomization algorithm: One practical way in which one
can modify Algorithm 1 to ensure that the sampled problem is always feasible is to augment the
column set J with a set of columns JF such that PJ∪JF is a feasible problem. We define the new
procedure, Algorithm 7, below.

Algorithm 7 The Feasibility Guaranteed Column Randomization Method

1: Set JF ⊆ [n] to be a set of columns such that PJF is feasible and rank(AJF) =m.
2: Sample K indices as J ≡ {j1, . . . , jK} by a randomization scheme ρ.
3: Define AJ∪JF = [Aj]j∈J∪JF and cJ∪JF = [cj]j∈J∪JF .
4: Solve the column-randomized linear program, which has |J ∪JF | columns:

PJ∪JF : min
{
cTJ∪JF

x̃ |AJ∪JF x̃= b, x̃≥ 0
}
. (EC.1)

5: return optimal objective value v(PJ∪JF) and an optimal solution x̃∗.

There are two important aspects of Algorithm 7 to be cognizant of. First, for this procedure,
we can adapt Theorems EC.1 and Theorem EC.2 so as to obtain guarantees on ∆v(PJ∪JF). This
results in the following two guarantees; importantly, these guarantees are no longer conditional
guarantees.

Theorem EC.1. Let J and JF be as defined in Algorithm 7. For any δ ∈ (0,1), with probability
at least 1− δ over the sample J , then

∆v(PJ∪JF)≤∆v(Pdistr)+
C (1+mγ∥A∥max)√

K

(
1+

√
2 log

2

δ

)
, (EC.2)

Theorem EC.2. Let J and JF be as defined in Algorithm 7. For any δ ∈ (0,1), with probability
at least 1− δ over the sample J , then

∆v(PJ∪JF)≤∆v(Pdistr)+
C√
K
·χ ·

(
1+

√
2 log

1

δ

)
(EC.3)

Second, in the statement of Algorithm 7, the first step is to obtain a set of columns JF so that
PJF is feasible and AJF has full row rank. This can be accomplished easily by applying the first
phase of the two-phase method, which is a standard method for obtaining an initial feasible solution

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec5

to a linear program for which an initial basis is not obvious (see Chapter 3, Section 5 of Bertsimas
and Tsitsiklis 1997). In particular, one formulates the following problem:

minimize
x,ϵ+,ϵ−

1Tϵ+ +1Tϵ− (EC.4a)

subject to Ax+ Iϵ+− Iϵ− = b, (EC.4b)

x≥ 0, (EC.4c)

ϵ+,ϵ− (EC.4d)

where ϵ+,ϵ− ∈ Rm and 0 is an appropriately sized vector of zeros in the two nonnegativity con-
straints. As with the main problem P , this problem obviously cannot be formulated explicitly, but
can be solved using column generation. At the start of column generation, we do not include any
columns from A, and the principal constraint is Iϵ+ − Iϵ− = b, for which an initial basis can be
found trivially: for each i ∈ [m], set ϵ+i = max{bi,0} and ϵ−i = min{bi,0}. As column generation
progresses, the objective value will decrease and the ϵ+i and ϵ−i variables will gradually leave the
basis. Upon termination, one will obtain a basic feasible solution for which all of the ϵ+i , ϵ

−
i vari-

ables are non-basic. The resulting set of basic columns of x, JF , is such that PJF is feasible and
rank(AJF) =m. Observe now that if PJF is feasible, then PJ∪JF , for any set of columns J ⊆ [n],
must also be feasible: one can take any solution xJF to PJF and set xj = 0 for all j ∈ J \JF , result-
ing in a solution xJ∪JF that is nonnegative, and satisfies AJ∪JFxJ∪JF = b. In addition, the matrix
AJ∪JF must also have rank m. Although this approach requires column generation, it is reason-
able to expect that column generation applied to problem (EC.4) to find an initial solution should
generally be faster than when it is applied to the complete problem P . Proofs of Theorem EC.1
and EC.2 can be found in Section B.4.

Interpretation of γ and χ: We first note that the technique of bounding the objective value
of a linear program using the ℓ∞ norm of basic feasible solutions has been applied previously in
the literature (Ye 2011, Kitahara and Mizuno 2013). The presence of γ and χ in Theorem 1 and
2, respectively, arises due to the use of sensitivity analysis results from linear programming with
respect to the right-hand side vector b. As we discuss in the proof in Section B, any optimal
solution x∗0 of problem Pdistr has a sparse counterpart x′ in the space SJ ≡ {x | xj = 0 ∀j /∈ J} such
that x′ is in the vicinity of x∗0 in terms of Euclidean distance. However, x′ does not necessarily
belong to the feasible set F(PJ) of the column-randomized linear program PJ , since F(PJ) is a
subset of SJ . To relate the optimal objective value v(PJ) of problem PJ to cTx′, which is close to
cTx∗0, we use sensitivity analysis arguments which involve either γ or χ.

Comparison of Theorems 1 and 2: While both Theorem 1 and 2 provide valid bounds
for the optimality gap ∆v(PJ), Theorem 1 is in general easier to apply; indeed, in Section D
we discuss two notable examples where γ can be easily computed (specifically, LPs with totally
unimodular constraint matrices A and infinite horizon discounted Markov decision processes). For
problems that are not standard form LPs, neither guarantee directly applies, but we can obtain
specialized guarantees by carefully modifying a result (Proposition EC.3 in Section B.2) that leads
to Theorem 1 and designing bounds for the ℓ∞ norm of feasible or optimal solutions of DJ (as
opposed to basic solutions of D). We will later showcase two examples of such guarantees, for
covering LPs (Section D.3) and packing LPs (Section D.4).
With regard to Theorem 2, we expect for most problems that Theorem 2 will be difficult to

apply, as it requires a universal bound for the norm of the reduced cost vector for every basis,
feasible or not, of problem P . Nevertheless, Theorem 2 is interesting because it involves reduced
costs, which are also of importance in column generation. For a basic feasible solution, the reduced
cost of a non-basic variable j can be thought of as the rate at which the objective changes as
one increases xj to move from the current basic feasible solution to an adjacent/neighboring basic
feasible solution in which j is part of the basis. With this perspective of reduced costs, one can

ec6 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

informally interpret the result in the following way: if χ is small, then the rate at which the objective
changes between adjacent basic feasible solutions is small. In such a setting, it is reasonable to
expect that there will be many basic feasible solutions that are close to being optimal and that
solving the sampled problem PJ should return a solution that performs well. On the other hand,
if there exist non-optimal basic feasible solutions where the reduced cost vector has a very large
magnitude (which would imply a large χ), then this would suggest that the objective changes by a
large amount between certain adjacent basic feasible solutions, and that there are certain “good”
columns that are more important than others for achieving a low objective value. In this setting,
we would expect the sampled problem objective v(PJ) to only be close to v(P) if J includes the
“good” columns, which would be unlikely to happen in general.

Design of Randomization Scheme ρ: The quantity ξj, which is the probability that the jth
column is drawn by the randomization scheme ρ, can be interpreted as the relative importance
of xj compared to other components of x ∈ Rn in the complete problem P ; indeed, when the
corresponding column is randomly chosen, xj is allowed to be nonzero, and can thus be utilized to
solve the optimization problem. For example, in a network flow optimization problem, xj represents
the amount of flow over edge j; a nonzero ξj can thus be interpreted as the belief that edge j
should be used for flow. As another example, consider the LP formulation of an MDP, where each
component of x corresponds to a state-action pair (s, a) (i.e., x(s,a) is the expected discounted
frequency of the system being in state s and action a being taken). In this setting, a nonzero ξ(s,a)
can be interpreted as the relative importance of (s, a) to other state-action pairs.

One can design the randomization scheme based on prior knowledge of the problem. For example,
one could use a heuristic solution to a network flow problem to design a randomization scheme ρ
resulting in a distribution ξ that is biased towards this heuristic solution. Similarly, if one has access
to a good heuristic policy for an MDP, one can design a distribution ξ that is biased towards state-
action pairs (s, a) that occur frequently for this policy. If such prior knowledge is not available, a
uniform or nearly-uniform distribution over [n] is adequate. We provide several concrete examples
on how to design randomization schemes in our numerical experiments in Sections 5 and 6. Finally,
we note that the indices in J have been assumed to be i.i.d. In Section E, we derive analogous
guarantees for the case when the indices are sampled non-independently.

Minor Remarks on the Upper Bound: We mention two other interesting properties of
the bound (8). First, the second term in (8) is independent of the distribution ξ; no matter how
ξ is designed, the optimality gap ∆v(PJ) is guaranteed to converge with rate 1/

√
K. Second,

the dependence of the bound on the confidence parameter δ is via
√
2 log(2/δ) in Theorem 1 or√

2 log(1/δ) in Theorem 2. This implies that very small values of δ will not significantly increase
the upper bound on ∆v(PJ).

Appendix B Omitted Proofs of Results in Section 3
In this section, we prove Theorem 1 and 2. We start with some preliminary results (Section B.1)
then prove the main theorems (Section B.2).

B.1 Preliminary Results and Lemmas
Lemma EC.1 and EC.2 bound the distance between the sample mean and the expected value of a
collection of i.i.d. vectors, in terms of ℓ2 norm and ℓ1 norm, respectively. Lemma EC.1 is Lemma
4 from Rahimi and Recht (2009), which utilizes McDiarmid’s inequality to show that the scalar
function ∥w̄−E [w̄]∥2, where w̄ is the mean of K i.i.d. vectors w1, . . . ,wK , concentrates to zero

with rate O
(
1/
√
K
)
.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec7

Lemma EC.1. (Rahimi and Recht 2009) Let w1,w2, . . . ,wK be i.i.d. random vectors such that
∥wk∥2 ≤ C for k = 1, . . . ,K. Let w̄ = (1/K) ·

∑K

k=1wk. Then for any δ ∈ (0,1), we have, with
probability at least 1− δ,

∥w̄−E [w̄]∥2 ≤
C√
K
·

(
1+

√
2 log

1

δ

)
.

Lemma EC.2. Let w1,w2, . . . ,wK be i.i.d. random vectors of size m such that ∥wk∥∞ ≤C for
k = 1, . . . ,K. Let w̄= (1/K) ·

∑K

k=1wk. Then for any δ ∈ (0,1), we have, with probability at least
1− δ,

∥w̄−E [w̄]∥1 ≤
mC√
K
·

(
1+

√
2 log

1

δ

)
.

Proof: Since ∥wk∥2 ≤
√
m∥wk∥∞ ≤

√
mC, we apply Lemma EC.1 and obtain that with

probability at least 1− δ, ∥w̄−E [w̄]∥2 ≤
√
m ·C/

√
K ·

(
1+

√
2 log 1

δ

)
. Combining this with the

fact that ∥w̄−E [w̄]∥1 ≤
√
m · ∥w̄−E [w̄]∥2, we obtain the desired result. □

Lemma EC.3 is a standard result of sensitivity analysis of linear programming; see Chapter 5 of
Bertsimas and Tsitsiklis (1997). In fact, one can view the optimal objective value of problem P as
a convex function in b and show that any optimal dual solution p is a subgradient at b.

Lemma EC.3. Let z(b) = min{cT0 y |A0y= b,y≥ 0} and z(b′) = min{cT0 y |A0y= b′,y≥ 0}.
Then z(b)− z(b′)≤ pT (b−b′), where p is an optimal dual solution of the former problem.

B.2 Proofs of Theorem 1 and 2
We first establish a useful result.

Proposition EC.3. Let C be a nonnegative constant and define the linear program Pdistr as
in Theorem 1, i.e., Pdistr : min{cTx |Ax= b,0≤ x≤Cξ}. Let PJ be the column-randomized LP
solved by Algorithm 1. For any δ ∈ (0,1), with probability at least 1− δ over the sample J , the
following holds: if PJ is feasible, then

∆v(PJ)≤∆v(Pdistr)+
C√
K
· (1+ ∥p∥∞ ·m · ∥A∥max) ·

(
1+

√
2 log

2

δ

)

for any optimal solution p of problem DJ (the dual of problem PJ).

Proof: Let j1, . . . , jK be the set of indices sampled according to the distribution ξ by the ran-
domization scheme ρ. Let x∗0 be an optimal solution of the distributional counterpart problem
Pdistr. Consider the solution x′ that is defined as

x′ ≡ 1

K

K∑
k=1

x∗0
jk

ξjk
· ejk ,

where we use ej to denote the jth standard basis vector for Rn. In addition, define the vector b′ as

b′ ≡Ax′.

To prove our result, we proceed in three steps. In the first step, we show how we can probabilisti-
cally bound ∥x′−x∗0∥2. In the second step, we show how we can probabilistically bound ∥b′−b∥1.
In the last step, we use the results of our first two steps, together with sensitivity results for linear

ec8 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

programs, to derive the required bound. In what follows, we use I+ to denote the support of ξ,
that is, I+ = {j ∈ [n] | ξj > 0}.

Step 1: Bounding ∥x′−x∗0∥2. To show that x′ will be close to x∗0, let us first define the vector
wk as

wk =
x∗0
jk

ξjk
· ejk

for each k ∈ [K]. The vectors w1, . . . ,wK constitute an i.i.d. collection of vectors, and possess three
special properties. First, observe that x′ is just the sample mean of w1, . . . ,wK . Second, observe
that the expected value of each wk can be calculated as

E[w] =
∑
j∈I+

ξj ·
x∗0
j

ξj
· ej =

∑
j∈I+

x∗0
j ej =

∑
j∈[n]

x∗0
j ej = x∗0

where we use w to denote a random vector following the same distribution as each wk. In the
above, we note that the third step follows because the distributional counterpart Pdistr includes the
constraint x≤Cξ, so j /∈ I+ automatically implies that x∗0

j = 0.
Finally, observe that the ℓ2 norm of each wk can be bounded as

∥wk∥2 =
∣∣∣∣x∗0

jk

ξjk

∣∣∣∣ · ∥ejk∥2 ≤C · 1 =C,

where the inequality follows because x∗0 satisfies the constraint 0 ≤ x ≤ Cξ. With these three
properties in hand, and recognizing that ∥x′ − x∗0∥2 = ∥(1/K)

∑K

k=1wk − E[w]∥2, we can invoke
Lemma EC.1 to assert that, with probability at least 1− δ/2,

∥x′−x∗0∥2 ≤
C√
K
·

(
1+

√
2 log

2

δ

)
. (EC.5)

Step 2: Bounding ∥b′−b∥1. To show that b′ will be close b, we proceed similarly to Step 1.
In particular, we define bk for each k ∈ [K] as

bk ≡Awk =
x∗0
jk

ξjk
·Aejk =

x∗0
jk

ξjk
Ajk .

Observe that by definition of bk, we have that the sample mean of b1, . . . ,bK is equal to b′:

1

K

K∑
k=1

bk =
1

K

K∑
k=1

Awk =A

(
1

K

K∑
k=1

wk

)
=Ax′ ≡ b′. (EC.6)

In addition, the expected value of each bk can be calculated; letting b̃ denote a random variable
with the same distribution as each bk, we have

E[b̃] =AE[wk] =Ax∗0 = b.

Lastly, we can bound the ℓ∞ norm of each vector bk as

∥bk∥∞ =

∥∥∥∥x∗0
jk

ξjk
Ajk

∥∥∥∥
∞
=

∣∣∣∣x∗0
jk

ξjk

∣∣∣∣ · ∥Ajk∥∞ ≤C∥A∥max,

where the inequality follows by the definition of ∥A∥max and the fact that x∗0 satisfies 0≤ x≤Cξ.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec9

With these observations in hand, we now recognize that ∥b′ − b∥1 = ∥(1/K)
∑K

k=1bk −E[b̃]∥1,
i.e., ∥b′−b∥1 is just the ℓ1 norm of the deviation of a sample mean from its true expectation; we
can therefore invoke Lemma EC.2 to assert that, with probability at least 1− δ/2,

∥b′−b∥1 ≤
m ·C · ∥A∥max√

K
·

(
1+

√
2 log

2

δ

)
. (EC.7)

Step 3: Completing the proof. With Steps 1 and 2 complete, we are now ready to bound
the optimality gap. For any vector b′′ ∈Rm, we define the linear program PJ(b

′′) as

PJ(b
′′) : min

{
cTx |Ax= b′′,x≥ 0, xj = 0 ∀j /∈ J

}
. (EC.8)

Then v(PJ(b
′))≤ cTx′; this follows because Ax′ = b′ and x′ ≥ 0, which means that x′ is a feasible

solution to problem PJ(b
′). In addition, since cTx∗0 = v(Pdistr), we have

v(PJ(b
′))≤ cTx′ = cT

(
x∗0 +(x′−x∗0)

)
= v(Pdistr)+ cT (x′−x∗0). (EC.9)

If the column-randomized problem PJ is feasible, then by letting p be any optimal solution of the
dual of PJ and applying Lemma EC.3, we have

v(PJ) = v(PJ(b))≤ v(PJ(b
′))+pT (b−b′) (EC.10)

≤ v(Pdistr)+ cT (x′−x∗0)+pT (b−b′) (EC.11)

≤ v(Pdistr)+ ∥c∥2 · ∥x′−x∗0∥+ ∥p∥∞ · ∥b′−b∥1 (EC.12)

= v(Pdistr)+ ∥x′−x∗0∥2 + ∥p∥∞ · ∥b′−b∥1, (EC.13)

where the first inequality comes from Lemma EC.3, the second inequality comes from (EC.9), the
third inequality comes from the Cauchy-Schwarz inequality and Hölder’s inequality, and the last
equality comes from the assumption that ∥c∥2 = 1.

We now bound expression (EC.13) by applying the inequalities (EC.5) and (EC.7), each of which
hold with probability at least 1− δ/2, and combining them using the union bound. We thus obtain
that, with probability at least 1− δ,

v(PJ)≤ v(Pdistr)+
C√
K
· (1+ ∥p∥∞ ·m ·Amax) ·

(
1+

√
2 log

2

δ

)
. (EC.14)

Subtracting v(P) from both sides gives us the required inequality. □

With Proposition EC.3, we can smoothly prove Theorem 1 as follows.
Proof of Theorem 1: By invoking Proposition EC.3, we obtain that with probability at least

1− δ, if PJ is feasible, then

∆v(PJ)≤∆v(Pdistr)+
C√
K
· (1+ ∥p∥∞ ·m ·Amax) ·

(
1+

√
2 log

2

δ

)
,

for any dual optimal solution p of DJ . To prove the theorem, let us set p to an optimal basic
feasible solution of the problem DJ . Note that such a dual optimal solution is guaranteed to exist
by the assumption that rank(AJ) =m. Since p is a basic feasible solution of DJ , it is automatically
a basic (but not necessarily feasible) solution of the complete dual problem D. By the definition
of γ in the theorem, we have that ∥p∥∞ ≤ γ, and the theorem follows. □

To prove Theorem 2, we prove a complementary result to Proposition EC.3.

ec10 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Proposition EC.4. Let C, PJ and Pdistr be defined as in the statement of Proposition EC.3.
For any δ ∈ (0,1), with probability at least 1− δ over the sample J , the following holds: if PJ is
feasible, then

∆v(PJ)≤∆v(Pdistr)+
C√
K
· ∥cT −pTA∥2 ·

(
1+

√
2 log

1

δ

)
for any optimal solution p of problem DJ (the dual of problem PJ).

