Sequential levetiracetam and phenytoin in electroencephalographic neonatal seizures unresponsive to phenobarbital: a multicenter prospective observational study in India

Vaisakh Krishnan,a Vidya Ujjanappa,a Hemadri Vagda,a Manjesh K. Annayappa,a Pooja Wali,a Sudhindrashayana Fattepur,b Savitha Chandriah,c Sahana Devadas,d Mallesh Kariappa,d Veluthedath Kuzhiyl Gireeshan,d Ajithkumar Vellani Thamunni,d Paolo Montaldo,e Constance Burgod,a Reema Garagrat,e Palloni Muraldeeharan,e Stuti Pant,e Charles R. Newton,g J Helen Cross,h Paul Bassett,i Seetha Shankaran,j Sudhin Thayyil,a,n and Ronit M. Presslerk,m,n

aCentre for Perinatal Neuroscience, Imperial College, London, United Kingdom
bDepartment of Pediatrics, Karnataka Institute of Medical Sciences, Hubballi, India
cDepartment of Obstetrics and Gynecology, Bangalore Medical College and Research Institute, Bengaluru, India
dDepartment of Pediatrics, Bangalore Medical College and Research Institute, Bengaluru, India
eDepartment of Pediatrics, Government Medical College, Kozhikode, India
fDepartment of Neonatology, Università Degli Studi della Campania Luigi Vanvitelli, Naples, Italy
gDepartment of Psychiatry, University of Oxford, United Kingdom
hUCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
iStatsconsultancy Ltd, Amersham, United Kingdom
jDepartment of Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, USA
kDepartment of Neurophysiology, Great Ormond Street Hospital, United Kingdom
lUniversity of Texas at Austin, Dell Children’s Hospital, Austin, USA
mDepartment of Clinical Neuroscience, UCL-Great Ormond Street Institute of Child Health, London, United Kingdom

Summary

Background Although levetiracetam and phenytoin are widely used antiseizure medications (ASM) in neonates, their efficacy on seizure freedom is unclear. We evaluated electroencephalographic (EEG) seizure freedom following sequential levetiracetam and phenytoin in neonatal seizures unresponsive to phenobarbital.

Methods We recruited neonates born ≥35 weeks and aged <72 h who had continued electrographic seizures despite phenobarbital, from three Indian hospitals, between 20 June 2020 and 31 July 2022. The neonates were treated with intravenous levetiracetam (20 mg/kg x 2 doses, second line) followed by phenytoin (20 mg/kg x 2 doses, third line) if seizures persisted. The primary outcome was complete seizure freedom, defined as an absence of seizures on EEG for at least 60 min within 40 min from the start of infusion.

Findings Of the 206 neonates with continued seizures despite phenobarbital, 152 received levetiracetam with EEG. Of these one EEG was missing, 47 (31.1%) were in status epilepticus, and primary outcome data were available in 145. Seizure freedom occurred in 20 (13.8%; 95% CI 8.6%–20.5%) after levetiracetam; 16 (80.0%) responded to the first dose and 4 (20.0%) to the second dose. Of the 125 neonates with persisting seizures after levetiracetam, 114 received phenytoin under EEG monitoring. Of these, the primary outcome data were available in 104. Seizure freedom occurred in 59 (56.7%; 95% CI 46.7%–66.4%) neonates; 54 (91.5%) responded to the first dose and 5 (8.5%) to the second dose.

Interpretation With the conventional doses, levetiracetam was associated with immediate EEG seizure cessation in only 14% of phenobarbital unresponsive neonatal seizures. Additional treatment with phenytoin along with levetiracetam attained seizure freedom in further 57%. Safety and efficacy of higher doses of levetiracetam should be evaluated in well-designed randomised controlled trials.
Funding National Institute for Health and Care Research (NIHR) Research and Innovation for Global Health Transformation (NIHR200144).

Copyright © 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Neonatal seizures; Levetiracetam; Phenytoin; Epilepsy

Research in context

Evidence before this study
The international league against epilepsy taskforce recommends phenobarbital as first line treatment for neonatal seizures. However, no definite recommendations are available for second line antiseizure medications due to lack of evidence.