Proof: We follow the proof of Proposition EC.3 until inequality (EC.11) and continue as follows:

v(PJ) = v(PJ(b))≤ v(PJ(b
′))+pT (b−b′)

≤ v(Pdistr)+ cT (x′−x∗0)+pT (b−b′)

= v(Pdistr)+ cT (x′−x∗0)+pTA(x∗0−x′)

= v(Pdistr)+
(
cT −pTA

)
(x′−x∗0)

≤ v(Pdistr)+ ∥cT −pTA∥2 · ∥x′−x∗0∥2,

(EC.15)

where the bound holds for any optimal solution p of the sampled dual problem DJ . By invoking
Lemma EC.1 with δ to bound ∥x′ − x∗0∥2, and subtracting v(P) from both sides, we obtain the
desired result. □

Using Proposition EC.4, we now prove Theorem 2.
Proof of Theorem 2: We invoke Proposition EC.4 and set p to be an optimal basic feasible

solution of the sampled dual problem DJ ; then pT = cTBA
−1
B for some set of basic variables B ⊂ [n].

In this case, we observe that the dual slack vector cT − pTA becomes cT − cTBA
−1
B A, which is

exactly the reduced cost vector c̄ associated with the basis B within the full problem P . By using
the hypothesis that any such reduced cost vector satisfies ∥c̄∥2 ≤ χ, we obtain the desired result. □

B.3 Proof of Proposition EC.2
Let x∗0 be an optimal solution of P feas

distr. Define the solution x′ as

x′ =
1

K

K∑
k=1

x∗0
jk

ξjk
· ejk .

With x′, we can bound the objective value of P feas
J as follows:

v(P feas
J)≤ ∥Ax′−b∥1

= ∥Ax′−Ax∗0 +Ax∗0−b∥1
≤ ∥Ax′−Ax∗0∥1 + ∥Ax∗0−b∥1
= ∥Ax′−Ax∗0∥1 + v(P feas

distr) (EC.16)

where the first step follows by the fact that x′, when restricted to the indices in J , is a feasible
solution of P feas

J ; the third step follows by the triangle inequality; and the fourth follows by the
definition of x∗0 as an optimal solution of P feas

distr.
The only remaining step is to bound ∥Ax′−Ax∗0∥1. To do this, let us define the vector vk as

vk =
x∗0
jk

ξjk
Ajk

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec11

for each k ∈ [K]. The vectors v1, . . . ,vK are special for three reasons. First, their sample mean is
exactly

1

K

K∑
k=1

vk =
1

K

K∑
k=1

x∗0
jk

ξjk
Ajk

=
1

K

K∑
k=1

x∗0
jk

ξjk
Aejk

=Ax′.

Second, letting v denote a random variable following the same distribution as each vk, the expected
value of each vk is

E[v] =
∑
j∈I+

ξj ·
x∗0
j

ξj
Aj

=
∑
j∈I+

x∗0
j Aj

=
∑
j∈[n]

x∗0jAj

=Ax∗0

where I+ is the subset of indices in [n] such that ξj > 0. Note that the third step is justified by
observing that ξ∗0j = 0 whenever j /∈ I+ (this is because of the constraint 0≤ x≤Cξ in the definition
of P feas

distr).
Lastly, observe that each vk is bounded as

∥vk∥∞ =
x∗0
jk

ξjk
· ∥Ajk∥∞ ≤C ·H,

where we use the hypothesis that ∥Aj∥∞ ≤ ∥A∥max and the fact that x∗0 satisfies 0≤ x∗0 ≤Cξ.
With all of these properties, the quantity ∥Ax′−Ax∗0∥1 can be re-written as ∥(1/K)

∑K

k=1 vk−
E[v]∥1, which we can bound using Lemma EC.2 (see Section B.1). Invoking Lemma EC.2, we get
that

∥Ax′−Ax∗0∥1 = ∥
1

K

K∑
k=1

vk−E[v]∥1

≤ mC∥A∥max√
K

(
1+

√
2 log

1

δ

)
.

with probability at least 1− δ. Using this within the bound (EC.16), we obtain that

v(P feas
J)≤ v(P feas

distr)+ ∥Ax′−Ax∗0∥1

≤ v(P feas
distr)+

C√
K
·m · ∥A∥max ·

(
1+

√
2 log

1

δ

)

holds with probability at least 1− δ, which completes the proof. □

ec12 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

B.4 Proof of Theorem EC.1 and EC.2
As with Theorems 1 and 2, we first establish analogs of Propositions EC.3 and EC.4 for Algorithm 7.

Proposition EC.5. Let C be a nonnegative constant and let PJ∪JF be the column-randomized
LP solved by Algorithm 7. For any δ ∈ (0,1), with probability at least 1− δ over the sample J , then

∆v(PJ∪JF)≤∆v(Pdistr)+
C√
K
· (1+ ∥p∥∞ ·m · ∥A∥max) ·

(
1+

√
2 log

2

δ

)

for any optimal solution p of problem DJ∪JF .

Proof: The proof of Proposition EC.5 follows along similar lines as the proof of Proposition
EC.3. More specifically, we construct x′ and b′ in the same way, and Steps 1 and 2 follow through
identically. In the last step, Step 3, the sequence of bounding steps is almost the same, with a few
differences:

v(PJ∪JF) = v(PJ∪JF (b))

≤ v(PJ∪JF (b
′))+pT (b−b′)

≤ cTx′ +pT (b−b′)

= cTx∗0 + cT (x′−x∗0)+pT (b−b′)

= v(Pdistr)+ cT (x′−x∗0)+pT (b−b′)

≤ v(Pdistr)+ ∥c∥2∥x′−x∗0∥2 + ∥p∥∞∥b−b′∥1.

In the above, there are two important, subtle differences in the bounding. First, p is now any
optimal dual solution of PJ∪JF , whereas in Proposition EC.3, we required p to be any optimal dual
solution of PJ . Additionally, the second inequality follows because x′, which we defined as

x′ =
1

K

K∑
k=1

x∗0
jk

ξjk
ejk ,

is still a feasible solution of PJ∪JF (b
′). (Note that x′ is supported on J , which is obviously a subset

of J ∪JF ; additionally, b
′ was defined as b′ ≡Ax′, so by construction x′ must satisfy the equality

constraint, and by construction x′ is nonnegative, so it satisfies the nonnegativity constraint.)
The remaining steps, which involve applying the high probability bounds from Steps 1 and 2 to

∥x′−x∗0∥2 and ∥b−b′∥1, follow in the same way as in the proof of Proposition EC.3. □
We now prove Theorem EC.1.
Proof of Theorem EC.1: As in the proof of Theorem 1, we invoke Proposition EC.5 with p set

to an optimal basic feasible solution of DJ∪JF . Note that such a solution exists because Algorithm 7
guarantees that rank(AJ∪JF) =m. Since p is a basic solution of DJ∪JF it remains a basic solution
of the complete dual problem D, and thus it obeys ∥p∥∞ ≤ γ, which establishes the theorem. □
To establish Theorem EC.2, we similarly need an analog of Proposition EC.4 for Algorithm 7.

Proposition EC.6. Let C, PJ and Pdistr be defined as in the statement of Proposition EC.3.
For any δ ∈ (0,1), with probability at least 1− δ over the sample J , the following holds: if PJ is
feasible, then

∆v(PJ)≤∆v(Pdistr)+
C√
K
· ∥cT −pTA∥2 ·

(
1+

√
2 log

1

δ

)
for any optimal solution p of problem DJ (the dual of problem PJ).

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec13

Proof: As with Proposition EC.5, we construct x′ and b′ as in the proof of Proposition EC.3,
and follow Steps 1 and 2 from that proof. We then follow the bounding procedure in the proof of
Proposition EC.4, with some minor modifications:

v(PJ∪JF) = v(PJ∪JF (b))

≤ v(PJ∪JF (b
′))+pT (b−b′)

≤ cTx′ +pT (b−b′)

= cTx∗0 + cT (x′−x∗0)+pT (b−b′)

= v(Pdistr)+ cT (x′−x∗0)+pT (Ax−Ax′)

= v(Pdistr)+ (cT −pTA)(x′−x∗0)

≤ v(Pdistr)+ ∥cT −pTA∥2∥x′−x∗0∥2,
where the main difference from the proof of Proposition EC.4 is again that p is a dual optimal
solution of PJ∪JF , and we use the fact that x′, which is supported on J , is a feasible solution of
PJ∪JF (b

′). From here, the rest of the proof is the same as Proposition EC.4. □
We now prove Theorem EC.2.
Proof of Theorem EC.2: As in the proof of Theorem 2, we invoke Proposition EC.6 and set p

to be an optimal basic feasible solution of the dual problem DF∪FJ
. Since pT = cTBA

−1
B for some set

of basic variables B ⊂ J ∪ JF ⊂ [n], the dual slack vector cT −pTA is the reduced cost vector c̄ of
the basis B within the full problem P , and using the assumption that any such c̄ obeys ∥c̄∥2 ≤ χ,
the result follows. □

Appendix C Omitted Proofs and Other Results for Section 4
C.1 Proof of Theorem 3
For the solutions x1, . . . ,xM , consider the averaged solution x̃ defined as

x̃j =
1

M

M∑
i=1

xi
j,

for each column j ∈ [n]. Since each column j is in at most R of the bases B1, . . .BM , any coordinate
j of x̃ is the average of M values of which at most R have non-zero values, and each of those at
most R values is upper bounded by xmax. It thus follows that for all j,

x̃j ≤
R

M
xmax.

Observe now that by setting C = n · (R/M)xmax, we obtain that

Cξj = n · (R/M)xmax · 1/n= (R/M)xmax,

which means that x̃ satisfies the constraint xj ≤Cξj for all j. Since x̃ is the convex combination of
BFSs to P , it satisfies Ax= b and x≥ 0. Thus x̃ is a feasible solution to Pdistr. We therefore have

v(Pdistr)≤ cT x̃

=
1

M

M∑
i=1

cTxi

≤ 1

M

M∑
i=1

(v(P)+ ϵ)

= v(P)+ ϵ,

where the first inequality follows since x̃ is feasible for Pdistr and the second inequality follows since
each of the M BFSs is assumed to be within ϵ of v(P). Subtracting v(P) from both sides gives the
desired result. □

ec14 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

C.2 Additional comments on the generative model 1
We complete our remarks on the generative model 1.

An alternative interpretation An alternative interpretation of generative model 1 can also
be obtained in the case when η= 1 and when A is structured as

A=

[
A′

1T

]
,

where 1 is an n-dimensional vector of ones, and A′ is a (m− 1)-by-n matrix. In this case, we can
see that for any θ in the (n− 1) dimensional simplex, we will have

b=Aθ=

[
A′θ
1Tθ

]
=

[
A′θ
1

]
,

which implies that P can be written as

minimize
x

cTx (EC.17a)

subject to A′x=A′θ, (EC.17b)

1Tx= 1, (EC.17c)

x≥ 0. (EC.17d)

We can think of problem (EC.17) as an estimation problem over the space of discrete probability
distributions on [n]. In particular, constraints (EC.17c) and (EC.17d) enforce that x is a probability
distribution, while constraint (EC.17b) can be interpreted as a constraint that enforces a set of
moments of x to match those of θ. From this perspective, generative model 1 can be loosely
interpreted as imposing a uniform prior. The nonparametric choice estimation problem that we
numerically study in Section 6 can be regarded as an instance of the moment problem (EC.17)
with some modifications.

Scaling c so that v(P)≥ 0. A key element of generative model 1 is that c is selected so that
v(P)≥ 0. We note that this can always be accomplished: since x≥ 0, any nonnegative choice of
c will ensure that v(P)≥ 0, no matter what A and b are. In addition, note that the assumption
of v(P)≥ 0 is actually without loss of generality. If v(P)< 0, then let B be an optimal basis, for
which the corresponding reduced cost vector c̄ satisfies c̄ ≥ 0. (Although an optimal BFS may
have negative reduced costs due to degeneracy, an optimal BFS and corresponding basis B with
a nonnegative reduced cost vector c̄ can be obtained by applying the simplex algorithm with an
anticycling pivoting rule such as Bland’s rule; see Chapter 3 of Bertsimas and Tsitsiklis 1997.) We
can then re-write P as

min{cTx |Ax= b,x≥ 0}
=min{cTBxB + cTNxN |Ax= b,x≥ 0}
=min{cTBA−1

B (b−ANxN)+ cTNxN |Ax= b,x≥ 0}
= cTBA

−1
B b+min{[cTN − cTBA

−1
B AN]xN |Ax= b,x≥ 0}

= v(P)+min{c̄Tx |Ax= b,x≥ 0},

where we observe that the problem P ′ ≡min{c̄Tx |Ax= b,x≥ 0} is such that P ′ and P have the
same feasible region and optimal solutions, and v(P ′) = 0. Thus, by replacing c with the reduced
cost vector c̄ we obtain an equivalent problem, up to a constant shift. By further normalizing c̄ to
have unit norm, we can ensure that the last step of Algorithm 2 can be accomplished.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec15

C.3 Proof of Theorem 4
In this section, we establish Theorem 4 for generative model 1. The first key result we require is
Lemma EC.4, which allows us to bound the gap of the distributional counterpart in terms of an
upper bound β on the minimum infinity norm attainable in the polyhedron P .

Lemma EC.4. Suppose that P is feasible, v(P)≥ 0 and β ≥min{∥x∥∞ |Ax= b,x≥ 0}. Suppose
that ξ is the uniform distribution over [n], i.e., ξj = 1/n for all j ∈ [n]. If C = nβ, then Pdistr is
feasible and we have that

∆v(Pdistr)≤
√
nβ.

Proof: If C = nβ, then

Pdistr =min{cTx |Ax= b,0≤ x≤Cξ}
=min{cTx |Ax= b,0≤ x≤ nβ · (1/n) ·1}
=min{cTx |Ax= b,0≤ x≤ β ·1},

which must be feasible; this follows by the definition of β as an upper bound on the minimum
infinity norm of any feasible solution to P , which itself is assumed to be feasible. Now, observe
that for any feasible solution x of Pdistr, we have

cTx≤ ∥c∥2 · ∥x∥2

=

√√√√ n∑
j=1

x2
j

≤

√√√√ n∑
j=1

C2ξ2j

=C

√√√√ n∑
j=1

(1/n)2

=C/
√
n

=
√
nβ,

where the first inequality follows by Cauchy-Schwartz, and the second inequality by the constraint
x≤ β ·1. This implies that v(Pdistr)≤

√
nβ. By the assumption that v(P)≥ 0, we thus have that

∆v(Pdistr) = v(Pdistr)− v(P)≤
√
nβ− 0 =

√
nβ,

as required. □
Lemma EC.4 is a general result that is independent of the generative model chosen; we shall use

it later when establishing guarantees for generative models 2 and 3.
The next auxiliary result we need is a result on ordered uniform spacings. Let n′ be an integer,

and suppose that X1, . . . ,Xn′ are independent uniformly distributed random variables on [0,1].
Define X0,n′ = 0, Xn′+1,n′ = 1, and define X1,n′ , . . . ,Xn′,n′ as the order statistics of X1, . . . ,Xn′ .
Define ∆k:n′ = Xk,n′ − Xk−1,n′ for k = 1, . . . , n′ + 1 as the (uniform) spacings of the sample
X1, . . . ,Xn′ . Finally, define the ordered uniform spacings ∆1,n′ , . . . ,∆n′+1,n′ as the order statistics
of ∆1:n′ , . . . ,∆n′+1:n′ . The following lemma is a known result on ordered uniform spacings (see
Bairamov et al. 2010).

ec16 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Lemma EC.5. (Bairamov et al. 2010, Section 3.) For any k= 1, . . . , n′ +1,

E[∆k,n′] =
1

n′ +1

n′+1∑
i=n′+2−k

1

i
.

The uniform spacings (∆1:n′ , . . . ,∆n′+1:n′) are useful because their joint distribution is uniform
on the n′-dimensional unit simplex, which is identical to the Dirichlet(1, . . . ,1) distribution (see
equation 2.1 of Pyke 1965). The ordered uniform spacings are useful because the largest such
ordered uniform spacing, ∆n′+1,n′ , is exactly the maximum value of a Dirichlet(1, . . . ,1) random
vector. The expected value of this largest ordered uniform spacing will be essential to being able
to obtain a high probability bound on the minimum infinity norm solution of P , which is the focus
of our next lemma.

Lemma EC.6. Suppose that P is generated according to generative model 1. Let t ≥ 1. Then,
with probability at least 1− 1/t, we have

min{∥x∥∞ |Ax= b,x≥ 0} ≤ tη(1+ logn)

n
.

Proof: Observe that by the definition of generative model 1, we know that b=A(ηθ) for a θ
drawn from the Dirichlet(1, . . . ,1) distribution. Since this implies that ηθ is a feasible solution of
P , we immediately have

min{∥x∥∞ |Ax= b,x≥ 0}
≤ ∥ηθ∥∞
= ηmax

j∈[n]
θj.

For the random variable maxj∈[n] θj, we can bound its expected value as

E[max
j∈[n]

θj] =E[∆n,n−1]

=
1

n− 1+1

n−1+1∑
i=n−1+2−n

1

i

=
1

n

n∑
i=1

1

i

≤ 1+ logn

n
.

In the above, the steps are as follows. The first step follows because given a sample of n− 1 i.i.d.
uniform random variables, the n unordered spacings ∆1:n−1, . . . ,∆n:n−1 are distributed in the same
way as θ (i.e., they follow a Dirichlet(1, . . . ,1) distribution). Thus, the nth ordered spacing ∆n,n−1,
which is the maximum of ∆1:n−1, . . . ,∆n:n−1, is distributed the same way as maxj∈[n] θj. The second
step follows by Lemma EC.5. The third step follows by algebra. The last step follows by using the
bound

∑n

i=2
1
i
≤
∫ n

1
1
s
ds= logn.

Using this bound on the expected value, an application of Markov’s inequality implies that with
probability at least 1− 1/t,

max
j∈[n]

θj ≤
t(1+ logn)

n
.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec17

Thus, with probability at least 1− 1/t,

min{∥x∥∞ |Ax= b,x≥ 0}
≤ ηmax

j∈[n]
θj

≤ tη(1+ logn)

n
,

as required. □
We now prove Theorem 4.
Proof of Theorem 4: We know that P is feasible, since x= ηθ is a feasible solution, and that

v(P) ≥ 0, which is just by definition of generative model 1. By Lemma EC.6, we have that
min{∥x∥∞ |Ax = b,x ≥ 0} is bounded by β = tη(1 + logn)/n with probability at least 1− 1/t.
Therefore, by Lemma EC.4, it follows that when C = nβ = tη(1 + logn), we will have that with
probability at least 1− 1/t, that Pdistr is feasible and the following holds:

∆v(Pdistr)≤
√
nβ

=
√
n · tη(1+ logn)

n

=
tη(1+ logn)√

n
,

as required. □

C.4 Proof of Theorem 5
To prove Theorem 5, we begin with two simple results on the behaviors of the random vectors
A1, . . . ,An. As a preview of the later results, we will need to bound the expected value of the
supremum of the deviation of the sample average of (vTA1)+, . . . , (v

TAn)+, where v is an m-
dimensional unit norm vector, from its expected value. To do this, we will essentially use the
Rademacher complexity of the class of functions of the form fv(Ã) = vT Ã over all unit norm
vectors v. The first result, Lemma EC.7, will allow us to eliminate the (·)+ function when we
eventually bound this Rademacher complexity, while the second result, Lemma EC.8, will allows
us to bound the simplified expression that results from Lemma EC.7.

Lemma EC.7. Suppose that σj is a Rademacher variable, i.e., it takes the values -1 and +1 each
with probability 1/2; Aj is a random vector drawn from a standard multivariate normal distribution
on Rm; and Yj is a Bernoulli(1/2) random variable. Suppose that all three random variables are
independent. Then, for any vector v ∈Rm, the random variables σj(v

TAj)+ and vTYjAj have the
same distribution.

Proof: Suppose that t < 0. Then we have

Pr(σj(v
TAj)+ ≤ t) =Pr(σj(v

TAj)+ ≤ t | σj =+1)Pr(σj =+1)+Pr(σj(v
TAj)+ ≤ t | σj =−1)Pr(σj =−1)

=Pr((vTAj)+ ≤ t) · (1/2)+Pr(−(vTAj)+ ≤ t) · (1/2)
=Pr((vTAj)+ ≥−t) · (1/2)
=Pr(vTAj ≥−t) · (1/2)
=Pr(vTAj ≤ t) · (1/2),

whereas

Pr(vTYjAj ≤ t) =Pr(vTYjAj ≤ t | Yj = 1)Pr(Yj = 1)+Pr(vTYjAj ≤ t | Yj = 0)Pr(Yj = 0)

=Pr(vTAj ≤ t) · (1/2)+0 · (1/2)
=Pr(vTAj ≤ t) · (1/2).

ec18 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

On the other hand, suppose t≥ 0. Then we have

Pr(σj(v
TAj)+ ≤ t) =Pr(σj(v

TAj)+ ≤ t | σj =+1)Pr(σj =+1)+Pr(σj(v
TAj)+ ≤ t | σj =−1)Pr(σj =−1)

=Pr((vTAj)+ ≤ t) · (1/2)+Pr(−(vTAj)+ ≤ t) · (1/2)
=Pr(vTAj ≤ t)(1/2)+ (1)(1/2),

whereas

Pr(vTYjAj ≤ t) =Pr(vTYjAj ≤ t | Yj = 1)Pr(Yj = 1)+Pr(vTYjAj ≤ t | Yj = 0)Pr(Yj = 0)

=Pr(vTAj ≤ t)(1/2)+ (1)(1/2),

as desired. □

Lemma EC.8. Let Y1, . . . , Yn be sampled independently from a Bernoulli(1/2) distribution and
A1, . . . ,An be sampled independently from a standard multivariate normal distribution, i.e.,
A1, . . . ,An ∼Normal(0, I). Then

E

∥∥∥∥∥ 1n
n∑

j=1

YjAj

∥∥∥∥∥
2

≤
√
m√
2n

.

Proof: We have

E

∥∥∥∥∥ 1n
n∑

j=1

YjAj

∥∥∥∥∥
2

≤

√√√√E

∥∥∥∥∥ 1n
n∑

j=1

YjAj

∥∥∥∥∥
2

2

=

√√√√E

[
1

n2

n∑
j1=1

n∑
j2=1

Yj1Yj2A
T
j1
Aj2

]

=

√√√√ 1

n2

n∑
j=1

E[Y 2
j]E[∥Aj∥22]

=

√√√√ 1

n2

n∑
j=1

(1/2)m

=

√
n ·m
2n2

=

√
m√
2n

,

where the first step follows by Jensen’s inequality; the second comes from the definition of the
squared norm of a vector as the inner product of that vector with itself; the third comes from the
fact that each term Yj1Yj2A

T
j1
Aj2 has an expected value of zero when j1 ̸= j2 (since Aj1 and Aj2

both have expected value 0 and are independent), and the independence of the Yj and Aj variables;
the fourth comes from the fact E[Y 2

j] =E[Yj] = 1/2, while ∥Aj∥22 is a chi-squared random variable
with degrees of freedom m, so E∥Aj∥22 =m; and the fifth and sixth steps follow by algebra. □

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec19

The next result we will need is a bound on the aforementioned expected supremum of the
deviation of the sample average of (vTA1)+, . . . , (v

TAn)+ from its expected value.

Lemma EC.9. Let Ã,A1, . . . ,An be sampled independently from a standard multivariate normal
distribution, i.e., Ã,A1, . . . ,An ∼Normal(0, I). Then

E

[
sup

v:∥v∥2=1

∣∣∣∣∣E(vT Ã)+−
1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣
]
≤
√
2m√
n

where (·)+ =max{·,0}.

Proof: To prove this, we will use a classical symmetrization argument from statistical learning
theory (see for example Mohri et al. 2018, Theorem 3.1). Such techniques are typically used to
bound an expected value of the form E[supf∈F(

1
n

∑n

j=1 f(Xj)−E[f(X)])], where X1, . . . ,Xn,X are
i.i.d. random variables and F is a class of functions, by the Rademacher complexity of F , which
is defined as R(F) = E[supf∈F

1
n

∑n

j=1 σjf(Xj)], where σ1, . . . , σn are i.i.d. Rademacher random
variables, that is, random variables that are either +1 or−1 with probability 1/2. (For our purposes,
it will not be necessary to formally define the Rademacher complexity, because as we will see,
our assumption that A1, . . . ,An are standard Gaussian random vectors will allow us to bound it
directly.)
We have:

E{Aj}

[
sup

v:∥v∥2=1

∣∣∣∣∣EÃ(v
T Ã)+−

1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣
]

=E{Aj}

[
sup

v:∥v∥2=1

∣∣∣∣∣E{Ãj}[
1

n

n∑
j=1

(vT Ãj)+]−
1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣
]

≤E{Aj}

[
sup

v:∥v∥2=1

E{Ãj}

∣∣∣∣∣ 1n
n∑

j=1

(vT Ãj)+−
1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣
]

≤E{Aj},{Ãj} sup
v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

((vT Ãj)+− (vTAj)+)

∣∣∣∣∣
=E{Aj},{Ãj},{σj} sup

v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

σj((v
T Ãj)+− (vTAj)+)

∣∣∣∣∣
≤E{Aj},{Ãj},{σj} sup

v:∥v∥2=1

{∣∣∣∣∣ 1n
n∑

j=1

σj(v
T Ãj)+

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
j=1

σj(v
TAj)+

∣∣∣∣∣
}

≤E{Ãj},{σj} sup
v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

σj(v
T Ãj)+

∣∣∣∣∣+E{Aj},{σj} sup
v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

σj(v
TAj)+

∣∣∣∣∣
= 2E{Aj},{σj} sup

v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

σj(v
TAj)+

∣∣∣∣∣
= 2E{Aj},{Yj} sup

v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

vTYjAj

∣∣∣∣∣
≤ 2E{Aj},{Yj} sup

v:∥v∥2=1

∥v∥2 ·
∥∥∥∥∥ 1n

n∑
j=1

YjAj

∥∥∥∥∥
2

ec20 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

= 2E

∥∥∥∥∥ 1n
n∑

j=1

YjAj

∥∥∥∥∥
2

≤ 2

√
m√
2n

=

√
2m√
n

In the above derivation, the steps are as follows. The first step follows by introducing another i.i.d.
sample of columns, Ã1, . . . , Ãn, which follow the same standard multivariate normal distribution
as A1, . . . ,An. The second step follows by Jensen’s inequality. The third step follows by elementary
properties of sup and expectation. The fourth step follows by observing that the random variables
A1, . . . ,An, Ã1, . . . , Ãn are exchangeable, and so multiplying the difference (|vT Ãj| − |vTAj|) by
σj, which is equally likely to be +1 (leaving the term unchanged) or −1 (flipping the difference), will
leave the overall expectation unchanged. The fifth follows by the triangle inequality and elementary
properties of sup, and the sixth by linearity of expectation. The seventh follows by observing that
the two expectations in the prior step are identical.
From here, the remaining steps rely on the properties of the distribution of A1, . . . ,An. In

particular, the eighth step follows by applying Lemma EC.7 to assert that the random variable
σj(v

TAj)+ is identically distributed to vTYjAj, allowing us to replace the former random variable
with the latter random variable and leave the expectation unchanged. The ninth step follows by
the Cauchy-Schwartz inequality, and the tenth step by the fact that each v is unit norm. The tenth
and eleventh steps follows by applying Lemma EC.8 and algebra. □
The last auxiliary result we will need is to characterize in closed form the expected value of

E(pT Ã)+, where Ã is a standard normal random vector (i.e., a column of the matrix A).

Lemma EC.10. Suppose that Ã∼Normal(0, I). Then for any vector p∈Rm,

E(pT Ã)+ =

√
2

2
√
π
∥p∥2.

Proof: We have

E[(pT Ã)+] =E[(pT Ã)+ | pT Ã< 0]Pr(pT Ã< 0)+E[(pT Ã)+ | pT Ã≥ 0]Pr(pT Ã≥ 0)

= (0) · (1/2)+E[(pT Ã)+ | pT Ã≥ 0] · (1/2)

=

√
2√
π

√
pT Ip · (1/2)

=

√
2

2
√
π
∥p∥2,

where the first step follows by conditioning; the second step follows by the fact that pT Ã follows
a normal distribution with mean 0, and that (pT Ã)+ = 0 when pT Ã< 0; the third step follows by

recognizing that the random variable
(
(pT Ã)+ | pT Ã≥ 0

)
follows the same distribution as |pT Ã|,

and |pT Ã| follows a half-normal distribution, whose mean is σ
√
2/
√
π, where σ is the standard

deviation of pT Ã; and the final step follows by algebra. □
With these auxiliary results in hand, we can now establish the following major result, which

provides a high probability bound on the minimum infinity norm of any feasible solution of P .

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec21

Theorem EC.3. Suppose that P is generated according to generative model 2. Let t ≥ 1 and
suppose that n> 4πt2m. With probability at least 1− 1/t, we have that P is feasible and that

min{∥x∥∞ |Ax= b,x≥ 0}< ∥b∥2
n
· 1

√
2

2
√
π
− t

√
2m√
n

.

Proof: Let Ã be a random vector that follows the same distribution as A1, . . . ,An. We have
that

min{∥x∥∞ |Ax= b,x≥ 0}

=max

{
pTb |

n∑
j=1

(pTAj)+ ≤ 1

}

=max

{
pTb | 1

n

n∑
j=1

(pTAj)+ ≤
1

n

}

=max

{
pTb |E(pT Ã)+−E(pT Ã)+ +

1

n

n∑
j=1

(pTAj)+ ≤
1

n

}

=max

{
pTb |E(pT Ã)+ ≤

1

n
+E(pT Ã)+−

1

n

n∑
j=1

(pTAj)+

}

≤max

{
pTb |E(pT Ã)+ ≤

1

n
+ ∥p∥2 · sup

v:∥v∥2=1

∣∣∣∣∣E(vT Ã)+−
1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣
}

(∗)

where the first step follows by strong duality; the second, third and fourth step by algebra; and
the sixth step by recognizing that

E(pT Ã)+−
1

n

n∑
j=1

(pTAj)+

≤ ∥p∥2 · sup
v:∥v∥2=1

∣∣∣∣∣E(vT Ã)+−
1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣
holds trivially when p= 0, whereas when p ̸= 0, we have

E(pT Ã)+−
1

n

n∑
j=1

(pTAj)+

= ∥p∥2 ·

[
E

((
p

∥p∥2

)T

Ã

)
+

− 1

n

n∑
j=1

((
p

∥p∥2

)T

Aj

)
+

]

≤ ∥p∥2 · sup
v:∥v∥2=1

∣∣∣∣∣E(vT Ã)+−
1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣ ,
where the equality follows because (·)+ is positively homogenous, and the inequality follows because
p/∥p∥2 is a unit norm vector.

To proceed from here, we will now use Lemma EC.9. Recall by Lemma EC.9 that

E sup
v:∥v∥2=1

∣∣∣∣∣E(vT Ã)+−
1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣≤
√
2m√
n

.

ec22 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Consider the event E defined as

E =

{
sup

v:∥v∥2=1

|E(vT Ã)+−
1

n

n∑
j=1

(vTAj)+| ≤
t
√
2m√
n

}
.

By Markov’s inequality, we have that Pr(E) ≥ 1 − 1/t. Thus, with probability 1 − 1/t, (∗) is
bounded from above as

(∗)≤max{pTb |E(pT Ã)+ ≤
1

n
+ ∥p∥2 ·

t
√
2m√
n
}.

We now have

max{pTb |E(pT Ã)+ ≤
1

n
+ ∥p∥2 ·

t
√
2m√
n
}

=max{pTb |
√
2

2
√
π
· ∥p∥2 ≤

1

n
+ ∥p∥2 ·

t
√
2m√
n
}

=max{pTb |
(√

2

2
√
π
− t
√
2m√
n

)
· ∥p∥2 ≤

1

n
}

=max{pTb | ∥p∥2 ≤
1

n
· 1

√
2

2
√
π
− t

√
2m√
n

}

=
∥b∥2
n
· 1

√
2

2
√
π
− t

√
2m√
n

where the first step follows by the closed form expression for E(pT Ã)+ from Lemma EC.10; the
second step follows by algebra; the third step follows by algebra and also by our assumption on n;
and the final step by the fact that max{dTx | ∥x∥2 ≤ r}= r∥d∥2. Note that in the third step, we

are using the hypothesis that n > 4πt2m to ensure that the coefficient
(√

2
2
√
π
− t

√
2m√
n

)
is positive,

and that the direction of the inequality in the constraint is unchanged.
We thus have, that with probability at least 1− 1/t, that

min{∥x∥∞ |Ax= b,x≥ 0} ≤ ∥b∥2
n
· 1

√
2

2
√
π
− t

√
2m√
n

,

which establishes the required bound on the infinity norm.
To see why P must be feasible, that is, why {x |Ax= b,x≥ 0} is non-empty, observe that P

is feasible if and only if min{∥x∥∞ |Ax= b,x≥ 0} is feasible. Observe that this latter problem is
feasible if and only if its dual problem max{pTb |

∑n

j=1(p
TAj)+ ≤ 1}, which is always feasible, is

bounded. By our reasoning above, this problem is bounded with probability at least 1− 1/t, and
therefore P ≡min{cTx |Ax= b,x≥ 0} is feasible with probability at least 1− 1/t, as required. □

We can now prove Theorem 5.
Proof of Theorem 5: Let β be defined as

β =
∥b∥2
n
· 1

√
2

2
√
π
− t

√
2m√
n

.

Observe that the given C in the statement of Theorem 5 is exactly C = nβ.
By Theorem EC.3, with probability at least 1− 1/t, it follows that P is feasible, and that

min{∥x∥∞ |Ax= b,x≥ 0} ≤ β.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec23

Recall by the definition of generative model 2 that whenever P is feasible, we set c so that v(P)≥ 0.
Thus, with probability at least 1− 1/t, by Lemma EC.4, it follows that Pdistr is feasible and that

∆v(Pdistr)≤
C√
n

=
√
nβ

=
∥b∥2√

n
· 1

√
2

2
√
π
− t

√
2m√
n

,

exactly as required. □

C.5 Generative model 2-U: uniform distribution on the unit sphere
In this section, we discuss an alternate generative model, generative model 2-U, which is closely
related to generative model 2. In this new generative model, the columns A1, . . . ,An are indepen-
dently randomly generated from the uniform distribution on the unit sphere Sm = {v ∈Rm | ∥v∥2 =
1} in Rm. Upon generating the columns, we then fix b and c.

Algorithm 8 Generative Model 2-U

1: Generate n i.i.d. random vectors A1, . . . ,An ∼Uniform(Sm), where Uniform(Sm) denotes the
uniform distribution on the unit sphere Sm = {v ∈Rm | ∥v∥2 = 1}.

2: Set A= [A1 A2 · · ·An].
3: Fix any right-hand side vector b∈Rm.
4: If {x |Ax= b,x≥ 0} is nonempty, fix any c ∈ {v ∈Rn | ∥v∥2 = 1} such that v(P)≥ 0; other-

wise, fix any c∈ {v ∈Rn | ∥v∥2 = 1}.
5: return (A,b,c).

This model is closely related to generative model 2, because for any standard normal random
vectorA′, the random vectorA′/∥A′∥2 is uniformly distributed on the unit sphere Sm. Additionally,
as mentioned in Section 4.2, this model is universal, in the sense that any LP of the form min{cTx |
Ax = b,x ≥ 0} with non-zero columns can be transformed into an equivalent LP where all the
columns have unit norm.
The main theoretical result of this section is Theorem EC.4, which asserts that with high proba-

bility, the distributional counterpart gap under this generative model is O(1/
√
n). In the statement

of the theorem below, Γ is the gamma function, i.e., Γ(z) =
∫∞
0

tz−1e−t dt.

Theorem EC.4. Suppose that P is generated according to generative model 2-U. Assume that
ξ is the uniform distribution over [n], that is, ξj = 1/n for all j ∈ [n]. Let t≥ 1, and suppose that
n> 4πt2µ2

m, where µm =
√
2 ·Γ((m+1)/2)/Γ(m/2). Suppose that C is set as

C = ∥b∥2 ·
1

√
2

2
√
πµm
− t

√
2√
n

.

Then, with probability at least 1− 1/t, we have that P and Pdistr are feasible, and

∆v(Pdistr)≤
∥b∥2√

n
· 1

√
2

2
√
πµm
− t

√
2√
n

.

ec24 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

This result is very similar to Theorem 5. The main difference is in the factor which multiplies ∥b∥2 in
the particular choice of C and ∥b∥2/

√
n in the upper bound on ∆v(Pdistr). In the standard Gaussian

case, this factor is [
√
2/(2
√
π)− t

√
2m/
√
n]−1, whereas in the case of the uniform distribution on

the unit sphere, the factor is [
√
2/(2
√
πµm)− t

√
2/
√
n]−1. Note that µm appears because this is

the mean of a chi distributed random variable with m degrees of freedom; this distribution, in
turn, appears because this is the distribution of the norm of a standard normal random vector. By
Jensen’s inequality, µm is lower than

√
m, which is the square root of the mean of a chi-squared

distributed random variable with m degrees of freedom, but numerically µm is actually very close
to
√
m. Thus, comparing the two factors, the factor for generative model 2-U is roughly

√
m larger.

This makes sense, because in generative model 2, the columns will have norm that is on average
larger by a factor of µm ≈

√
m than the columns in generative model 2-U, so the decision variable

vector x should be correspondingly scaled by µm to ensure Ax= b.
We now turn our attention to proving Theorem EC.4. As in the case of generative model 2, we will

require a number of auxiliary results. Our first such auxiliary result is an analog of Lemma EC.7,
which is a technical result needed to bound the expected supremum of the deviation of the sample
average of (pTAj)+ from its expected value. The proof of this result follows along very similar
lines to the proof of Lemma EC.7. The key is that like in the case where Aj is a standard normal
random vector, when Aj is uniformly distributed on the unit sphere, the distribution of vTAj is
symmetric about zero. For brevity, we omit the proof.

Lemma EC.11. Suppose that Aj ∼ Uniform(Sm); suppose that σj is a Rademacher random
variable (i.e., σj is either +1 or -1, both with probability 1/2); and suppose that Yj ∼Bernoulli(1/2).
Suppose that Aj, Yj and σj are independent. Then for any vector v ∈ Rm, the random variables
σj(v

TAj)+ and vTYjAj follow the same distribution.

We next have an analog of Lemma EC.8, which bounds the expected Euclidean norm of the
sample average of a particular collection of i.i.d. random vectors. The proof of this lemma is omitted
as it follows along essentially the same lines as the proof of Lemma EC.8.

Lemma EC.12. Suppose that A1, . . . ,An ∼Uniform(Sm) are independent random variables and
that Y1, . . . , Yn ∼Bernoulli(1/2) are independent random variables. Then we have

E

∥∥∥∥∥ 1n
n∑

j=1

YjAj

∥∥∥∥∥
2

≤ 1√
2n

.

With Lemma EC.11 and EC.12 in hand, we can prove the following lemma, which is an analog
of Lemma EC.9. This lemma allows us to bound the expected supremum of the deviation of the
sample average of (vTA1)+, . . . , (v

TAn)+ from its expected value, over all unit vectors v.