Prior to the current study, we searched PubMed (January 1985 to June 2020) using the key words “neonates” OR “newborn” OR “infant” AND “levetiracetam” OR “keppra” OR “phenytoin” AND “seizures” OR “convulsions” OR “fits” OR “epileptiform discharges” to identify prospective studies (observational, quasi randomised or randomised control trials) evaluating the efficacy of levetiracetam and/or phenytoin on electroencephalographic (EEG) in neonatal seizures unresponsive to phenobarbital. Following completion of the study, we updated the search in April 2023. We did not identify any prospective studies evaluating efficacy of levetiracetam or phenytoin on EEG seizure freedom in neonatal seizures unresponsive to phenobarbital. The available data on second line efficacy of levetiracetam with EEG in phenobarbital unresponsive neonatal seizures were from small subgroup in a retrospective review of 14 neonates and 6 neonates from a subgroup analysis within a randomized controlled trial comparing first line levetiracetam versus first line phenytoin.

Added value of this study
We report the first study from a low and middle-income country to use EEG monitoring in neonatal units to evaluate antiseizure medications. Of the 152 neonates with seizures unresponsive to phenobarbital, levetiracetam was associated with attainment of seizure freedom on EEG only in 14% of the neonates by 40 min from the start of the infusion. Further treatment with phenytoin along with levetiracetam resulted in seizure freedom in an additional 57% of the neonates. The increase in seizure freedom may be directly related to phenytoin, delayed effects of levetiracetam or synergy. Thirty one percent of the neonates were in status epilepticus indicating high disease severity.

Implications of all the available evidence
Although evidence from randomised controlled trials is lacking, the data from observational studies suggest that levetiracetam, in the standard doses, may not be an effective second line ASM for terminating neonatal seizures unresponsive to phenobarbital. Given the safety profile and potential neuroprotective effects in neonates, the effect of very high dose levetiracetam on seizure cessation and neurodevelopmental outcome in LMIC should be explored in clinical trials.

Introduction
Neonatal seizures are the most common neurological manifestation of brain injury in the neonatal period.1 Affected neonates die or survive with long-term neurodisability and epilepsy.2 The burden of neonatal seizures in low- and middle-income countries (LMIC) is 10–30 times higher than in high-income countries.3,4 Clinical diagnosis of neonatal seizures is unreliable and subjective. Non seizures movements may be misinterpreted as seizures leading to unnecessary treatment. Conversely, many electrographic seizures may not have clinical manifestations.5-7 Hence, medical regulatory bodies recommend that in clinical trials evaluating antiseizure medication (ASM), seizure freedom should be examined using EEG.8-10

As an ASM, levetiracetam has several advantages, particularly in LMIC due to its safety profile, minimal sedation, lack of respiratory suppression, ease of administration, favorable pharmacokinetics and potential neuroprotection.11,12 Pooled data from several small single centre open label randomised controlled trials from LMIC suggest levetiracetam has similar efficacy to phenobarbital in clinical seizure cessation (70% versus 56%).13-15 However, the efficacy of levetiracetam was much lower than phenobarbital (28% versus 80%) in a well-designed multicenter phase IIb randomised controlled trial where EEG was used to assess seizure cessation.16

We evaluated the efficacy of sequential levetiracetam and phenytoin administration in terminating neonatal seizures unresponsive to phenobarbital using continuous EEG monitoring in South India.

Methods
Study design and participants
We conducted a prospective multicenter observational study across three tertiary care public sector teaching hospitals in India (Karnataka Institute of Medical
Neonates born at the recruiting hospital were defined as inborn, and the neonates born at other health care facilities or at home were defined as outborn. All inborn neonates born at or after 35 weeks of gestation and admitted to neonatal unit with encephalopathy or clinical seizures within 72 h after birth were screened for eligibility. Upon recognition of clinical or electrographic seizures, phenobarbital was administered as the first line ASM (a total of 30–40 mg/kg in 2 doses) if seizures continued after metabolic corrections.