Lemma EC.13. Suppose that Ã,A1, . . . ,An ∼ Uniform(Sm) are independent random variables
distributed uniformly on the unit sphere Sm. Then

E sup
v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

(pTAj)+−E(pT Ã)+

∣∣∣∣∣≤
√
2√
n

Proof: The proof follows essentially the same initial steps as that of Lemma EC.9. Following
those steps, we obtain the bound

E sup
v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

(pTAj)+−E(pT Ã)+

∣∣∣∣∣

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec25

≤ 2E sup
v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

σj(v
TAj)+

∣∣∣∣∣
= 2E sup

v:∥v∥2=1

∣∣∣∣∣ 1n
n∑

j=1

vTYjAj

∣∣∣∣∣
≤ 2E

 sup
v:∥v∥2=1

∥v∥2

∥∥∥∥∥ 1n
n∑

j=1

YjAj

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥ 1n
n∑

j=1

YjAj

∥∥∥∥∥
2

≤ 2 · 1√
2n

=

√
2√
n

where the first equality follows by Lemma EC.11; the second inequality by Cauchy-Schwartz; the
third inequality by the fact that each v in the sup is of unit norm; and the fourth inequality by
Lemma EC.12. □

The last auxiliary result we will need is the following lemma, which provides the closed form
expression for E(pT Ã)+ when Ã is uniformly distributed on the unit sphere.

Lemma EC.14. Suppose that Ã∼Uniform(Sm). Then for any vector p∈Rm,

E(pT Ã)+ =

√
2

2
√
πµm

· ∥p∥2.

where µm =
√
2Γ((m+1)/2)/Γ(m/2), where Γ(·) is the gamma function.

Proof: Let Z∼ Normal(0, I) be a standard normal random vector in Rm. Let θ be a random
variable that follows the chi distribution with m degrees of freedom, and suppose that θ is inde-
pendent of Ã. Then Z and θÃ have the same distribution. We therefore have

E(pTZ)+ =E(pT θÃ)+

=E[θ · (pT Ã)+]

=E[θ] ·E(pT Ã)+

= µmE(pT Ã)+

where the first step follows by the distributional equivalence of Z and θÃ; the second by the fact
that the (·)+ function is positively homogeneous; the third by the independence of θ and Ã; and
the fourth by the fact that µm is precisely the mean of a chi-distributed random variable. Using
the fact (Lemma EC.10) that

E(pT Z̃+) =

√
2

2
√
π
∥p∥2,

we obtain that

E(pT Ã)+ =
1

µm

·E(pTZ)+

=

√
2

2
√
πµm

∥p∥2,

as required. □

ec26 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

We are now in a position to prove Theorem EC.5, which is an analog of Theorem EC.3.

Theorem EC.5. Suppose that P is generated according to generative model 2-U. Let t ≥ 1.
Suppose that n > 4t2πµ2

m, where µm =
√
2Γ((m+ 1)/2)/Γ(m/2) is the mean of a chi-distributed

random variable with m degrees of freedom. Then, with probability at least 1− 1/t, we have that P
is feasible and

min{∥x∥∞ |Ax= b,x≥ 0} ≤ ∥b∥2
n
· 1

√
2

2
√
πµm
− t

√
2√
n

.

Proof: Following similar steps as in the proof of Theorem EC.3, we have

min{∥x∥∞ |Ax= b,x≥ 0}

=max

{
pTb |

n∑
j=1

(pTAj)+ ≤ 1

}

=max

{
pTb |E(pT Ã)+ ≤

1

n
+E(pT Ã)+−

1

n

n∑
j=1

(pTAj)+

}

≤max

{
pTb |E(pT Ã)+ ≤

1

n
+ ∥p∥2 · sup

v:∥v∥2=1

∣∣∣∣∣E(vT Ã)+−
1

n

n∑
j=1

(vTAj)+

∣∣∣∣∣
}
. (∗)

From here, by using Lemma EC.13 in combination with Markov’s inequality, we have with proba-
bility at least 1− 1/t that

(∗)≤max

{
pTb |E(pT Ã)+ ≤

1

n
+ ∥p∥2 ·

t
√
2√
n

}
=max

{
pTb |

√
2

2
√
πµm

∥p∥2 ≤
1

n
+ ∥p∥2 ·

t
√
2√
n

}
=max

{
pTb | ∥p∥2 ≤

1

n
· 1

√
2

2
√
πµm
− t

√
2√
n

}

=
∥b∥2
n
· 1

√
2

2
√
πµm
− t

√
2√
n

,

where the first equality follows by applying Lemma EC.14. With regard to the feasibility of P , this
again follows by the fact that the dual of min{∥x∥∞ |Ax= b,x≥ 0}, which is always feasible, is
bounded with probability at least 1− 1/t. □

C.6 Proof of Theorem 6
To establish Theorem 6, we first require a simple adaptation of Lemma EC.4. The proof is straight-
forward, and omitted for brevity.

Lemma EC.15. Suppose that P covering is feasible, v(P)≥ 0 and β ≥min{∥x∥∞ |Ax= b,x≥ 0}.
Suppose that ξ is the uniform distribution over [n], i.e., ξj = 1/n for all j ∈ [n]. If C = nβ, then
P covering

distr is feasible and we have that

∆v(P covering
distr)≤

√
nβ.

We next require the following lemma, which is a concentration result for the minimum of a
collection of independent binomial random variables.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec27

Lemma EC.16. Let Y1, . . . , Ym be independent random variables, with each Yi ∼Binomial(n, qi).
Let δ ∈ (0,1). Then with probability at least 1− δ, we have

min
i∈[m]

Yi ≥ n ·

(
min
i∈[m]

qi−
√

1

2n
log

m

δ

)
.

Proof: Let ϵ > 0. Then for any i∈ [m],

Pr(Yi < min
i′∈[m]

E[Yi′]−nϵ)

≤Pr(Yi <E[Yi]−nϵ)

≤ exp(− 2n2ϵ2∑n

j=1(1− 0)2
)

= exp(−2n2ϵ2

n
)

= exp(−2nϵ2).

where the second inequality follows by Hoeffding’s inequality.
Now, observe that

Pr(min
i∈[m]

Yi < min
i′∈[m]

E[Yi′]−nϵ)

=Pr

 ⋃
i∈[m]

{Yi < min
i′∈[m]

E[Yi′]−nϵ}

≤

m∑
i=1

Pr(Yi < min
i′∈[m]

E[Yi′]−nϵ)

≤m · exp(−2nϵ2),

where the first inequality follows by the union bound. This implies that

Pr

(
min
i∈[m]

Yi ≥ min
i′∈[m]

E[Yi′]−nϵ

)
≥ 1−m · exp(−2nϵ2).

Note that ϵ was arbitrary; to make the right hand side of the previous bound equal to 1− δ, we
can solve for ϵ as

δ=m · exp(−2nϵ2)
⇒ log δ= logm− 2nϵ2

⇒ ϵ2 =
1

2n
log

m

δ

⇒ ϵ=

√
1

2n
log

m

δ
.

Thus, with probability at least 1− δ, we have that

min
i∈[m]

Yi ≥ min
i′∈[m]

E[Yi′]−
√

n

2
log

m

δ

and noting that E[Yi′] = nqi′ , this is equivalent to

min
i∈[m]

Yi ≥ n min
i′∈[m]

qi′ −
√

n

2
log

m

δ
,

as required. □

ec28 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

With this concentration result in hand, we can now prove Theorem EC.6, which states that the
minimum infinity norm of any feasible solution of P is O(1/n) with high probability.

Theorem EC.6. Suppose that P is generated according to generative model 3. Let δ ∈ (0,1).
Suppose that n> log(m/δ)/[2(mini∈[m] qi)

2]. Then with probability at least 1−δ, P covering is feasible
and

min{∥x∥∞ |Ax≥ b,x≥ 0} ≤
maxi∈[m] bi

n
· 1

mini′∈[m] qi′ −
√

1
2n

log m
δ

Proof: We have

min{∥x∥∞ |Ax≥ b,x≥ 0}

=max{pTb |
n∑

j=1

(pTAj)+ ≤ 1,p≥ 0}

=max{pTb |
n∑

j=1

pTAj ≤ 1,p≥ 0}

=max{pTb |
m∑
i=1

piYi ≤ 1,p≥ 0}, (EC.18)

where Yi =
∑n

j=1Ai,j for each i∈ [m]. In the first step, we have simply taken the dual of the original
problem; in the second step, we use the fact that p≥ 0 and A≥ 0 to assert that (pTAj)+ = pTAj;
and in the third, we use the definition of the Yi’s.
By the definition of the generative model, we have that each Yi ∼Binomial(n, qi). Therefore, by

Lemma EC.16, we have that with probability at least 1− δ,

min
i∈[m]

Yi ≥ n min
i′∈[m]

qi′ −
√

n

2
log

m

δ
. (EC.19)

In addition, by the assumption on n, it follows that the right hand side of (EC.19) is positive, which
implies that Yi > 0 for all i∈ [m]. Thus, when (EC.19) holds, we can determine the optimal solution
of problem (EC.18) as follows: the optimal solution is given by pi∗ = 1/Yi∗ for i

∗ = argmaxi∈[m] bi/Yi

and pi = 0 for all i ̸= i∗. (We remind the reader here that the definition of generative model 3
requires b to be nonnegative. We also note in the case that the arg max is not a singleton, we can
set i∗ to be any maximizing index i.)
When (EC.19) holds, the objective value of (EC.18) can therefore be further refined as

max{pTb |
m∑
i=1

piYi ≤ 1,p≥ 0},

= pi∗ · bi∗

=
bi∗

Yi∗

≤
maxi∈[m] bi
mini∈[m] Yi

≤
maxi∈[m] bi

nmini′∈[m] qi′ −
√

n
2
log m

δ

=
maxi∈[m] bi

n
· 1

mini′∈[m] qi′ −
√

1
2n

log m
δ

,

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec29

which holds with probability at least 1− δ. This establishes the required bound on the objective
value of the infinity norm problem in the theorem statement.
To see that P covering is feasible, observe that P covering ≡min{cTx |Ax≥ b,x≥ 0} is feasible if and

only if min{∥x∥∞ |Ax≥ b,x≥ 0} is feasible. The latter problem is feasible if and only if its dual
problem max{pTb |

∑n

j=1(p
TAj)+ ≤ 1,p≥ 0}, which is always feasible, is bounded. Our reasoning

above establishes that this problem is bounded with probability at least 1− δ, which implies that
P covering is feasible with probability at least 1− δ. This completes the proof. □
We can now complete the proof of Theorem 6.
Proof of Theorem 6: Let β be defined as

β =
maxi∈[m] bi

n
· 1

mini′∈[m] qi′ −
√

1
2n

log m
δ

By Theorem EC.6, we have that P covering is feasible and that min{∥x∥∞ |Ax≥ b,x≥ 0} ≤ β with
probability at least 1− δ. By Lemma EC.15, observe that by setting C as

C = nβ

=max
i∈[m]

bi ·
1

mini′∈[m] qi′ −
√

1
2n

log m
δ

,

we have that P covering
distr is feasible and

∆v(P covering
distr)≤

√
nβ

=
maxi∈[m] bi√

n
· 1

mini′∈[m] qi′ −
√

1
2n

log m
δ

,

as desired. □

Appendix D Special Structures and Extensions
In this section, we demonstrate how the results of Sections 3 and B can be applied to LPs with spe-
cific problem structures, including LPs with totally unimodular constraints (Section D.1), Markov
decision processes (Section D.2), covering problems (Section D.3) and packing problems (Sec-
tion D.4). In Section D.5, we consider the portfolio optimization problem, which is in general not
an LP, but is amenable to the same type of analysis.

D.1 LPs with Totally Unimodular Constraints
Consider a linear program with a totally unimodular constraint matrix, i.e., every square submatrix
of A has determinant 0, 1, or −1. Such LPs appear in various applications, such as minimum
cost network flow problems and assignment problems (Bertsekas 1998). In such problems, it is
not uncommon to encounter the situation where the number of variables is much larger than the
number of constraints. For example, in a minimum cost network flow problem, each constraint
corresponds to a flow-balance constraint at a given node, while each variable corresponds to the
flow over an edge; in a graph of n nodes, one will therefore have n constraints and as many as(
n
2

)
decision variables. We can thus consider solving the problem using the column randomization

method. We obtain the following guarantee on the objective value of the column randomization
method when applied to linear programs with totally unimodular constraints.

Proposition EC.7. When A is totally unimodular, then

γ =m∥c∥∞

is a valid upper bound on ∥p∥∞ for every basic solution p of D.

ec30 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Proof: Any basic solution p to the dual problem D can be written as pT = cTBA
−1
B , where B

is a basis. In addition, since A is totally unimodular, any element of A−1
B is either 1, −1, or 0.

Therefore, the ith component of p satisfies pi =
∑m

j=1[A
−1
B]ji(cB)j ≤m · ∥c∥∞ for all i∈ [m]. Thus,

γ =m∥c∥∞ is a valid upper bound on ∥p∥∞. □
Using this result together with the observation that ∥A∥max = 1 for any totally unimodular

matrix A, we can invoke Theorem 1 to obtain the following performance guarantee for column
randomization when applied to LPs with totally unimodular matrices.

Corollary EC.1. Assume the constraint matrix of A of the complete problem P is totally
unimodular. Define C, Pdistr, PJ and AJ as in Theorem 1. For any δ ∈ (0,1), with probability at
least 1− δ over the set J , the following holds: if PJ is feasible and rank(AJ) =m, then

∆v(PJ)≤∆v(Pdistr)+
C (1+m2∥c∥∞)√

K

(
1+

√
2 log

2

δ

)
. (EC.20)

D.2 Markov Decision Processes
Consider a discounted infinite horizon MDP, with ns states and na actions. The cost function c(s, a)
represents the immediate cost of taking action a in state s. The transition probability Ps(s

′, a)
represents the probability of being in state s′ after taking action a in state s. Let θ ∈ (0,1) be the
discount factor. One can solve the MDP by formulating a linear program (Manne 1960):

minimize
x1,...,xns∈Rna

cT1 x1 + . . .+ cTs xs + . . .+ cTns
xns

such that (E1− θP1)x1 + . . .+(Es− θPs)xj + . . .+(Ens − θPns)xns = 1,

x1, . . . ,xs, . . . ,xns ≥ 0,

where Ej is a ns×na matrix such that the jth row is all ones and every other entry is zero. The
vector cs is of size na such that its ath component is equal to c(s, a). The matrix Ps is of size
ns× na such that its (s′, a)-th component represents Ps(s

′, a). Notice that matrix Ps is a column
stochastic matrix, i.e., 1TPs = 1T and Ps ≥ 0 for all s ∈ [ns]. The decision variable vector xs is of
size na, where the ath entry represents the expected discounted long-run frequency of the system
being in state s and action a being taken. If one sorts the decision variables by actions (Ye 2005),
then the linear program can be re-written as:

minimize
x̃1,...,x̃na∈Rns

c̃T1 x̃1 + . . .+ c̃Ta x̃a + . . .+ c̃Tna
x̃na (EC.21a)

such that (I− θP̃1)x̃1 + . . .+(I− θP̃a)x̃a + . . .+(I− θP̃na)x̃na = 1, (EC.21b)

x̃1, . . . , x̃a, . . . , x̃na ≥ 0, (EC.21c)

where c̃a = [c(1, a); . . . ; c(s, a); . . . ; c(ns, a)] for a ∈ [na] and P̃a is a ns × ns matrix such that its
(s′, s)-th element is equal to Ps(s

′, a). Note that problem (EC.21) is a standard form LP and
has more columns than rows. We can therefore apply the column randomization method to solve
problem (EC.21). To adapt our performance guarantee from Section 3.2, we establish a bound γ
on ∥p∥∞ for every dual basic solution p that is specific to problem (EC.21).

Proposition EC.8. For the infinite horizon discounted MDP problem (EC.21), then

γ =
∥c∥∞
1− θ

is a valid upper bound on ∥p∥∞ for any basic solution p of the dual of problem (EC.21).

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec31

Proof: Any basic solution p of the dual has the form pT = cTBA
−1
B , where B is a basis of the

linear program (EC.21). Note that AB has the form AB = I−θP, where P is an ns×ns matrix such
that each of its columns is selected from the columns of [P̃1, . . . , P̃na] (see Ye 2005). In addition, a
standard property of A−1

B is that it can be written as the following infinite series:

A−1
B = I+ θP+ θ2P2 + · · ·= I+

∞∑
n=1

θn ·Pn.

Thus, we can bound ∥p∥∞ as ∥pT∥∞ ≤ ∥cTB∥∞ +
∑∞

n=1 θ
n · ∥cTBPn∥∞. Note that for any n∈N and

vector v ∈Rns , we have

∥vTPn∥∞ = max
s∈[ns]

∣∣∣∣∣∣
∑

s′∈[ns]

vs′P
n
(s′,s)

∣∣∣∣∣∣
≤ max

s∈[ns]

∑
s′∈[ns]

|vs′ | ·Pn
(s′,s)

≤ ∥v∥∞ · max
s∈[ns]

∑
s′∈[ns]

Pn
(s′,s)

= ∥v∥∞,

where Pn
(s′,s) is the (s′, s)th entry of Pn. Therefore, we obtain that

∥pT∥∞ = ∥cTBA−1
B ∥∞

≤ ∥cB∥∞ +
∞∑

n=1

θn · ∥cTBPn∥∞

≤ ∥cB∥∞/(1− θ)

≤ ∥c∥∞/(1− θ).

Since p was an arbitrary basic solution of the complete dual of problem (EC.21), we can therefore
set γ = ∥c∥∞/(1− θ). □
With this result in hand, and observing that ∥A∥max ≤ 1, we can apply Theorem 1 to obtain

the following performance guarantee for column randomization in the case of discounted infinite
horizon MDPs.

Corollary EC.2. Consider solving a discounted infinite horizon MDP with ns states and na

actions by the column randomization method. Define C, Pdistr, PJ and AJ as in Theorem 1. For
any δ ∈ (0,1), with probability at least 1−δ, the following holds: if PJ is feasible and rank(AJ) = ns,
then

∆v(PJ)≤∆v(Pdistr)+
C√
K
·
(
1+

ns∥c∥∞
1− θ

)
·

(
1+

√
2 log

2

δ

)
. (EC.22)

D.3 Covering Problems
A covering linear program can be formulated as

P covering : minimize
x

cTx (EC.23a)

subject to Ax≥ b, (EC.23b)

x≥ 0, (EC.23c)

ec32 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

where A, b and c are all nonnegative, and we additionally assume that for every i ∈ [m], there
exists a j ∈ [n] such that Ai,j > 0. This type of problem arises in numerous applications such as
facility location (Owen and Daskin 1998). The column-randomized counterpart of this problem
and its dual can be written as

P covering
J : min{cTJ x̃ |AJ x̃≥ b, x̃≥ 0},

Dcovering
J : max{pTb | pTAJ ≤ cTJ ,p≥ 0}.

Although P covering is not a standard form LP, it is straightforward to extend Proposition EC.3 to
this problem, leading to the following result. We omit the proof for brevity.

Proposition EC.9. Let C be a nonnegative constant and define P covering
distr as

P covering
distr ≡min{cTx |Ax≥ b,0≤ x≤Cξ}.

For any δ ∈ (0,1), with probability at least 1− δ over the sample J , the following holds: if P covering
J

is feasible, then

∆v(P covering
J)≤∆v(P covering

distr)+
C√
K
· (1+ ∥p∥∞ ·m · ∥A∥max) ·

(
1+

√
2 log

2

δ

)

for any optimal solution p of Dcovering
J .

To now use this result, we need to be able to bound ∥p∥∞ for any solution p of any dual Dcovering
J

of the column-randomized problem. Let us define the quantity U covering as

U covering =max
i,j

{
cj
Ai,j

Ai,j > 0

}
.

We then have the following result.

Proposition EC.10. Let J ⊆ [n], and suppose that P covering
J is feasible. Then for any feasible

solution p of Dcovering
J , ∥p∥∞ ≤U covering.

Proof: Fix an i∈ [m], and consider the LP

DB−covering
J : max{pi | pTAJ ≤ cTJ , p≥ 0}. (EC.24)

The optimal objective value of this problem, v(DB−covering
J), is an upper bound on pi for any feasible

solution p of Dcovering
J (and thus, it is an upper bound on pi for any optimal solution p of Dcovering

J).
Consider the dual of this problem:

PB−covering
J : min{cTJ x̃ |AJ x̃≥ ei, x̃≥ 0}, (EC.25)

where ei is the ith standard basis vector for Rm. By weak duality, the objective value of any feasible
solution of PB−covering

J is an upper bound on v(DB−covering
J).

We now construct a particular feasible solution. Let j′ be any column in J such that Ai,j′ > 0;
such a column is guaranteed to exist by our assumption on the matrix A. Define a solution x̃ as

x̃j =

{
1/Ai,j′ if j = j′,
0 otherwise.

It is easy to see that x̃ is a feasible solution of PB−covering
J , and that its objective value is cTJ x̃=

cj′/Ai,j′ . Since this objective value is bounded by U covering, it follows that U covering ≥ max{pi |
pTAJ ≤ cTJ , p≥ 0}.

Since our choice of i was arbitrary, it follows that ∥p∥∞ ≤ U covering for any feasible solution of
Dcovering

J . □

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec33

Using this result together with Proposition EC.9 yields the following guarantee.

Corollary EC.3. Let C and P covering
distr be defined as in Proposition EC.9. For any δ ∈ (0,1),

with probability at least 1− δ over the sample J , the following holds: if P covering
J is feasible, then

∆v(P covering
J)≤∆v(P covering

distr)+
C√
K
· (1+U covering ·m · ∥A∥max) ·

(
1+

√
2 log

2

δ

)
.

D.4 Packing Problems
A packing linear program is defined as

P packing : maximize
x

cTx (EC.26a)

subject to Ax≤ b, (EC.26b)

x≥ 0, (EC.26c)

where we assume that c≥ 0, b> 0, and that A is such that for every column j ∈ [n], there exists an
i∈ [m] such that Ai,j > 0. Packing problems have numerous applications, such as network revenue
management (Talluri and van Ryzin 2006).
The column-randomized counterpart of this problem and its dual can be written as

P packing
J : max{cTJ x̃ |AJ x̃≤ b, x̃≥ 0},

Dpacking
J : min{pTb | pTAJ ≥ cTJ ,p≥ 0}.

As with covering problems, the packing problem P packing is not a standard form LP, but we can
derive a counterpart of Proposition EC.3 for P packing. Note that in this guarantee, for a problem
P ′ with the same feasible region as P packing, the optimality gap ∆v(P ′) is defined as ∆v(P ′) =
v(P packing)−v(P ′), since the complete problem P packing is a maximization problem. As with Propo-
sition EC.9, the proof is straightforward, and thus omitted.

Proposition EC.11. Let C be a nonnegative constant and define P covering
distr as

P packing
distr ≡max{cTx |Ax≤ b,0≤ x≤Cξ}.

For any δ ∈ (0,1), with probability at least 1− δ over the sample J , the following holds: if P packing
J

is feasible, then

∆v(P packing
J)≤∆v(P packing

distr)+
C√
K
· (1+ ∥p∥∞ ·m · ∥A∥max) ·

(
1+

√
2 log

2

δ

)

for any optimal solution p of Dpacking
J .

To obtain a more specific guarantee, define for each i the following quantities:

ri =max

{
cj
Ai,j

Ai,j > 0

}
,

j∗i = argmax
j

{
cj
Ai,j

Ai,j > 0

}
.

These two quantities can be understood by interpreting each i as a resource constraint, and bi as
the available amount of resource i. The column j∗i is the column that has the best rate of objective
value garnered per unit of resource i consumed, and the quantity ri is that corresponding rate.
Define now W as

W =
m∑

i′=1

ri′bi′ ,

ec34 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

and Upacking as the maximum over i of W/bi, i.e.,

Upacking =max
i∈[m]

W

bi
=

∑m

i′=1 ri′bi′

mini∈[m] bi
.

With these definitions, we can establish that Upacking is an upper bound on the infinity norm of
any dual optimal solution p of P packing

J .

Proposition EC.12. Let J ⊆ [n]. Then any optimal solution p of Dpacking
J satisfies ∥p∥∞ ≤

Upacking.

Proof: We first establish a useful property of W : the quantity W is actually an upper bound
on v(P). To see this, define the solution x̃(i) for each i as

x̃(i) =
bi

Ai,j∗i

· ej∗i
,

and define x̃=
∑m

i=1 x̃
(i). Let x be any feasible solution of the complete problem P packing. Note that

for each x̃(i), we have:

cT x̃(i) =
cj∗i bi

Ai,j∗i

≥
cj∗i
Ai,j∗i

[
n∑

j=1

Ai,jxj

]

=
cj∗i
Ai,j∗i

 ∑
j:Ai,j>0

Ai,jxj

≥

∑
j:Ai,j>0

Ai,j ·
cj
Ai,j

·xj

=
∑

j:Ai,j>0

cjxj.

where the first inequality follows because x satisfiesAx≤ b, and the second follows by the definition
of j∗i . Using this bound, we have

cT x̃=
m∑
i=1

cT x̃(i)

≥
m∑
i=1

 ∑
j:Ai,j>0

cjxj

≥

n∑
j=1

cjxj

= cTx,

where the second inequality follows by our assumption that for each j, there exists an i such that
Ai,j > 0.
Now, let us fix an i ∈ [m]. We wish to bound |pi| for an optimal solution p of Dpacking

J . We can
compute a bound on |pi| by solving the following LP:

DB−packing
J : max{pi | pTb≤ v(P packing

J), pTAJ ≥ cTJ , p≥ 0}.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec35

Note that by weak duality, the feasible region of DB−covering
J is exactly the set of all optimal solutions

to the sampled dual problem, Dpacking
J . Observe that for any J , v(P packing

J) ≤ v(P packing) ≤ W .
Thus, a valid upper bound on v(DB−packing

J) can be obtained by solving the following relaxation of
DB−packing

J :
DB−packing−rlx

J : max{pi | pTb≤W, p≥ 0}.

This problem is a valid relaxation, because we have simply removed the constraint pTAJ ≥ cTJ ,
and we have replaced the value v(P packing

J) with the larger value of W . The optimal objective value
of this relaxation is simply W/bi. Therefore, we obtain that for any dual optimal solution p of
Dpacking

J , |pi| ≤W/bi. It follows that ∥p∥∞ ≤maxi∈[m](W/bi)≡Upacking, for any optimal solution p
of Dpacking

J . □
By combining this result with Proposition EC.11, we obtain the following specific guarantee for

packing LPs.

Corollary EC.4. Let C and P packing
distr be defined as in Proposition EC.11. For any δ ∈ (0,1),

with probability at least 1− δ over the sample J , the following holds: if P packing
J is feasible, then

∆v(P packing
J)≤∆v(P packing

distr)+
C√
K
· (1+Upacking ·m · ∥A∥max) ·

(
1+

√
2 log

2

δ

)
.

With regard to Upacking which appears in this guarantee, we note that this constant depends on the
constant W . Our choice of W is special only in that it bounds v(P packing

J). For particular packing
problems, if one has access to a problem-specific bound W ′ on v(P packing

J), one could define Upacking

with W ′ instead to obtain a more refined bound.

D.5 Portfolio Optimization
In this last section, we deviate slightly from our previous examples by showing how our approach
can be applied to problems that are not linear programs. The specific problem that we consider is
the portfolio optimization problem, which is defined as

P portfolio : minimize
x∈Rn,r∈Rm

f(r1, . . . , rm) (EC.27a)

such that
n∑

j=1

αijxj = ri, ∀i∈ [m] (EC.27b)

n∑
j=1

xj = 1, (EC.27c)

x≥ 0, (EC.27d)

where both x and r are decision variables. Problem (EC.27) can be interpreted as follows: a decision
maker seeks an optimal portfolio, which is a distribution over instruments, according to some
objectives. The decision variable xj represents the fraction of allocation committed to instrument
j, the constraint parameter αij represents the return of instrument j in scenario i, and ri is the
total return in ith scenario. The objective function f is a function measuring the risk of the returns
r1, . . . , rm. Unlike the optimization problems we discussed so far, we assume that f is any Lipschitz
continuous function with Lipschitz constant L, and is not necessarily a linear function of r.

Although problem P portfolio is not in general a linear program, we can still apply the column
randomization method to solve the problem. We describe the procedure in Algorithm 9. Notice
that, unlike Algorithm 1 which samples columns associated with all variables, here we only sample
columns associated with x.

For P portfolio
J that is produced and solved by Algorithm 9, we have the following performance

guarantee.

ec36 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Algorithm 9 The Column Randomization Method - Portfolio Optimization

1: Sample K i.i.d. indices in [n] as J ≡ {J1, . . . , JK} according to a randomization scheme ρ.
2: Solve the sampled optimization problem:

P portfolio
J : min

{
f(r)

∑
j∈J

αijx̃j = ri, ∀ i∈ [m],
∑
j∈J

x̃j = 1, x̃≥ 0

}
(EC.28)

3: return optimal solution (x̃∗,r∗) and optimal objective value f(r∗)

Proposition EC.13. Assume vectors αj = (αij)i∈[m] in problem P portfolio satisfying ∥αj∥2 ≤H
for all j ∈ [n]. Let C ≥ 1 be an arbitrary constant and define the optimization problem

P portfolio
distr : min

x,r

f(r)
∑
j∈[n]

αjxj = r, 1Tx= 1, 0≤ x≤Cξ

 . (EC.29)

Denote F , Fdistr, and FJ as optimal objective values of problems P portfolio, P portfolio
distr , and P portfolio

J ,
respectively. Define ∆FJ ≡ FJ −F and ∆Fdistr = Fdistr −F . For any δ ∈ (0,1), with probability at
least 1− δ, the following statement holds:

∆FJ ≤∆Fdistr +
CLH√

K

(
1+3

√
1

2
log

4

δ

)
. (EC.30)

While the proof (see below) is similar to that of Proposition EC.3 in the construction of a random
solution that is close to the solution of the distributional counterpart problem P portfolio

distr , the main
difference is that it relies on Lipschitz continuity, rather than LP duality.
It is worthwhile to point out several aspects about this result and the portfolio optimization

problem. First, the portfolio optimization problem (EC.27) is not required to be a convex opti-
mization problem; the objective function f can be non-convex, so long as it is Lipschitz continuous.
Second, this result is related to a more specific result from our prior work (Chen and Mǐsić 2022).
In that paper, we consider the problem of estimating the decision forest choice model, which is
a probability distribution over a collection of decision trees, and show that by solving an opti-
mization problem over a random sample of trees, one can obtain a gap on the ℓ1 training error of
the model that decays with rate 1/

√
K (Theorem 5 of Chen and Mǐsić 2022). Proposition EC.13

is a generalization of that result to more general optimization problems outside of choice model
estimation, and allows for objective functions more general than those based on ℓ1 distance.

Proof of Proposition EC.13: Let (x∗0,r∗0) be an optimal solution of P portfolio
distr . Consider the

solution (x′,r′) defined relative to the sample J :

x′ =
1

K

K∑
k=1

x∗0
jk

ξjk
ejk , (EC.31)

r′ =
∑
j∈[n]

αjx
′
j =

1

K

K∑
k=1

(x∗0
jk
/ξjk)αjk . (EC.32)

The significance of (x′,r′) is that we will be able to show that r′ will be close to r∗0, and that f(r′)
will be close to f(r∗0) = Fdistr. However, (x′,r′) is not necessarily a feasible solution to problem
P portfolio, because x′ will in general not satisfy the unit sum constraint. To turn it into a feasible

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec37

solution for problem P portfolio, we consider the solution (x′′,r′′) obtained by normalizing x′ by its
sum:

x′′ =
x′

1Tx′ , (EC.33)

r′′ =
r′

1Tx′ . (EC.34)

Note that (x′′,r′′) is a feasible solution of P portfolio
J .

To understand why we consider (x′,r′) and (x′′,r′′), we show how these two solutions can be
used to bound the difference between FJ and Fdistr. Let (x,r) be an optimal solution of P portfolio

J .
We now bound FJ −Fdistr as follows:

FJ −Fdistr = f(r)− f(r∗0)

≤ f(r′′)− f(r∗0)

= f(r′′)− f(r′)+ f(r′)− f(r∗0)

≤ |f(r′′)− f(r′)|+ |f(r′)− f(r∗0)|
≤L∥r′′− r′∥2 +L∥r′− r∗0∥2 (EC.35)

where the first step follows by the definitions of (x,r) and (x∗0,r∗0); the second step follows because
(x′′,r′′) is a feasible solution of P portfolio

J ; the third and fourth step follow by algebra and basic
properties of absolute values; and the last step follows by the fact that f is Lipschitz continuous
with constant L.
We now proceed to show that ∥r′− r∗0∥2 and ∥r′′− r′∥2 can be bounded with high probability.

Bounding ∥r′− r∗0∥2: To bound this term, let us define for each k ∈ [K] the random vector rjk as

rjk =
x∗0
jk

ξjk
αjk .

We make three important observations about rj1 , . . . ,rjK . First, for each k, the norm of rjk is
bounded as

∥rjk∥2 =
∥∥∥∥x∗0

jk

ξjk
αjk

∥∥∥∥
2

≤
x∗0
jk

ξjk
·
∥∥αjk

∥∥
2
≤

Cξjk
ξjk
·H =CH.

Second, observe that r′ is just the sample mean of rj1 , . . . ,rjK , i.e., r
′ = (1/K)

∑K

k=1 rjk . Lastly, we
observe that the expected value of each rjk is

E[rjk] =
∑

j∈[n]:ξj>0

ξj ·
x∗0
j

ξj
αj

=
∑

j∈[n]:ξj>0

x∗0
j αj

=
∑
j∈[n]

x∗0
j αj

= r∗0,

where the third step uses the fact that x∗0
j = 0 when ξj = 0 (by virtue of the constraint 0≤ x≤Cξ).

Therefore, the term ∥r′− r∗0∥2 is just the distance between the sample mean of an i.i.d. collection

ec38 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

of random vectors from its expected value, where the ℓ2 norm of each random vector is bounded.
We can therefore invoke Lemma EC.1 to assert that

∥r′− r∗0∥2 ≤
CH√
K

(
1+

√
2 log

2

δ

)
(EC.36)

with probability at least 1− δ/2.

Bounding ∥r′′− r′∥2: For this term, observe first that since r′′ = r′/(1Tx′), we can re-arrange this
to obtain that r′ = (1Tx′)r′′. Let us use s to denote the normalization constant, i.e., s= 1Tx′. We
can now bound ∥r′′− r′∥2 in the following way:

∥r′′− r′∥2 = ∥r′′− sr′′∥2
= |s− 1| · ∥r′′∥2 .

We now bound |s− 1|. Note that s can be written as

s= 1Tx′ =
1

K

K∑
k=1

x∗0
jk

ξjk
1Tejk =

1

K

K∑
k=1

x∗0
jk

ξjk
.

Letting wk = (x∗0
jk
/ξjk), we obtain s= (1/K)

∑K

k=1wk; in other words, s is the average of K i.i.d.
random variables, w1, . . . ,wK . Note that each wk has expected value E[wk] =

∑
j∈[n]:ξj>0(x

∗0
j /ξj) ·

ξj =
∑

j∈[n] x
∗0
j = 1; therefore, the term |s− 1| represents how much the sample mean s deviates

from its expected value of 1. We also observe that each wk is contained in the interval [0,C].
Therefore, using Hoeffding’s inequality, we obtain that

Pr[|s− 1|> ϵ] =Pr[|s−E[s]|> ϵ]≤ 2 · exp
(
−2Kϵ2

C2

)
, (EC.37)

for any ϵ > 0; by setting ϵ=C
√

log(4/δ)/(2K), we obtain that

|s− 1| ≤C

√
1

2K
log

4

δ
, (EC.38)

with probability at least 1− δ/2.
With this bound in hand, let us now bound ∥r′′∥2. Observe that

∥r′∥2 ≤
1

K
·

K∑
k=1

(
x∗0
jk

ξjk

)
· ∥αjk∥2 ≤

1

K
·

K∑
k=1

(
x∗0
jk

ξjk

)
·H = s ·H,

so it follows that ∥r′′∥2 = (1/s)∥r′∥2 ≤H. We therefore have that ∥r′′− r′∥2 satisfies

∥r′′− r′∥2 ≤
CH√
K

√
1

2
log

4

δ
,

with probability at least 1− δ/2.

Completing the proof : We now put these two bounds together to complete the bound in (EC.35).
Combining inequalities (D.5) and (EC.36) together using the union bound, we have that with
probability at least 1− δ,

FJ −Fdistr ≤L∥r′′− r′∥2 +L∥r′− r∗0∥2

≤L · CH√
K

√
1

2
log

4

δ
+L · CH√

K

(
1+

√
2 log

2

δ

)

≤ CHL√
K

(
1+3

√
log

4

δ

)
.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec39

By moving Fdistr to the right hand side, and subtracting F from both sides, we obtain the desired
inequality. □

Appendix E Statistically-Dependent Columns
So far we have assumed that each column in the column-randomized linear program is sampled
independently. In this section, we show how this assumption can be relaxed. We state our main
performance guarantee in Section E.1. In Section E.2, we consider a specific non-i.i.d. column
sampling scheme – groupwise sampling – which has natural applications in problems such as Markov
decision processes, and apply our guarantee from Section E.1 to this sampling scheme.Finally, in
Section E.3, we develop a different type of guarantee for the case when columns are uniformly
sampled without replacement.