We included all neonates who had continued seizures on EEG after 30 min of phenobarbital administration requiring additional ASM. The following neonates were excluded 1) outborn neonates 2) neonates who received second line ASM without EEG monitoring 3) transient metabolic disorders who responded to metabolic corrections and inborn errors of metabolism.

The study was approved by research ethics committees at Imperial College, London and the participating sites, and all parents provided written informed consent.

Procedures
Prior to the study, the PREVENT (Prevention of Epilepsy by Reducing Neonatal Encephalopathy) consortium was set up between Imperial College London, University College London, Oxford University and the three recruiting sites in India. A team of 6 neonatal neurology fellows, 6 neonatal research nurses, and 7 neonatology fellows, 6 neonatal research nurses, and 7

neurophysiologist (RP) using a cloud-based real time EEG review system. All seizures were verified by two independent reviewers.

A seizure management protocol based on current evidence-based recommendations for LMIC was standardized across the sites and involved a step wise escalation starting with phenobarbital, followed by levetiracetam, then phenytoin, and finally midazolam. Neonates included in the study received levetiracetam (20 mg/kg) initially as a short infusion or slow iv push over 10–20 min and the dose was repeated if seizures persisted to achieve a maximal dose of 40 mg/kg. If seizures persisted despite maximal dose of levetiracetam, phenytoin (20 mg/kg) was administered as an infusion over 20–30 min and the dose was repeated (total 40 mg/kg) if seizures persisted. In between each infusion, a time gap of 10–20 min was given for the ASM to act unless the infant was in status epilepticus, where drug doses were escalated more rapidly.

Seizures were grouped into clinical events (no ictal EEG available), electrographic-only (EEG seizures without clinical manifestations), or electro-clinical seizures (EEG seizures with a clinical correlate). Diagnostic certainty of seizures was documented as defined by the Brighton Collaboration Neonatal Seizures Working Group. Level 1 included seizures confirmed with EEG, level 2 included clinical focal clonic or tonic seizures or seizures on amplitude integrated EEG (aEEG), and level 3 included other clinical events suggestive of epileptic seizures other than focal clonic or tonic. The clinical events not meeting case definitions (level 4) and those not having an EEG correlate (level 5) were taken as non-seizure events. Seizure semiology was classified according to the ILAE seizure classification. The EEG background was grouped according to the following criteria: normal (continuous activity with age appropriate graphoelements and well defined sleep wake cycling); mildly abnormal (continuous activity with mild asymmetry, voltage depression and/or poorly defined sleep wake cycle); moderately abnormal (discontinuous activity with interburst intervals less than 10 s, absent sleep wake cycles and clear asymmetry or asynchrony); severe (discontinuous activity with prolonged interburst intervals more than 10 s, severe attenuation, burst suppression and isoelectric patterns); or undetermined (difficult to assess background due to status epilepticus or excessive artefacts). Status epilepticus was defined as a seizure burden of 30 min per hour or more in at least one 1-h epoch of EEG recording. Seizure burden (minutes/hour) was defined as the total duration of ictal discharges (minutes) divided by the total duration of EEG (hours).

All neonates had detailed clinical assessments, electrolyte and blood sugar measurements, infection screening and magnetic resonance imaging prior to hospital discharge. Additional metabolic and genetic investigations were performed as clinically indicated.
Outcomes
The primary outcome was the onset of seizure freedom within 40 min from the start of the initial dose of levetiracetam or phenytoin infusion. Seizure freedom was defined as a complete absence of seizures on continuous EEG monitoring for at least 60 min from the end of the last seizure without the need for any additional ASM.

Statistical analysis
The efficacy of levetiracetam and phenytoin reported as proportions of neonates achieving seizure freedom along with their Clopper Pearson exact 95% confidence limits. To show the time to achieve seizure freedom (endpoint), Kaplan–Meier survival plots are plotted separately for neonates who received levetiracetam as second line ASM, and for neonates who received levetiracetam as well as third line ASM, phenytoin. Data were analysed using SPSS software, version 29.0.

Role of funding source
This research was funded by the National Institute for Health and Care Research (NIHR) Research and Innovation for Global Health Transformation (NIHR200144) using UK aid from the UK Government to support global health research. The views expressed in this publication are those of the author(s) and not necessarily those of the NIHR or the UK government. The study funders had no role in the study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit the paper for publication.

Results
During the 2-year study period, a total of 1027 neonates born at or after 35 weeks were admitted to the neonatal intensive care unit (NICU) with encephalopathy or suspected seizures (Fig. 1). Of these, 771 neonates had EEG monitoring starting at a median (IQR) age of 18.8 (8.5–39.3) hours. A total of 276 of the 771 neonates had persistent seizures after phenobarbital, 5 had second line ASM protocol deviations and 49 did not have EEG continuous monitoring for at least 60 min from the start of the initial dose of levetiracetam or phenytoin infusion. Seizure freedom occurred in 20 (13.8%; 95% CI 8.6%–20.5%) neonates following levetiracetam. Among these, 16 (80.0%) neonates responded to an initial 20 mg/kg dose, and further four (20.0%) to an additional 20 mg/kg (total 40 mg/kg). Of the 125 neonates who had persistent seizures after 40 mg/kg of levetiracetam, one infant died, one received midazolam as third line, one received phenytoin after EEG was discontinued and eight did not receive further ASM as seizure burden was considered low by the clinical team. The remaining 114 neonates received phenytoin as the third line ASM under EEG monitoring. Data on primary outcome were available in 104 out of 114 neonates as 10 neonates had early discontinuation of EEG due to clinical or logistic reasons. The primary outcome of seizure freedom occurred in 59 out of these 104 neonates (56.7%; 95% CI 46.7%–66.4%). Among these, 54 (91.5%) neonates responded to an initial 20 mg/kg dose and further five (8.5%) to an additional 20 mg/kg (total 40 mg/kg). The details of EEG monitoring of neonates analysed at ASM administration are given in Table 2 and scenarios of seizure response following administration of levetiracetam and phenytoin are shown in Supplementary Fig. S1.

The median (IQR) time gap between the start of infusion of levetiracetam (20 mg/kg) and start of phenytoin was 87.0 (59.5–115.5) minutes and time gap between the start of maximal dose of levetiracetam (40 mg/kg) and phenytoin was 43.0 (30.0–59.5) minutes. The proportion of neonates who reached the efficacy endpoint (primary outcome) was greater with phenytoin as third line ASM [59/104 (56.7%; 95% CI 0.47–0.66)] compared to levetiracetam as second line ASM 20/145 [(13.8%; 95% CI 0.08–0.20)]. The attainment of seizure freedom (endpoint) with time after start of ASM is shown in Fig. 2.