E.1 Performance Guarantees via Dependency Graph and Forest Complexity
We begin by assuming that the randomization scheme ρ is such that j1, . . . , jK still follow the
distribution ξ, i.e., Pr[jk = t] = ξt for k ∈ [K] and t∈ [n], but they are no longer independent. Thus,
the indices j1, . . . , jK are no longer an i.i.d. sample from ξ, and we require a different set of tools
to analyze Algorithm 1 and ∆v(PJ) in this setting.
To analyze the column randomization method, we will make use of a specific concentration

inequality from Liu et al. (2019), which requires specifying the dependence structure of a collection
of random variables through a specific type of graph. We thus begin by briefly defining the relevant
graph-theoretic concepts.
Given an undirected graph G, we use V (G) to denote the vertices of G, and E(G) to denote the

edges of G. Given two vertices u, v ∈ V (G), the edge between u and v is denoted by ⟨u, v⟩. We say
that u and v are adjacent if ⟨u, v⟩ ∈E(G). We say that u and v are non-adjacent if they are not
adjacent. For two sets of nodes U,V ⊆ V (G), we say that U and V are non-adjacent if u and v are
non-adjacent for every u ∈ U and v ∈ V . Lastly, a graph G is a forest if it does not contain any
cycles, and is a tree if it does not contain any cycles and consists of a single connected component.
With this definitions, we now define the dependency graph, which is a representation of the

dependency structure within a collection of random variables.
Definition EC.1. (Dependency graph) An undirected graph G is called a dependency graph of

a set of random variables X1,X2, . . . ,XK if it satisfies the following two properties:
1. V (G) = [K].
2. For every I, J ⊆ [K], I ∩ J = ∅ such that I and J are non-adjacent, {Xi}i∈I and {Xj}j∈J are

independent.
We now introduce the concept of a forest approximation from Liu et al. (2019).
Definition EC.2. (Forest approximation, Liu et al. (2019)) Given a graph G, a forest F , and a

mapping ϕ : V (G)→ V (F), we say that (ϕ,F) is a forest approximation of G if, for any u, v ∈ V (G)
such that ⟨u, v⟩ ∈E(G), either ϕ(u) = ϕ(v) or ⟨ϕ(u), ϕ(v)⟩ ∈E(F).
In words, a forest approximation is a mapping of a general graph G to a smaller forest F that is
obtained by merging nodes in G. For a given node v ∈ V (F), the set ϕ−1(v) corresponds to the set of
nodes in V (G) that were merged to obtain the node v. Using the notion of a forest approximation,
we can now define the forest complexity of a graph G.
Definition EC.3. (Forest complexity, Liu et al. (2019)) Let Φ(G) denote the set of all forest

approximations of G. Given a forest approximation (ϕ,F), define λ(ϕ,F) as

λ(ϕ,F) =
∑

⟨u,v⟩∈E(F)

(
|ϕ−1(u)|+ |ϕ−1(v)|

)2
+

k∑
i=1

min
u∈V (Ti)

|ϕ−1(u)|2

where T1, . . . , Tk is the collection of trees that comprise F . We call Λ(G) =min(ϕ,F)∈Φ(G) λ(ϕ,F) the
forest complexity of G.

ec40 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

The forest complexity Λ(G) quantifies how much the graph G looks like a forest. Notice that
Λ(G)≥ |V (G)| for any graph G. In practice, we only need an upper bound on Λ(G), rather than its
exact value; we refer readers to Liu et al. (2019) for several examples on how Λ(G) can be bounded.
Given a dependency graph G for the random indices in the set J , we now bound the optimality

gap of the column-randomized linear program.

Theorem EC.7. Let C be a nonnegative constant, define Pdistr as in Theorem 1 and assume
the random indices in J follow the dependency graph G with forest complexity Λ(G). For any
δ ∈ (0,1), with probability at least 1− δ over the sample J , the following holds: if PJ is feasible and
rank(AJ) =m, then

∆v(PJ)≤∆v(Pdistr)+C · (1+mγ∥A∥max) ·

(√
K +2|E(G)|

K2
+

√
2Λ(G) log(2/δ)

K2

)
, (EC.39)

where γ and ∥A∥max are defined as in Theorem 1.
Under the same conditions, with probability at least 1− δ over the sample J , the following holds:

if PJ is feasible and rank(AJ) =m, then

∆v(PJ)≤∆v(Pdistr)+C ·χ ·

(√
K +2|E(G)|

K2
+

√
2Λ(G) log(1/δ)

K2

)
, (EC.40)

where χ is defined as in Theorem 2.

The proof (see below) follows by utilizing the McDiarmid inequality for dependent random
variables from Liu et al. (2019). We note that Theorem EC.7 is a generalization of Theorems 1 and
2. If j1, j2, . . . , jK are independent, then the dependency graph G has no edges, and thus |E(G)|= 0
and Λ(G) = K. Therefore, when each column is generated independently, the upper bounds in
Theorem EC.7 are equivalent to the bounds in Theorem 1 and 2.
We close this section by now proving Theorem EC.7. Before we can prove Theorem EC.7, we

need to establish two auxiliary results. The first result is the analog of Lemma EC.1 for a collection
of possibly dependent random variables, formulated in terms of forest complexity.

Lemma EC.17. Let w1,w2, . . . ,wK be K random vectors with same distribution. Let G be the
dependency graph of w1,w2, . . . ,wK. In addition, assume ∥wk∥2 ≤ C for k = 1, . . . ,K. Let w̄ =
(1/K) ·

∑K

k=1wk. Then for any δ ∈ (0,1), we have, with probability at least 1− δ,

∥w̄−Ew̄∥2 ≤C ·

(√
K +2 · |E(G)|

K2
+

√
2 ·Λ(G)

K2
· log 1

δ

)
.

Proof of Lemma EC.17: Define a space W ≡ {z | ∥z∥2 ≤C}. Consider a scalar function f :
WK→R defined as

f(z1,z2, . . . ,zK) =

∥∥∥∥ 1

K
(z1 + z2 + . . .+ zK)−Ew̄

∥∥∥∥
2

For any k ∈ [K] and any z1, . . . ,zk, . . . ,zK ,z
′
k ∈W, we have

|f(z1, . . . ,zk, . . . ,zK)− f(z1, . . . ,z
′
k, . . . ,zK)| ≤

∥zk− z′k∥
K

≤ 2C

K
.

Therefore, f has the bounded differences property (note that in Liu et al. 2019, this is referred to
as the c-Lipschitz property; see Definition 2.1 of that paper). By Theorem 3.6 of Liu et al. (2019),
for any ϵ > 0, we have

Pr [f(w1, . . . ,wK)−Ef(w1, . . . ,wK)≥ ϵ]≤ exp

(
− K2ϵ2

2C2 ·Λ(G)

)

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec41

On the other hand, define ui =wi−Ewi. Then

E
[
uT

i uj

]
=

{
E
[
wT

i wj

]
−∥Ewi∥22 ≤E [∥wi∥2∥wj∥2]≤C2, if i= j or ⟨i, j⟩ ∈E(G),

0, otherwise.

Therefore,

E
[
f(w1, . . . ,wK)

2
]
=

∥∥∥∥ 1

K
(w1 + . . .+wK)−Ew̄

∥∥∥∥2
2

=
1

K2

 ∑
i,j∈[K]

E
[
uT

i uj

]
=

1

K2

∑
i∈[K]

E
[
uT

i ui

]
+

∑
⟨i,j⟩∈E(G)

E
[
uT

i uj

]
≤C2 · K +2|E(G)|

K2
.

As a result,

Ef(w1, . . . ,wK)≤
√
Ef(w1, . . . ,wK)2 ≤C ·

√
K +2|E(G)|

K2
,

where the first inequality comes from the concavity of square root function. With all the results
above, we have

P

[
f(w1, . . . ,wK)−C ·

√
K +2|E(G)|

K2
≥ ϵ

]
≤P [f(w1, . . . ,wK)−Ef(w1, . . . ,wK)≥ ϵ]

≤ exp

(
− K2ϵ2

2C2 ·Λ(G)

)
Let ϵ=

√
2C2Λ(G) log(1/δ)/K2. Then with probability at least 1− δ, we have

f(w1, . . . ,wK)≤C ·
√

K +2|E(G)|
K2

+C

√
2 ·Λ(G)

K2
log

(
1

δ

)
.

We thus prove the statement. □
From Lemma EC.17, we can also straightforwardly prove the following result, which is the analog

of Lemma EC.2 for possibly dependent random variables.

Corollary EC.5. Let w1,w2, . . . ,wK be K random vectors of size m and with same distri-
bution. Let G be the dependency graph of w1,w2, . . . ,wK. In addition, assume ∥wk∥∞ ≤ C for
k = 1, . . . ,K. Let w̄= (1/K) ·

∑K

k=1wk. Then for any δ ∈ (0,1), we have, with probability at least
1− δ,

∥w̄−Ew̄∥1 ≤
√
m ·C ·

(√
K +2 · |E(G)|

K2
+

√
2 ·Λ(G)

K2
· log 1

δ

)
.

With these two results, we can now proceed with proving Theorem EC.7.

ec42 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Proof of Theorem EC.7: We define x∗0 and construct random vectorswj1 , . . . ,wjK , bj1 , . . . ,bjK

as in the proof of Proposition EC.3; we note that this construction is valid even if there exists depen-
dency between the indices j1, . . ., and jK . We further define x′ as the sample mean of wj1 , . . . ,wjK

and b′ as the sample mean of bj1 , . . . ,bjK . By Proposition EC.3 and Expression (EC.13), we have

∆v(PJ)≤∆v(Pdistr)+ ∥x′−x∗0∥2 + ∥p∗
J∥∞ · ∥b′−b∥1. (EC.41)

By invoking Lemma EC.17, with probability at least 1− δ,

∥x′−x∗0∥2 ≤C ·

(√
K +2 · |E(G)|

K2
+

√
2 ·Λ(G)

K2
· log 1

δ

)
. (EC.42)

Similarly, by Corollary EC.5, with probability at least 1− δ,

∥b′−b∥1 ≤
√
m ·C · ∥A∥max ·

(√
K +2 · |E(G)|

K2
+

√
2 ·Λ(G)

K2
· log 1

δ

)
. (EC.43)

Combining inequalities (EC.41), (EC.42), and (EC.43) and applying the union bound, we conclude
that, with probability at least 1− δ, the following holds: if PJ is feasible and rank(AJ) =m,

∆v(PJ)≤∆v(Pdistr)+C · (1+mγ∥A∥max) ·

(√
K +2|E(G)|

K2
+

√
2Λ(G) log(2/δ)

K2

)
. (EC.44)

Similarly, by Proposition EC.3 and inequality (EC.15), we have

∆v(PJ)≤∆v(Pdistr)+χ · ∥x′−x∗0∥2. (EC.45)

Combining with inequality (EC.42), we conclude that, with probability 1− δ, the following holds:
if PJ is feasible and rank(AJ) =m,

∆v(PJ)≤∆v(Pdistr)+C ·χ ·

(√
K +2|E(G)|

K2
+

√
2Λ(G) log(1/δ)

K2

)
, (EC.46)

which completes the proof. □

E.2 Groupwise Column Sampling
In many linear programs, we can naturally rearrange and group related columns together. For
example, in the LP formulation of an MDP, one can collect columns associated with state s into a
set G(s); the collection of all columns is simply the disjoint union

⋃ns

s=1 G(s), where ns is number of
states in the MDP and each G(s) = {(s, a) | a∈ [na]}. For such a problem, sampling J = {j1, . . . , jK}
independently from the complete collection of columns, i.e., from [ns]× [na], may not be attractive.
The reason for this is that we may sample the columns in such a way that we do not sample any
columns corresponding to a particular state s̃; in such a scenario, the sampled problem PJ will
automatically be infeasible.
In the presence of a natural group structure of the columns, rather than sampling columns in

total across all n columns, one could consider sampling nr columns from each group. In the MDP
example, this would correspond to sampling nr columns (which correspond to state-action pairs)
for each state s. The resulting column-randomized linear program PJ corresponds to an MDP
where there is a random set of nr actions out of the complete set of na actions available in each
state s. Most importantly, PJ is guaranteed to be feasible.
It turns out that our results for dependent columns can be used to study column-randomized LPs

where columns are sampled by groups. We refer to such a mechanism as a groupwise randomization
scheme and define it formally below.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec43

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12

Figure EC.1 Dependency graph of random indices sampled by the groupwise randomization scheme with nG = 4
and nr = 3.

Definition EC.4. (Groupwise Randomization Scheme) Assume the set of indices [n] can be
organized into nG groups, i.e., [n] is the disjoint union of sets Gg for g = 1,2, . . . , nG. Consider a
randomization scheme ρ such that (i) it samples indices in nr rounds of sampling; (ii) in each
round, it samples nG indices as follows: for i= 1, . . . , nG, it first uniformly at random chooses an
index gi from [nG]\{gj | j ∈ [i−1]} then samples an index from group Ggi according to a distribution
ξgi. We refer to such a randomization scheme ρ as a groupwise randomization scheme.
Note that the randomization scheme ρ samplesK = nrnG indices in total, and samples nr columns

in each group. By design, each random index j follows the distribution ξ, whose probabilities are
given by

ξt ≡Pr [j = t] =
1

nG

∑
g∈[nG]

I{t∈ Gg} · ξgt =
1

nG
· ξG(t)t

where G(t) is the group to which column t∈ [n] belongs to.
By using our general result for dependent columns (Theorem EC.7), we obtain a specific guar-

antee for column-randomized LPs obtained by groupwise randomization schemes.

Theorem EC.8. Let J be a sample of K = nrnG indices sampled according to a groupwise
randomization scheme ρ. Let C be a nonnegative constant and define Pdistr as in Theorem 1. For
any δ ∈ (0,1), with probability at least 1−δ, the following holds: if PJ is feasible and rank(AJ) =m,
then

∆v(PJ)≤∆v(Pdistr)+
C (1+mγ∥A∥max)√

nr

(
1+

√
2 log

2

δ

)
,

where γ and ∥A∥max are defined as in Theorem 1. Under the same assumption, with probability at
least 1− δ, the following holds: if PJ is feasible and rank(AJ) =m, then

∆v(PJ)≤∆v(Pdistr)+
C ·χ
√
nr

(
1+

√
2 log

1

δ

)
,

where χ is defined as in Theorem 2.

Proof: The dependency graph G of K = nrnG random indices that are sampled by ρ consists of nr

cliques of size nG; Figure EC.1 provides an example of the dependency graph for nr = 3 and nG = 4.
Therefore, |E(G)|= nrnG(nG − 1)/2 and Λ(G)≤ λ(ϕ,F) = nrn

2
G for a forest approximation (ϕ,F)

that maps each clique in G as a node in F . By upper bounding Λ(G) by nrn
2
G in Theorem EC.7,

and using the fact that K = nrnG, we complete the proof. □
Theorem EC.8 can be interpreted as a guarantee on the optimality gap as a function of the

number of columns sampled per group: for a groupwise randomization scheme, the gap decreases at
a rate of 1/

√
nr, where nr is the number of columns sampled per group. Compared to Theorem 1

and 2, the rate of convergence in Theorem EC.8 in terms of the total number of columns sampled,
which is K = nrnG, is slower; Theorem 1 and 2 both have a rate of 1/

√
K, while Theorem EC.8

has a rate of 1/
√
nr ≡

√
nG/K.

ec44 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

E.3 Sampling without replacement
The final extension of our methodology to the non-i.i.d. case that we shall consider is when the
columns Aj1 , . . . ,AjK are sampled without replacement. For simplicity, we shall restrict our anal-
ysis to the case where this sampling is carried out uniformly over the set of columns [n]. Stated
differently, a random sample of size K drawn uniformly without replacement from [n] is the set of
columns {j1, . . . , jK}, where {j1, j2, . . . , jn} is a random permutation of the set of columns [n], with
all n! permutations having equal probability.
For this sampling method, we begin with an analog of Lemma EC.1. This lemma uses results from

the paper of El-Yaniv and Pechyony (2009), which develops a version of McDiarmid’s inequality
that applies to the sampling without replacement case, and which may be of independent interest
to readers.

Lemma EC.18. Assume w1, . . . ,wn are vectors satisfying ∥wj∥2 ≤C for j ∈ [n]. Let {i1, . . . , in}
be a random permutation of [n] and zj =wij for j ∈ [n]. Define z̄K =

∑K

j=1 zj/K and z̄= z̄n =E [z1].
Then for any δ ∈ (0,1), we have, with probability at least 1− δ,

∥z̄K − z̄∥2 ≤
C√
K
·

(√
n−K

n− 1
+

√
2

Hn,K

log

(
1

δ

))
, (EC.47)

where

Hn,k ≡
n− 1/2

n−K
·
(
1− 1

2max(K,n−K)

)
.

Proof: Call Z= (z1, . . . ,zn). Define the function f(Z) = ∥z̄K− z̄∥2, which is a (K,n−K) permu-
tation symmetric function: that is, if we permute the first K or the last n−K vectors of z1, . . . ,zn,
the value of f(Z) remains the same.
Given Z, let us use Zij to denote the ordered collection that results from swapping the ith and

jth vectors in Z. For i∈ {1, . . . ,K} and j ∈ {K +1, . . . , n}, we then have

|f(Z)− f(Zij)| ≤ 2C

K
,

by the triangle inequality. Therefore, by Lemma 2 of El-Yaniv and Pechyony (2009), we have

Pr [f(Z)−Ef(Z)≥ ϵ]≤ exp

(
−Kϵ2

2C2
· (n− 1/2)

(n−K)
·
(
1− 1

2max(K,n−K)

))
.

Define Hn,k as (n−1/2)

(n−K)
·
(
1− 1

2max(K,n−K)

)
. Therefore, the above inequality implies that with prob-

ability at least 1− δ, we have

f(Z)≤Ef(Z)+
C√
K
·

√
2

Hn,K

log

(
1

δ

)
. (EC.48)

Now we will bound Ef(Z). We first define E[∥z1∥2] = a and E[zT1 z2] = b. Then

E
[
∥z̄K − z̄∥22

]
=E

[
z̄TK z̄K

]
− z̄T z̄=

1

K
· a+ K − 1

K
· b− z̄T z̄. (EC.49)

Notice that when K = n, the left-hand side of Equation (EC.49) is zero. This leads to

b=
n

n− 1
· z̄T z̄− a

n− 1
.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec45

Plugging this expression for b back into equation (EC.49) and noticing that a≤C2, we have

E
[
∥z̄K − z̄∥22

]
=

a

K
·
(
1− K − 1

n− 1

)
− z̄T z̄ ·

(
1− n(k− 1)

k(n− 1)

)
≤ C2

K
·
(
1− K − 1

n− 1

)
Combining with Jensen’s inequality, we have

Ef(Z)≤
√
Ef2(Z) =

√
E∥z̄K − z̄∥22 ≤

C√
K
·
√
1− K − 1

n− 1
. (EC.50)

Finally, we plug inequality (EC.50) into inequality (EC.48), which completes the proof. □

Using this lemma, we can now establish an analog of Proposition EC.3. In this proposition,
we work with the distributional counterpart problem Pwo-rep

distr =min{cTx |Ax= b,0≤ x≤C/n1},
which is the distributional counterpart corresponding to the uniform distribution on [n] (i.e., with
ξj = 1/n for all j ∈ [n]).

Proposition EC.14. Let C be a nonnegative constant and define Pwo-rep
distr as the linear program

min{cTx |Ax= b,0≤ x≤C/n}. Let Q= {q1, . . . , qK} ⊂ [n] be a set of K indices that are sampled
uniformly at random from [n] without replacement. For any δ ∈ (0,1), with probability at least 1−δ,
the following statement holds: if PQ is feasible, then

∆v(PQ)≤∆v (Pwo-rep
distr)+

C√
K
· (1+ ∥p∥∞ ·m · ∥A∥max) ·

(√
n−K

n− 1
+

√
2

Hn,K

log
2

δ

)
,

for any optimal dual solution p of PQ.

Proof: The proof follows a similar argument for the i.i.d. case (Proposition EC.3). Let x0∗ be
an optimal solution to Pwo-rep

distr . Consider the solution

x′ ≡ 1

K

K∑
k=1

nx0∗
qk
eqk ≡

1

K
·

K∑
k=1

zk,

where zk = nx0∗
qk
eqk for k ∈ [K]. We also define b′ =Ax′.

The vectors {zk}Kk=1 have the following properties. First, for all k ∈ [K], E [zk] = x∗. Second,
∥zk∥2 ≤C for all k ∈ [K] since 0≤ x0∗

qk
≤C/n. With these properties and recognizing that x′ = z̄K ,

we can invoke Lemma EC.18 and assert that, with probability at least 1− δ/2,

∥x′−x0∗∥2 ≤
C√
K
·

(√
n−K

n− 1
+

√
2

Hn,K

log
2

δ

)
.

With the similar argument in Step 2 of the proof of Proposition EC.3, it can be easily shown that
with probability at least 1− δ/2,

∥b′−b∥1 ≤
m ·C · ∥A∥max√

K
·

(√
n−K

n− 1
+

√
2

Hn,K

log
2

δ

)
.

With the concentration inequalities in hand, we can bound the objective value of PQ following the
procedure in Step 3 of the proof of Proposition EC.3. □

With this result, the following analog of Theorem 1 can be established for the uniform sampling
without replacement case. The proof is identical to Theorem 1 and is omitted for brevity.

ec46 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Theorem EC.9. Let C be a nonnegative constant and define Pwo-rep
distr as the linear program

min{cTx |Ax= b,0≤ x≤C/n}. Let Q= {q1, . . . , qK} ⊂ [n] be a set of K indices that are sampled
uniformly at random from [n] without replacement. For any δ ∈ (0,1), with probability at least 1−δ,
the following statement holds: if PQ is feasible and rank(AQ) =m, then

∆v(PQ)≤∆v (Pwo-rep
distr)+

C√
K
· (1+ ∥p∥∞ ·m · ∥A∥max) ·

(√
n−K

n− 1
+

√
2

Hn,K

log
2

δ

)
,

where γ and ∥A∥max are defined as in Theorem 1.

Alternatively, we can also establish an analog of Theorem 2. To do so, we require an analog of
Proposition EC.4, which we formalize below. The proof of this result follows by straightforwardly
combining elements of the proof of Proposition EC.4 and Proposition EC.14 above, and is thus
omitted.

Proposition EC.15. Let C be a nonnegative constant and define Pwo-rep
distr as the linear program

min{cTx |Ax= b,0≤ x≤C/n}. Let Q= {q1, . . . , qK} ⊂ [n] be a set of K indices that are sampled
uniformly at random from [n] without replacement. For any δ ∈ (0,1), with probability at least 1−δ,
the following statement holds: if PQ is feasible, then

∆v(PQ)≤∆v (Pwo-rep
distr)+

C√
K
· ∥cT −pTA∥2 ·

(√
n−K

n− 1
+

√
2

Hn,K

log
1

δ

)
,

for any optimal dual solution p of PQ.

Using this proposition, we can then easily obtain the following counterpart of Theorem 2 for the
uniform sampling without replacement case.

Theorem EC.10. Let C, Pwo-rep
distr , and Q be as defined in Theorem EC.9. For any δ ∈ (0,1),

with probability at least 1− δ, the following statement holds: if PQ is feasible and rank(AQ) =m,
then

∆v(PQ)≤∆v (Pwo-rep
distr)+

C√
K
·χ ·

(√
n−K

n− 1
+

√
2

Hn,K

log
1

δ

)
,

where χ is an upper bound on ∥c̄∥2 for every basic solution of the complete problem P .

We conclude this section by offering a remark on how the bounds we have developed here compare
to our earlier bounds for the i.i.d. case. In particular, we focus on Lemma EC.18, which is the main
building block of these results. In the i.i.d. case, the counterpart of Lemma EC.18 is Lemma EC.1
(Lemma 4 of Rahimi and Recht (2009)):

∥w̄K − w̄∥2 ≤
C√
K
·

(
1+

√
2 log

(
1

δ

))
.

We numerically compare the bound in Lemma EC.1 (“i.i.d. bound”) to that of Lemma EC.18
(“permutation bound”) in Figure EC.2 below. We set δ = 0.1, n = 100 and vary K. From this
figure, we can see that (i) the permutation bound (EC.47) is always tighter than the standard
McDiarmid inequality bound, which is under the i.i.d. assumption; and (ii) as K gets closer to n,
the improvement becomes larger.

Appendix F Cutting Stock Problem Experiments (continued)
This section continues the numerical experiments with the cutting stock problem in Section 5.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec47

0 10 20 30 40 50 60 70 80 90 100

0

0.5

1

1.5

2

2.5

3

K

B
ou

n
d
va
lu
e

Permutation Bound
i.i.d. Bound

Figure EC.2 Comparison of the bounds of Lemma EC.1 (based on the standard i.i.d. McDiarmid inequality) and
Lemma EC.18 (which assumes uniform sampling without replacement), as K varies.

F.1 Experiment #2: comparison of incremental randomization and uniform
randomization

In this section, we explore the effect of changing the randomization scheme in the column ran-
domization method. In particular, we compare the incremental randomization scheme ρI of the
previous section, and the uniform randomization scheme, which we will refer to by ρU .
The randomization scheme ρU samples from the set A= {a ∈Nm

+ |
∑

i∈[m] aiwi ≤W} uniformly
at random. This can be accomplished by rejection sampling. Specifically, we sample uniformly
from the set Ā= {a ∈Nm

+ | 0≤ ai ≤ ⌊W/wi⌋}, which can be done by sampling each component ai

uniformly from the set {0,1, . . . , ⌊W/wi⌋}, and then check if
∑

i∈[m] aiwi ≤W . If this inequality is
satisfied, we return a; otherwise, we discard a and repeat the procedure again with a new candidate
column from Ā.
In this experiment, we set W = 105 again and draw each demand bi ∼U({1, . . . ,100}) for i∈ [m].

Due to the poor scaling of rejection sampling, we restrict our focus to the case m= 5.
For the widths w1, . . . ,wm of the demand types, we consider two different setups:
1. Setup 1: we set each width wi ∼Uniform({W/1000,W/1000+ 1,W/1000+ 2, . . . ,W/2}). In

this case, the widths can differ greatly, with two widths wi and wi′ possibly differing by up to
a factor of (W/2)/(W/1000) = 500.

2. Setup 2: we set each width wi ∼Uniform({W/10,W/10+1,W/10+2, . . . ,W/4}). In this case,
the widths are generated to be closer to each other, with two widths wi and wi′ only differing
by up to a factor of (W/4)/(W/10) = 2.5.

We generate 100 random cutting stock instances in the manner described above for each setup.
Then, for a fixed K ∈ {50,100,200,400}, we run the column randomization method ten times with
each of ρU and ρI .
Table EC.1 below shows the optimality gap of column randomization with ρI and ρU under

Setups 1 and 2. The reported optimality gap is the average over the 100 cutting stock instances
and the ten repetitions of the column randomization method. (Note that for ρU in Setup 1, there
is no value shown for K = 50, as in one replication, the sampled problem was infeasible.) From this
table, we can see that when there is high variability in the widths (Setup 1), ρI outperforms ρU
significantly. When there is a lower variability in the widths (Setup 2), ρI generally outperforms
ρU , although the improvement is smaller.

ec48 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Setup 1 Setup 2
K ∆ρU (%) ∆ρI (%) ∆ρU (%) ∆ρI (%)

50 – 1.51 5.80 2.94
100 8.83 0.64 2.57 1.62
200 3.96 0.37 1.13 1.14
400 1.67 0.20 0.28 0.30

Table EC.1 Comparison of ρI and ρU on the cutting stock problem (Setups 1 and 2).

The edge of ρI over ρU is not surprising, when one considers the structure of the two random-
ization schemes. In particular, ρI always produces patterns that are maximal, in the sense that no
ai can be further incremented without violating the requirement

∑m

i=1wiai ≤W . (Note that such
patterns will also be generated by the column generation subproblem (13), as it seeks to maximize∑m

i=1 piai for some nonnegative dual vector p.) On the other hand, since ρU samples uniformly
from A, it frequently generates patterns that are inefficient, in that there is space on the large roll
for more units of the demand types to be cut from it. Although such patterns can be used to meet
the demands, one needs to cut more large rolls according to these patterns (i.e., the corresponding
xj’s need to be larger), resulting in a larger objective value. As a result, ρI should yield lower
optimality gaps than ρU for a fixed K. Nevertheless, this experiment is useful in showing that
the choice of randomization scheme is important, and can substantially affect the performance of
the column randomization method. We will further underscore this point in our next experiment,
where we will also show how the demand vector b can be used to guide the randomization scheme.

F.2 Experiment #3: comparison of incremental randomization and biased
incremental randomization

In this next experiment, we compare incremental randomization with a more sophisticated scheme
that we call biased incremental randomization and denote by ρBI . This new scheme is presented
as Algorithm 10. This scheme is the same as the incremental randomization scheme, with the key
modification that at each iteration, the index i is sampled with probability proportional to

√
bi.

The rationale behind this modification is as follows. Suppose that there is significant variability
in the demands for different widths, e.g., for a width i, the demand bi could be very large, but for
a different i′, the demand bi′ could be very small. In such a situation, it may be advantageous to
sample patterns where ai will tend to be large for highly demanded widths, while ai will tend to
be small for less demanded widths, as patterns that are structured in this way are likely to be the
most efficient patterns for meeting the demand. (Conversely, it is likely inefficient to use a pattern
that yields a few units of the highly demand width and many units of the less demanded width.)
The scheme ρBI is designed exactly for this case, and ensures that the patterns that are produced
are such that ai will be larger when bi is large.

Algorithm 10 Biased incremental randomization scheme ρBI for the cutting stock problem.

1: Column a is a zero vector of length m and ζ←W .
2: while ζ > 0 do
3: I←{i |wi ≤ ζ}.
4: if |I| ≥ 1 then
5: Sample an index i from I with probability

√
bi/
∑

i∈I

√
bi.

6: Update ai← ai +1 and ζ← ζ −wi.
7: else
8: Break the while loop
9: return Column a.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec49

In this experiment, we set W = 105. For each i ∈ [m], we sample wi ∼
Uniform({W/10,W/10+1, . . . ,W/4}). We then consider two different setups: Setup 1, where
each bi ∼Uniform({25, . . . ,100}); and Setup 2, where bi ∼Uniform({50, . . . ,100}). For each setup,
we test m= 50, K ∈ {100,150,200,250,300}, and m= 100, K ∈ {200,250,300,350,400}. For each
m and each setup, we generate 100 problem instances, and for each K, we then run column
randomization with ρI and ρBI ten times.
Table EC.2 shows the average optimality gap for the two randomization schemes ρI and ρBI

under the two different setups. As expected, we can see that in Setup 1, in which the demands
exhibit greater variability, the biased scheme ρBI leads to a lower optimality gap than the ordinary
incremental scheme ρI . In Setup 2, where there is less variability, ρBI continues to perform better,
although the improvement is smaller.

Setup 1 Setup 2
m K ∆ρI (%) ∆ρBI

(%) ∆ρI (%) ∆ρBI
(%)

50 100 9.41 5.37 6.43 5.90
150 4.46 2.70 2.63 2.33
200 2.70 1.59 1.71 1.45
250 1.66 1.16 1.30 1.21
300 1.43 0.99 1.00 0.87

100 200 10.46 5.89 6.32 5.34
250 7.01 3.39 3.78 3.26
300 4.50 2.30 2.47 2.22
350 3.18 1.95 2.13 1.82
400 2.38 1.56 1.61 1.50

Table EC.2 Performance of the randomization schemes ρI and ρBI on the cutting stock problem (Setups 1
and 2).

As we saw in our previous experiment in Section F.1, this experiment illustrates how the choice
of randomization scheme can affect the performance of the column randomization method. It also
illustrates how the structure of the problem and the nature of the problem data can affect the
performance of column randomization and in the same vein, how the problem data can be used in
the design of the randomization scheme (in this case specifically, how b is used in ρBI).

F.3 Experiment #4: combining column randomization and column generation
In this final experiment, we investigate the potential benefit of combining column randomization
and column generation. In particular, we consider a hybrid method, where one first performs
column randomization to obtain an initial solution, and then executes column generation starting
from that initial solution. The hope in such a method is that column randomization can be used
to quickly obtain a good solution with a low optimality gap, and that column generation can then
be used to close that gap to zero.
We set up this experiment as follows. We set W = 105. We vary m ∈ {250,500,750,1000,1500}.

For each i ∈ [m], we draw wi ∼ Uniform({W/10, . . . ,W/4}) and bi ∼ Uniform({1, . . . ,100}). For
simplicity, we set number of sampled columns K in the column randomization as K = 10m. For
the column randomization method, we use the incremental randomization scheme ρI .
Table EC.3 displays the results. The columns labeled “∆ρBI

(%)” and “TCR (s)” show the
optimality gap of the column randomization solution and the associated computation time. The
next column, “TCR-then-CG (s)”, shows the total time required to reach an optimality gap of zero
when one executes column generation from the column randomization solution. The last column,
“TCG-only (s)”, shows the time required to reach an optimality gap of zero when one applies pure

ec50 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

column generation. All values reported are averages over 100 randomly generated instances, and in
the case of the columns that involve the column randomization method, are additionally averaged
over ten repetitions of the column randomization method.

m K ∆ρI (%) TCR (s) TCR-then-CG (s) TCG-only (s)

250 2500 1.733 0.403 35.391 52.138
500 5000 1.673 1.774 97.370 130.223
750 7500 1.675 3.496 153.199 241.230
1000 10000 1.630 6.121 268.871 532.083
1500 15000 1.689 14.515 489.697 1107.038

Table EC.3 Performance of the CG method on the cutting stock problem with and without the CR warm start

From this table, we can see that there is a benefit to combining column generation with column
randomization. In particular, when m= 500, the improvement in the overall time required to reach
a 0% gap is small (at most about 30 seconds). For m = 1000 and m = 1500 the improvement is
larger, with the combined method requiring roughly half of the time of the pure column generation
method. This experiment illustrates that column randomization can serve as a simple and effective
way to obtain an initial solution as an input to column generation, allowing the overall time to be
significantly shortened.

F.4 Experiment #5: Exploration of optimal and near-optimal solution for a small
instance

In this section, we provide some more insight into why the column randomization method performs
well on the cutting stock problem. We consider a small instance with m= 8 demand types, with
large roll width W = 200 and the following widths and demands for the small rolls:

w= (3,5,7,10,17,22,30,50),

b= (1200,1000,1000,400,500,400,600,200).

For this instance, the optimal objective value of problem PCS is 324.5. Our implementation of
column generation returns the following solution consisting of 8 patterns that achieves this objective
value (note that all xj values are given to four decimal places):

a1 = (0,40,0,0,0,0,0,0), x1 = 19.7545

a2 = (5,1,0,0,0,0,6,0) x2 = 100

a3 = (2,0,1,0,11,0,0,0) x3 = 45.4545

a4 = (0,0,0,20,0,0,0,0) x4 = 20

a5 = (0,0,0,0,0,0,0,4) x5 = 50

a6 = (30,0,0,0,0,5,0,0) x6 = 18.1371

a7 = (0,2,2,0,0,8,0,0) x7 = 38.6643

a8 = (2,1,27,0,0,0,0,0) x8 = 32.4895

However, this is not the only possible solution. To understand this better, we run the column
randomization method 20,000 times, each time with K = 100 columns sampled according to ρI .
For each run of the column randomization method, we solve for the optimal basic feasible solution
of the sampled LP and we save the set S ⊆ {j1, . . . , j100} of patterns for which xj > 0. (Note that
while S can contain up to m= 8 indices, it could have fewer than 8 indices, because PCS is not a
standard form LP.)

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec51

Over the 20,000 runs, we obtain 20,000 unique sets of columns S1, . . . , S20000. Of these unique
sets, 5946 of them are optimal. To illustrate, we list below five alternate optimal solutions:

Solution 1 : a1 = (3,6,2,2,1,0,2,1) x1 = 68.9688

a2 = (5,5,2,3,2,1,2,0) x2 = 37.4687

a3 = (6,1,2,1,3,1,1,1) x3 = 59.4375

a4 = (3,0,2,3,1,0,1,2) x4 = 1.2969

a5 = (3,1,5,0,1,2,3,0) x5 = 88.3281

a6 = (2,4,4,1,2,1,1,1) x6 = 26.75

a7 = (3,4,1,2,2,0,2,1) x7 = 17.3281

a8 = (3,3,4,1,0,4,0,1) x8 = 24.9219

Solution 2 : a1 = (3,1,1,3,1,1,2,1) x1 = 36.268

a2 = (4,2,3,2,1,0,4,0) x2 = 9.0103

a3 = (2,6,0,0,0,2,4,0) x3 = 81.768

a4 = (3,3,2,4,0,1,0,2) x4 = 46.7938

a5 = (7,3,3,1,3,1,2,0) x5 = 77.7732

a6 = (3,1,9,0,3,1,0,1) x6 = 67.1134

a7 = (2,3,1,3,4,2,1,0) x7 = 2.7423

a8 = (0,2,1,0,3,1,2,1) x8 = 3.0309

Solution 3 : a1 = (5,4,0,2,3,2,0,1) x1 = 21.8947

a2 = (3,8,4,4,1,3,0,0) x2 = 22.75

a3 = (4,2,0,3,4,0,1,1) x3 = 17.4934

a4 = (6,2,5,3,1,0,3,0) x4 = 7.0789

a5 = (3,2,3,1,0,0,0,3) x5 = 11.2895

a6 = (4,4,2,3,0,2,1,1) x6 = 26.7303

a7 = (4,3,5,0,2,2,2,0) x7 = 117.25

a8 = (3,2,2,1,1,0,3,1) x8 = 100.0132

Solution 4 : a1 = (1,1,2,2,2,2,1,1) x1 = 4.1

a2 = (2,2,4,1,2,1,3,0) x2 = 53.1

a3 = (1,3,3,1,3,0,0,2) x3 = 10.1

a4 = (6,4,2,1,2,2,2,0) x4 = 130.45

a5 = (2,2,2,1,0,0,2,2) x5 = 48.95

a6 = (4,0,6,1,2,1,1,1) x6 = 16.6

a7 = (4,3,2,4,1,1,1,1) x7 = 5.1

a8 = (2,4,5,2,1,1,1,1) x8 = 56.1

Solution 5 : a1 = (7,5,5,0,1,1,1,1) x1 = 106.8125

a2 = (2,2,2,1,0,0,2,2) x2 = 19.375

a3 = (2,2,4,4,2,1,2,0) x3 = 44.3438

a4 = (3,0,0,2,1,2,2,1) x4 = 3.6875

a5 = (4,1,2,1,1,1,4,0) x5 = 54.2812

ec52 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

a6 = (1,2,1,1,4,1,1,1) x6 = 50.0625

a7 = (3,5,0,1,2,1,0,2) x7 = 0.3437

a8 = (1,4,2,2,1,3,2,0) x8 = 45.5937

There are two important points to note about these solutions. First, notice that all of the columns
being used here are very different from the ones used in the column generation solution. In par-
ticular, the columns used in the column generation solution are sparser and the magnitudes of the
ai’s in those columns are larger. For example, in column a4 of the CG solution, one cuts 20 units
of demand type 4, whereas the most we cut of demand type 4 in any column of the above five
alternate solutions is 4 (e.g., column a6 in solution #5).
Second, the only overlap in the columns used in these five solutions comes from solution #4 and

solution #5 (column a5 of solution #4 is the same as column a2 of solution #5). Apart from this
one column that appears in two of the solutions, every other column only appears once. When we
analyze the 5946 optimal solutions that we found, the corresponding columns sets together contain
5123 unique columns (i.e., letting S(i) denote the ith optimal column set, where i ranges from 1 to
5946, we find |S(1) ∪S(2) ∪ · · · ∪S(5946)|= 5123). For each column, we calculate its incidence, which
is the number of column sets in which the column appears. The maximum incidence of any column
is 190, with the average incidence over all of the columns being 9.28 (i.e., on average each column
appears in roughly 9 column sets).
Building on the previous statement about the abundance of exactly optimal solutions, there

exists an even greater number of near optimal solutions. In particular, we can consider the number
of solutions that are within ϵ = 2.0 of the optimal objective; note that this absolute gap value
translates to a relative gap of 2.0/324.5 = 0.62%. We find that that there are 18331 distinct column
sets out of the 20,000 that are within ϵ = 2.0 of the optimal objective of 324.5. These distinct
column sets span 12294 unique columns, with the maximum incidence of any column being 820
and the average incidence being 11.88.
These last two points, regarding the number of optimal and near-optimal solutions, are impor-

tant because they directly relate to our analysis of the distributional counterpart in Section 4. In
particular, Theorem 3 of Section 4.2 asserts that when there exist many ϵ-optimal BFSs where the
incidence of any column is low, then the distributional counterpart gap ∆v(Pdistr) will be small.
Note that although this result is formulated in terms of BFSs, the same proof technique goes
through if one replaces these BFSs with solutions that are supported on a subset of the columns
and for which any column appears in at most a certain number of supports. Thus, in the context of
the cutting stock problem, it makes sense that column randomization does well, because optimal
and nearly-optimal solutions that are diverse in terms of their columns exist in great profusion.