Details of seizure types and background abnormalities are provided in Table 1. Of the 152 neonates enrolled, EEG data from one neonate was missing. Forty-seven (31.1%) of the remaining 151 neonates analysed had status epilepticus at any point during EEG monitoring. Of these, 31 (21.4%) out of 145 neonates analysed for levetiracetam response were in status epilepticus at levetiracetam administration and 19 (18.3%) out of 104 neonates analysed for phenytoin response were in status epilepticus (Table 2) at phenytoin administration. Among the babies who had status epilepticus, none responded to levetiracetam (0%) whereas
Fig. 1: Flow chart of the study. *8 neonates had ongoing electrographic seizures after levetiracetam, but the clinicians decided not to administer further ASM as seizure burden was low.
Clinical characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N HIE (N = 62)</th>
<th>N Non-HIE (N = 90)</th>
<th>N Overall (N = 152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestational age, mean (SD), weeks</td>
<td>62 38.8 (1.4)</td>
<td>90 38.7 (1.8)</td>
<td>152 38.7 (1.6)</td>
</tr>
<tr>
<td>Birth weight, mean (SD), grams</td>
<td>62 2621 (496)</td>
<td>89 2566 (567)</td>
<td>151 2589 (538)</td>
</tr>
<tr>
<td>Male neonates, n (%)</td>
<td>62 35 (56.5%)</td>
<td>90 53 (58.9%)</td>
<td>152 88 (57.9%)</td>
</tr>
<tr>
<td>APGAR 5 min, median (IQR)</td>
<td>57 6.0 (5.0–7.0)</td>
<td>86 8.0 (7.0–9.0)</td>
<td>143 7.0 (6.0–8.0)</td>
</tr>
<tr>
<td>Inotropic support, n (%)</td>
<td>62 23 (37.1%)</td>
<td>76 11 (14.5%)</td>
<td>138 34 (24.6%)</td>
</tr>
<tr>
<td>Invasive ventilation, n (%)</td>
<td>62 36 (58.1%)</td>
<td>76 18 (23.7%)</td>
<td>138 54 (39.1%)</td>
</tr>
<tr>
<td>Death before discharge, n (%)</td>
<td>62 26 (41.9%)</td>
<td>90 17 (18.9%)</td>
<td>152 43 (28.2%)</td>
</tr>
<tr>
<td>Seizure type, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrographic only seizures at all time points</td>
<td>60 32 (53.3%)</td>
<td>88 35 (39.8%)</td>
<td>148 67 (45.3%)</td>
</tr>
<tr>
<td>Electroclinical seizures at all time points</td>
<td>60 5 (8.3%)</td>
<td>88 17 (19.3%)</td>
<td>148 22 (14.9%)</td>
</tr>
<tr>
<td>Electrographic only seizures at one time point and</td>
<td>60 23 (38.3%)</td>
<td>88 36 (40.9%)</td>
<td>148 59 (39.9%)</td>
</tr>
<tr>
<td>Electroclinical seizures at another time point.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of starting EEG, median (IQR), hours</td>
<td>62 19.7 (11.7–33.9)</td>
<td>90 44.2 (21.7–67.6)</td>
<td>152 29.2 (15.9–58.6)</td>
</tr>
<tr>
<td>EEG background abnormality, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>62 0 (0.0%)</td>
<td>89 2 (2.2%)</td>
<td>151 2 (1.3%)</td>
</tr>
<tr>
<td>Mild abnormality</td>
<td>62 1 (1.6%)</td>
<td>89 22 (24.7%)</td>
<td>151 23 (15.2%)</td>
</tr>
<tr>
<td>Moderate abnormality</td>
<td>62 24 (38.2%)</td>
<td>89 48 (53.9%)</td>
<td>151 72 (47.7%)</td>
</tr>
<tr>
<td>Severe abnormality</td>
<td>62 31 (50.0%)</td>
<td>89 12 (13.5%)</td>
<td>151 43 (28.5%)</td>
</tr>
<tr>
<td>Undetermined</td>
<td>62 6 (9.7%)</td>
<td>89 5 (5.6%)</td>
<td>151 11 (7.3%)</td>
</tr>
<tr>
<td>Status epilepticus, n (%)</td>
<td>62 20 (32.2%)</td>
<td>89 27 (30.3%)</td>
<td>151 47 (31.1%)</td>
</tr>
</tbody>
</table>

*Refers to seizure type after phenobarbital, once the neonate entered the study. Data are not mutually exclusive, 1 baby may have more than 1 clinical seizure manifestation.

Table 1: Clinical characteristics.

EEG characteristics of neonates analysed at antiseizure medication (ASM) administration.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N Levitiracetam (second line, N = 145)</th>
<th>N Phenytoin (third line, N = 104)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at ASM administration after birth (median (IQR), hours)</td>
<td>145 32.9 (18.7–61.6)</td>
<td>104 37.7 (20.5–66.0)</td>
</tr>
<tr>
<td>Age at ASM administration after seizure onset (median (IQR), hours)</td>
<td>145 19.4 (9.2–49.6)</td>
<td>104 22.3 (10.4–54.6)</td>
</tr>
<tr>
<td>Total duration of EEG monitoring after start of response (minutes)</td>
<td>20 115.0 (90.0–131.7)</td>
<td>59 77.0 (65.0–105.0)</td>
</tr>
<tr>
<td>Range</td>
<td>20 60–235</td>
<td>59 60–271</td>
</tr>
<tr>
<td>Total duration of EEG monitoring to start of next ASM in case of no response (minutes)</td>
<td>125 88.0 (60.0–120.0)</td>
<td>45 120.0 (88.0–150.0)</td>
</tr>
<tr>
<td>Range</td>
<td>125 23–435</td>
<td>45 50–520</td>
</tr>
<tr>
<td>Seizure type before administration of study ASM (n %)</td>
<td>140 85 (60.7%)</td>
<td>99 70 (70.7%)</td>
</tr>
<tr>
<td>Electrographic only seizures at all time points</td>
<td>140 24 (17.1%)</td>
<td>99 11 (11.1%)</td>
</tr>
<tr>
<td>Electroclinical seizures at all time points</td>
<td>140 31 (22.1%)</td>
<td>99 18 (18.2%)</td>
</tr>
<tr>
<td>Seizure burden before administration of study ASM (median (IQR), minutes/hour)*</td>
<td>145 12.0 (4.0–25.0)</td>
<td>104 15.0 (9.0–27.0)</td>
</tr>
<tr>
<td>Status epilepticus at administration (n %)</td>
<td>145 31 (21.4%)</td>
<td>104 19 (18.3%)</td>
</tr>
</tbody>
</table>

*Seizure burden calculated for the entire pretreatment period and was defined as the total duration of seizures in minutes divided by the no. of seizure hours (minutes/hour).

Table 2: EEG characteristics of neonates analysed at antiseizure medication (ASM) administration.
A

Seizure freedom following second-line levetiracetam

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of neonates remaining with seizures</td>
<td>145</td>
<td>127</td>
<td>126</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
</tbody>
</table>

B

Seizure freedom following third line phenytoin

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>50</th>
<th>100</th>
<th>150</th>
<th>200</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of neonates remaining with seizures</td>
<td>104</td>
<td>51</td>
<td>46</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>
2/19 (10.5%) neonates who were in status during phenytoin administration responded to phenytoin. The baseline median (IQR) seizure burden at the time of levetiracetam administration was 12.0 (4.0–25.0) minutes per hour and at the time of phenytoin administration was 15.0 (9.0–27.0) minutes per hour (Table 2). The evolution of seizure burden over time and with administration of ASM is shown in Fig. 3.

Detailed clinical seizure subclassification was performed on 148 of the 152 recruited neonates where video EEG and continuous vital sign monitoring data were available (Table 1). Of these, 67 (45.3%) were electrographic-only, 22 (14.9%) were electroclinical, while 59 (39.9%) neonates had both electrographic-only and electroclinical seizures at different time points. Among the 81 (54.7%) neonates with electroclinical seizures, focal clonic seizures (45.7%) were the most common clinical manifestation followed by automatisms (32.1%). Of these 81 neonates, 58 were having electro-clinical seizures at the time of levetiracetam administration. Among these 58 neonates, 10 (17.2%) stopped seizing clinically but continued to have electrographic seizures (uncoupling) following the infusion. None of the neonates had serious adverse events like cardiac arrhythmia or sudden cardiac arrest during the time of infusion of levetiracetam or phenytoin.

Discussion

Here we report, to the best of our knowledge, the largest prospective multicenter study in the world to assess electrographic response to ASM in neonatal seizures using standardized EEG acquisition and analysis protocols, and the first study from an LMIC. Levetiracetam (40 mg/kg) was associated with EEG seizure cessation within 40 min of administration in only 14% of phenobarbital unresponsive neonatal seizures. Additional treatment with phenytoin along with levetiracetam resulted in seizure freedom in further 57% of the neonates. The increase in seizure freedom may be directly related to phenytoin, delayed effects of levetiracetam or synergy. The data presented here will inform future randomised controlled trials of ASM for neonatal seizures in LMIC.