Appendix G Nonparametric Choice Model Estimation Experiments
(continued)

This section continues the numerical experiments with the nonparametric choice model estimation
in Section 6.

G.1 Experiment #2: Comparison of uniform randomization vs. MNL
randomization

In our second experiment, we compare column randomization with the uniform randomization
scheme ρUniform against column randomization with an alternate randomization scheme that we
refer to as MNL randomization, and denote by ρMNL. This randomization scheme involves first
fitting an MNL model to the observed choice probabilities and then sampling rankings using the
random utility model that underlies MNL. The procedure is formally defined below as Algorithm 11.
In this experiment, we again vary N , M and we consider two different setups. In Setup 1, we

again sample the utility ui of each product i as ui ∼Uniform([0,1]). In Setup 2, we instead sample
the utility ui as ui ∼Uniform([0,20]).

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec53

Algorithm 11MNL randomization scheme ρMNL for the nonparametric choice estimation problem.

Require: Estimated utilities û1, . . . , ûN of each product (via maximum likelihood estimation).
1: Initialize α(i,m)← 0 for i∈ [N]+ and m∈ [M].
2: Generate N +1 independent random variable ϵi←Gumbel(0,1), for i∈ [N]+.
3: Set vi← ûi + ϵi for i∈ [N], v0← 0+ ϵ0.
4: Set σ to be the ranking such that vσ(0) > vσ(1) > vσ(2) > . . . > vσ(N).
5: for m∈ [M] do
6: Set i∗← argmini∈Sm∪{0} σ(i).
7: Set α(i∗,m)← 1
8: return Column α= (α(i,m))i∈[N]+,m∈[M].

The rationale for Setup 2 is that when the magnitudes of the utilities u1, . . . , uN are large,
then the MNL model begins to behave more and more like a ranking based model. (To see this,
suppose that u1, . . . , uN is a collection of distinct non-zero real numbers; observe that for any set
S ⊆ [N] and i ∈ S, exp(αui)/(1 +

∑
i′∈S exp(αu

′
i))→ I{i = argmaxi′∈S∪{0} ui′} as α→∞.) Thus,

when the magnitudes of u1, . . . , uN are large, the corresponding distribution over rankings will be
concentrated around the ranking that corresponds to u1, . . . , uN , i.e., the σ∗ such that uσ∗(0) >
uσ∗(1) > uσ∗(2) > · · ·> uσ∗(N). For this case, we should expect that ρUniform will perform poorly, as
it is unlikely that we will sample a large number of rankings around σ∗. On the other hand, we
should expect ρMNL to perform better, as it samples rankings from a fitted MNL model whose
parameters should be close to the parameters of the true underlying MNL model; thus, ρMNL should
generate rankings that are close to σ∗. Conversely, in Setup 1 (which is identical to our prior
setup), we should expect that ρMNL should improve over ρUniform, but the degree of improvement
should be smaller. This is because when u1, . . . , uN ∼Uniform([0,1]), the ranking distribution that
corresponds to this MNL model will be more diffuse in the space of rankings.
Table EC.4 below shows the performance of column randomization equipped with the two ran-

domization schemes in both Setup 1 and Setup 2. In the table, we use ZρUniform
and ZρMNL

to denote
the objective value of column randomization equipped with ρUniform and ρMNL respectively. For
Setup 1, we can see that in general, ρMNL does perform better than ρUniform; for example, for N = 8,
M = 100, K = 500, the objective value of ρMNL is roughly half of that of ρUniform. For Setup 2, the
edge of ρMNL over ρUniform is more stark, with ρMNL resulting in objective values that are 2-3 orders
of magnitude smaller than those of ρUniform. Note that the two forms of column randomization
both have minimal computation time requirements: for ρMNL, the time to carry out the maximum
likelihood estimation, sample the columns, and solve PEST restricted to those columns is no more
than 3 seconds across all (N,M,K) combinations. Similarly, the end-to-end computation time for
ρUniform is also no more than 3 seconds across all (N,M,K) combinations.

As with our experiments with the cutting stock problem in Sections F.1 and F.2, this exper-
iment illustrates how the structure of the problem data can affect the performance of column
randomization: in Setup 2, column randomization equipped with the basic randomization scheme
ρUniform performs poorly. Simultaneously, this experiment again offers an example of how one can
use problem-specific knowledge to design the randomization scheme (in this case, fitting an MNL
model, and then sampling from the ranking distribution corresponding to that fitted MNL model).
We do acknowledge here that ρMNL is successful in this experiment because the ground truth model
is an MNL model. For other ground truth models (e.g., the nested logit model or the latent-class
MNL model), we should no longer expect ρMNL to do as well. However, for a different type of ground
truth model, one can take the same strategy as in Algorithm 11 where one estimates a different
random utility maximization model. (For example, one could fit a latent-class MNL model using
expectation-maximization, and then sample rankings from the resulting model.)
Lastly, we also note here that this experiment is congruent with our theoretical results on the

distributional counterpart gap under generative model 1 (namely Theorem 4). Recall that in that

ec54 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Setup 1 Setup 2
N M K ZρUniform

ZρMNL
ZρUniform

ZρMNL

6 50 500 0.06710 0.03665 4.66656 0.06257
1000 0.00013 0.00244 2.66596 0.02707

8 50 500 0.12338 0.01776 6.89263 0.07756
1000 0.00000 0.00015 5.24286 0.03840

100 500 1.04713 0.48256 17.48573 0.14387
1000 0.20209 0.02196 13.14833 0.09023
1500 0.00123 0.00103 10.09122 0.05453

10 50 500 0.27030 0.07048 10.14161 0.08363
1000 0.00003 0.00001 7.85208 0.04030

100 500 1.51977 0.91140 26.23535 0.10948
1000 0.35918 0.09530 18.81714 0.07296
1500 0.03308 0.00034 15.44066 0.05044
2000 0.00000 0.00027 13.44396 0.04081

Table EC.4 Performance of ρUniform and ρMNL under Setups 1 and 2.

generative model, the right-hand side is generated as a scaled random convex combination of the
set of columns, where the vector of convex combination weights θ is drawn uniformly from the
(n− 1)-dimensional unit simplex. Although problem PEST is not a standard form LP, there is a
similarity here as the right hand side vector v can also be thought of as being generated by a certain
random combination of the columns in A= [α1 · · ·α(N+1)!], with the scale factor η of generative
model 1 being equal to 1 (see also the discussion in Section 4.3 around the moment estimation
problem EC.17). Thus, θ can be thought of as the true underlying distribution over rankings.
Theorem 4 tells us that when θ is drawn uniformly, and the randomization scheme is such that
one samples columns uniformly over [n], then most of the time the gap should be O(logn/

√
n).

The underlying distribution over rankings that one obtains under Setup 1 is closer to looking like
a θ drawn under generative model 1 than the same distribution obtained under Setup 2. This, in
turn, explains why the performance of ρUniform deteriorates so much from Setup 1 to Setup 2.

G.2 Experiment #3: combining column randomization and column generation
In this final experiment, analogously to the experiment in Section F.3 for the cutting stock problem,
we examine the value of using column randomization as a way of warm-starting column generation.
We test the same values of (N,M,K) as in Section 6. For each N and M , we generate 100 problem
instances in the same manner as in Section 6. Then, for each K, we run the column randomization
method equipped with ρUniform ten times, and we then use each solution as the initial solution for
column generation, which we run until we reach an optimality gap of zero.
Table EC.5 shows the results of this experiment. The columns labeled ZρUniform

and TCR indicate
the objective value of the column randomization solution and the time required by column ran-
domization, respectively. The next column, TCR-then-CG, indicates the overall time required for the
combined method (column randomization followed by column generation) to reach a zero optimal-
ity gap. The last column, TCG-only, shows the time required for ordinary column generation (i.e.,
without any warm starting) to reach an optimality gap of zero. From this table, we again see that
using column randomization to warm start column generation can dramatically reduce the time
required to reach an optimality gap of zero.

Appendix H Comparisons to Other Approaches
We complement Section 2 and make an additional comparison between our work and the two works
in the literature.

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec55

N M K ZρUniform
TCR (s) TCR-then-CG (s) TCG-only (s)

6 50 500 0.02990 0.06 3.94 27.55
1000 0.00093 0.08 0.52 27.55

8 50 500 0.17719 0.17 21.77 107.27
1000 0.00000 0.15 0.33 107.27

100 500 0.96841 0.32 397.90 705.70
1000 0.19307 0.44 222.76 705.70
1500 0.00000 0.92 1.63 705.70

10 50 500 0.32513 0.26 86.51 284.65
1000 0.00008 0.24 2.09 284.65

100 500 1.48889 0.36 1441.17 2311.02
1000 0.30858 0.53 737.89 2311.02
1500 0.01132 1.06 133.56 2311.02
2000 0.00000 2.60 3.87 2311.02

150 500 2.92142 0.82 6849.05 9831.54
1000 1.16588 0.98 5358.42 9831.54
1500 0.47822 1.44 3897.58 9831.54
2000 0.15500 2.25 1987.44 9831.54
2500 0.00000 5.82 10.41 9831.54

Table EC.5 Performance of the CG method on the nonparametric choice model estimation problem with and
without the CR-based warm start.

H.1 Comparison with Agrawal et al. (2014)
The starting point of Agrawal et al. (2014) is an online linear program, which is an online version
of the following problem:

POLP : maximize
x

n∑
j=1

πjxj (EC.51a)

subject to
n∑

j=1

aijxj ≤ bi, ∀i∈ [m], (EC.51b)

0≤ xj ≤ 1, ∀j ∈ [n]. (EC.51c)

At the beginning, the decision maker has no information about the ground truth model, except
knowing the total number of columns n. Time progresses in discrete periods, and at each period t,
nature randomly reveals a column at and a coefficient πt to the decision maker. The decision maker
then makes a decision xt based on the history (π1,a1, x1, π2,a2, x2, . . . , πt,at). Note that this is an
irrevocable decision: the decision maker cannot change the decisions made in earlier periods later.
The decision maker’s goal is to maximize the cumulative reward

∑n

t=1 πtxt. A critical assumption
in Agrawal et al. (2014) is that the arrival order of columns (a1,a2, . . . ,an) is uniformly distributed
over all the permutations (Assumption 1.1 of that paper) and n is known (Assumption 1.2 of that
paper).
To solve this online linear program, Agrawal et al. (2014) propose an algorithm called the one-

time-learning algorithm (OLA). This algorithm observes the first s= ⌈ϵn⌉ periods of time, where ϵ∈
(0,1), and using the s columns observed, it defines a policy for making decisions for the remaining

ec56 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

n−s periods/columns. In particular, one considers following primal and dual problem pair defined
on the first s columns:

POLA : maximize
x

s∑
t=1

πtxt (EC.52a)

subject to
s∑

t=1

aitxt ≤ (1− ϵ)
s

n
bi, ∀i∈ [m], (EC.52b)

0≤ xt ≤ 1, ∀t∈ [s]. (EC.52c)

DOLA : minimize
p,y

m∑
i=1

(1− ϵ)
s

n
bipi +

s∑
t=1

yt (EC.53a)

subject to
m∑
i=1

aitpi + yt ≥ πt, ∀t∈ [s], (EC.53b)

pi ≥ 0, ∀i∈ [m], (EC.53c)

yt ≥ 0, ∀t∈ [s]. (EC.53d)

Given a dual vector p for the dual problem DOLA, define a policy x(·) as

xt(p) =

{
0, if πt ≤ pTat,

1, if πt > pTat.
(EC.54)

The OLA algorithm then operates as follows:
1) Initialize xt = 0 for all t≤ s. Let p̂ be the optimal solution to the dual problem DOLA.
2) For t= s+1, s+2, . . . , n, if aitxt(p̂)≤ bi−

∑t−1

j=1 aijxj for all i∈ [m], set xt = xt(p̂); otherwise,
set xt = 0. Output xt.

Having provided this overview of the problem setup and the method of Agrawal et al. (2014), a
number of critical differences become apparent.
First, the problem setup in Agrawal et al. (2014) is different from that of our paper. Agrawal

et al. (2014) considers an online problem: their problem is a sequential decision making problem
such that at each time t, the decision maker receives information (a column) at, and then makes a
decision xt. Decisions made in the past cannot be changed. The decision maker cannot know more
about the problem until nature reveals more information. In contrast, our problem is not an online
problem: the problem is a static problem.
Second, the source of randomness is different. In the model of Agrawal et al. (2014), at each

time step t, nature reveals a column at uniformly at random from the remaining columns; thus,
the randomness is an inherent part of the problem. The OLA method is deterministic, that is to
say, it does not introduce (additional) randomness to solve the problem. In other words, Agrawal
et al. (2014) uses a deterministic method to solve a stochastic problem, which is the online linear
program. In contrast, in our paper, the ground truth model/problem is a large-scale linear program.
This problem is a deterministic, one-shot problem – there is no randomness in how information
is revealed to the decision maker, and the decision maker does not need to set decision variables
sequentially/in real time – but it is very large. Therefore, we introduce randomness in the solution
method, i.e., we propose a randomized algorithm to solve this large-scale deterministic problem.
Third, notwithstanding the difference in problem setups, Agrawal et al. (2014) comment on the

possibility of using OLA as an offline method to solve large-scale linear programs (see Section 5.3
of that paper). In particular, one first creates a random order of the n columns, samples s= ⌈ϵn⌉
columns, solves DOLA, and sets the variables according to the procedure given above. However, this

e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs ec57

approach is difficult to apply in the setting that we study. First, our linear program is a standard
form LP of the form min{cTx |Ax= b,x≥ 0}; in particular, the constraints are not inequalities,
and the variables do not have a priori upper bounds, so it is not straightforward to adapt the
variable-setting procedure of OLA to this more general problem. Second, even if one can overcome
this difficulty, OLA fundamentally requires one to iterate through all n columns. This is impossible
when n is astronomically large. As an example, in the cutting stock problem that we study in
Section 5 of our paper, OLA would involve sampling a small set of s patterns, solving a problem to
obtain dual variables, and iterating through every remaining pattern to set xj for those patterns
according to the dual variables. Although OLA could be useful for solving offline LPs where n is
moderately large – i.e., the full LP is tedious to solve, but solvable – we do not believe that it is
computationally feasible for the case where n is so large that the full LP itself cannot be formed
and solved directly. This latter setting is precisely the setting that our method is intended for.

H.2 Comparison with Vu et al. (2018)
The approach of Vu et al. (2018) involves reducing the number of constraints in a linear program.
In particular, instead of solving the problem min{cTx |Ax= b,x≥ 0}, one forms a random k-by-
m matrix T and left-multiplies both sides of the constraint Ax= b by this matrix to obtain the
following simplified problem:

min{cTx |TAx=Tb,x≥ 0}. (EC.55)

This problem has fewer constraints (k constraints, compared to m constraints in the original
problem).
Having given an overview of the random projection method, it is clear that there are a number of

important differences. First, while our method involves reducing the number of columns by drawing
a random sample of columns, the random projection method of Vu et al. (2018) involves reducing
the number of constraints by taking a linear combination of the constraints. This is important
because in our problem setting, the number of columns n is assumed to be much larger than the
number of rows m; thus, random projection does not make the problem simpler to solve.
Second, by replacing the constraint TAx=Tb, the solution xmay not be feasible for the original

equality constraint Ax = b. In fact, a result of Vu et al. (2018), Proposition 3, asserts that a
solution to problem (EC.55) is infeasible for the original problem with probability 1. This contrasts
with our setup, where if the sampled problem PJ is feasible, the resulting solution is feasible for the
complete problem P ; and additionally, one can augment the sampled set of columns J with a set of
columns JF to guarantee feasibility of the sampled set (see Algorithm 7 in Section 3.3). Although
Vu et al. (2018) provide a procedure (Algorithm 1) for retrieving an optimal basic feasible solution
under certain conditions with high probability, the probability bound scales like 1−O(n), which
for our setting where n is extremely large would yield a low probability. Indeed, the authors of Vu
et al. (2018) acknowledge finding “very high errors” in applying this retrieval procedure in their
numerical experiments (see the discussion in Section 7.2 of Vu et al. 2018), and for this reason
consider a heuristic modification of their retrieval algorithm. Thus, guaranteeing a feasible solution
to the original problem when applying the random projection method is not a triviality.
Third, a tacit assumption in Vu et al. (2018) is that one can form the matrix A explicitly, and

can carry out the multiplication TA exactly. This will in general be impossible for the regime
that we are interested, where n can be astronomically large. For example, in the cutting stock
example we consider, one would need to form the matrix A containing columns for all possible
patterns, and then computeTA; without even getting to the question of how one solves the sketched
problem (EC.55), forming A and then TA is clearly computationally infeasible. For this reason,
the numerical examples that are considered in Vu et al. (2018) are of a much smaller scale than
the ones we consider: n is at most 2400, and the largest computation time reported for solving the
original LP min{cTx |Ax= b,x≥ 0} is no more than two minutes.

ec58 e-companion to Akchen and Mǐsić : Column-Randomized Linear Programs

Lastly, we comment that while the random projection method as originally described in Vu
et al. (2018) reduces the number of rows in the primal LP, it is tempting to consider an alternate
application of this method where one reduces the number of rows in the dual LP. The dual LP is

D : max{pTb | pTA≤ cT}

We can transform this into an equality constrained problem by introducing the slack vector s∈Rn:

D′ : max{pTb | pTA+ sT = cT , s≥ 0}.

Now, we can right-multiply each side of the inequality constraint by a n-by-k matrix T, where
k≪ n, resulting in the projected dual problem:

D′
RP : max{pTb | pTAT+ sTT= cTT}.

The dual of this projected dual problem is

PRP : min{cTTx̃ |ATx̃= b,Tx̃≥ 0},

where x̃ is now a k-dimensional vector of decision variables (versus an n-dimensional vector in the
original problem). Although this approach seems promising, again one runs into computation issues.
In terms of computation, the matrix T is enormous as it has n rows, and one needs to carry out the
matrix multiplication AT, which for large-scale applications like cutting stock will be impossible.
Additionally, although PRP achieves a reduction in the number of decision variables from n to k,
there are still O(n) constraints due to the constraint Tx̃≥ 0. Lastly, a serious limitation of problem
PRP is that it may be infeasible. (Comparing problem PRP and the original problem P , PRP is the
same as P with the constraint that x lies in the lower dimensional subspace {Tx̃ | x̃ ∈Rk}. With
this additional constraint, it is not guaranteed that we can satisfy the equality constraint Ax= b
and the nonnegativity constraint x≥ 0.)

We can therefore see that even applying random projection in an alternate fashion is problematic
for the large-scale LP setting that we study.

	Introduction
	Literature Review
	Column-Randomization Method
	Analysis of the distributional counterpart
	Numerical experiments with the cutting stock problem
	Numerical experiments with nonparametric choice model estimation
	Conclusion
	Additional Discussion on Results in Section 3
	Omitted Proofs of Results in Section 3
	Omitted Proofs and Other Results for Section 4
	Special Structures and Extensions
	Statistically-Dependent Columns
	Cutting Stock Problem Experiments (continued)
	Nonparametric Choice Model Estimation Experiments (continued)
	Comparisons to Other Approaches