While there are no prospective studies evaluating efficacy of second line levetiracetam on EEG seizure freedom, efficacy data are available from few retrospective studies or subgroups of randomised controlled trials (RCT) comparing first line ASMs. In a retrospective study involving 14 neonates who had persistent seizures despite phenobarbital, Abend et al. reported that four (28%) attained complete seizure freedom.21 In a subgroup analysis of a randomised controlled trial (Neolev-2) comparing first line phenobarbital and levetiracetam, six neonates had persistent seizures despite phenobarbital. Of these only one neonate (17%) had complete seizure freedom following levetiracetam.26 Although the number of neonates in these studies are too small to draw any meaningful conclusions, the low efficacy of second line levetiracetam for achieving seizure freedom on EEG is consistent with the observations in our study.

Only two studies, both conducted over two decades ago, have reported electrographic response to phenytoin as a second line ASM. First was a landmark RCT comparing phenobarbital and phenytoin that included a subgroup of 15 neonates treated with phenytoin for non-response to phenobarbital; seizure freedom on EEG occurred in 4 (27%).22 Another was a prospective observational study that included six neonates who had persistent seizures after phenobarbital; seizure freedom on EEG was not achieved in any of these six neonates. However, the number of neonates in these studies is too small to make meaningful comparisons about the efficacy of second line phenytoin treatment.23

In contrast, open label studies without EEG monitoring have reported much higher efficacy of levetiracetam (71%–93%)24,25 in termination of clinical seizures. This may be related to observer bias inherent in open label interventions, subjectivity in the diagnosis of neonatal seizures and possibly, electroclinical uncoupling.26,27 Hence pilot randomised controlled trials comparing different ASM,27 where the investigators are neither masked to the intervention nor the outcome, are prone to serious bias.28 In our study only 10 (17%) neonates with electroclinical seizures had uncoupling to electrographic-only seizures after administration of levetiracetam.

The critical importance of EEG in the evaluation of ASM efficacy is highlighted by the contrasting results of RCTs using clinical or EEG seizure freedom as primary endpoints. An open label RCT trial involving 100 neonates reported that first line levetiracetam was superior to phenobarbital in clinical seizures cessation (86% versus 62%; p < 0.01),28 while a blinded RCT involving 83 neonates reported that phenobarbital was superior to levetiracetam (80% versus 28%; p < 0.001) in achieving seizure cessation on EEG despite the latter trial using a higher dose of levetiracetam of up to 60 mg/kg.29

It is important to note that none of the RCTs of ASM for neonatal seizures have reported neurodevelopmental
outcome at 18 months or more.29 A less effective ASM that leads to a better neurodevelopmental outcome is preferable to a highly effective ASM that adversely affects the neurodevelopment. In the original National Institute of Human Development and Child Health Neonatal Research Network hypothermia trial,30 ASM medications were associated with adverse outcomes after HIE.31 The confounding effects of the underlying brain injury, neonatal seizures and ASM on neurodevelopment, can be examined only in carefully designed and adequately powered double blind RCTs using EEG and robust neurodevelopmental outcome evaluation.
The main strength of our study is the large number of neonates we were able to enrol with continuous video EEG monitoring, particularly in a LMIC setting. We also trained neonatal neurology fellows and technicians to allow real time EEG reporting and feedback to the clinical team. We carefully annotated the ASM start points on the EEG which enabled us to accurately quantify measures such as seizure burden before and after the administration of the ASM. Building on this work, we have established a Collaborative Neonatal Neuroprotection Trial platform in South Asia (CONNECTIONS) to conduct large multi-country trials of ASM and other neuroprotective therapies.

Our study had several limitations. Firstly, our study design was observational and direct comparisons cannot be made as additional confounders and temporal changes may have influenced the efficacy of ASM unequally. Thus, neonates in levetiracetam group had both phenobarbital and levetiracetam, while those in the phenytoin group had phenobarbital, levetiracetam and phenytoin. Therefore, synergy or later effect of levetiracetam could have amplified the efficacy of phenytoin. Nevertheless, poor (14%) seizure cessation efficacy of ASM and other neuroprotective therapies.

Third, we used a maximal dose of 40 mg/kg of levetiracetam as safety data on high dose levetiracetam are lacking, and hence cannot exclude a better efficacy with higher doses.15

Fourth, our primary outcome was based on seizure freedom within 40 min from the start of the infusion. As 31% of the neonates were in status epilepticus in our study. Furthermore, neonatal seizures tend to be more refractory to treatment over time.13 Despite this phenytoin as a third line was associated with more seizure freedom than second line levetiracetam. Although seizures in HIE tend to peak around 24 h before naturally decreasing by 72 h, the median time interval between full dose of levetiracetam and phenytoin was too short (43 min) for these temporal changes to modify the treatment efficacy in our study.

Secondly, although our study protocol required the levetiracetam infusion to be completed within 30 min, we did not collect the exact time when the infusion was completed. To account for any potential delays, we used seizure freedom within 40 min from the start of the infusion.

Finally, whole body-hypothermia was being offered at the participating sites before the publication a randomised controlled trial (Hypothermia for Encephalopathy in Low and Middle-Income countries; HELIX)17 reporting lack of neuroprotection and increased mortality with this treatment, and hence was de-implemented. Thus, only one neonate received whole-body hypothermia in this study and the body temperature of other neonates was maintained in the normothermic range. Whole-body hypothermia may reduce seizure burden, and lower the renal clearance of levetiracetam,18 all of which may modify the treatment response. The disease severity among neonates recruited to our study was also high compared to high-income countries, as observed by the high rates of status epilepticus and mortality before discharge. Therefore, the results may not be generalisable to neonates in high-income countries or those treated with whole-body hypothermia.

In this large multicenter observational study involving neonates with seizures unresponsive to phenobarbital, levetiracetam at a maximal dose of 40 mg/kg, was associated with attainment of seizure freedom on EEG only in 14% of the neonates by 40 min after the start of the infusion. As 31% of the neonates were in status epilepticus, low efficacy of levetiracetam in EEG seizure cessation is of concern. Additional treatment with phenytoin along with levetiracetam resulted in seizure freedom in further 57% of the neonates. The increase in seizure freedom may be directly related to phenytoin, delayed effects of levetiracetam or synergy.

Contributors
VK recruited babies, interpreted the EEG data and wrote the first draft under supervision of RP and ST. VK, VU, HV, MKA, and PW recruited babies, interpreted the EEG data. SF, SC, SD, MK, VKG, and AVT supervised the site recruitments. PMo, CB, RG, PM and SP assisted in trial management and preparation of the manuscript. CRN, JHC, SS assisted in protocol development, interpretation of the data and preparation of the manuscript. PB was responsible for all statistical analysis. RP assisted in protocol development, reviewed all EEGs and was responsible for the interpretation and analysis. All authors approved the final version of the manuscript. ST obtained funding, supervised all aspects of the study including data analysis and interpretation, preparation of the manuscript and had final responsibility for the decision to submit for publication.

Data sharing statement
Anonymised participant data used in this study will be available from the corresponding author after approval of a proposal with a signed data access agreement.

Declaration of interests
Helen Cross has received institutional renumeration from Zogenix, Union Chimique Belge (UCB), Marinus, Stroke Therapeutics, Ultragenyx, GW Pharma, Jazz, Biocodex for educational symposium and advisory board activities and renumeration for administrative support from International League Against Epilepsy at the President. Ronit Pressler has received institutional funding from UCB and personal
renumeration from Kephala and Natus for lectures. The authors declare no conflict of interest.

Acknowledgements

We acknowledge the EEG technicians: Mr. Nizamudeen Muneer, Ms. Vaishnavi Bagayi, Mr. Manu Mohan, Mr. Abbas Ahmed, Mr. Talim Khan, Ms. Aruna C, Mr. Malatesh Sunagar and Ms. Hajira Bibi; and research nurses Ms. Anju Manari, Ms. Suja Mullassery, Ms. Elisha Ashalatha, Ms. Indiramma, Ms. Vimal Madhale Mhetri, Ms. Sura SV, Ms. Lakshmi Balachandran, Ms. Saba Nadaf and Ms. Vijaya Jakkappanavar who actively participated in the EEG data collection. We thank Paul Bassett (Statconsultancy, London) for performing the statistical analysis.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.lansea.2024.100371.

References