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Abstract
Conventional earthquake risk modeling involves several notable simplifications, which
neglect: (1) the effects on seismicity of interactions between adjacent faults and the
long-term elastic rebound behavior of faults; (2) short-term hazard increases associ-
ated with aftershocks; and (3) the accumulation of damage in assets due to the occur-
rence of multiple earthquakes in a short time window, without repairs. Several
recent earthquake events (e.g. 2010–2011 Canterbury earthquakes, New Zealand;
2019 Ridgecrest earthquakes, USA; and 2023 Turkey–Syria earthquakes) have empha-
sized the need for risk models to account for the aforementioned short- and long-
term time-dependent characteristics of earthquake risk. This study specifically inves-
tigates the sensitivity of monetary loss (i.e. a possible earthquake-risk-model output)
to these time dependencies, for a case-study portfolio in Central Italy. The investiga-
tion is intended to provide important insights for the catastrophe risk insurance and
reinsurance industry. In addition to salient catastrophe risk insurance features, the
end-to-end approach for time-dependent earthquake risk modeling used in this study
incorporates recent updates in long-term time-dependent fault modeling, aftershock
forecasting, and vulnerability modeling that accounts for damage accumulation. The
sensitivity analysis approach presented may provide valuable guidance on the impor-
tance and appropriate treatment of time dependencies in regional (i.e. portfolio)
earthquake risk models. We find that the long-term fault and aftershock occurrence
models are the most crucial features of a time-dependent seismic risk model to con-
strain, at least for the monetary loss metrics examined in this study. Accounting for
damage accumulation is also found to be important, if there is a high insurance
deductible associated with portfolio assets.
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Introduction

Several recent earthquake events (e.g. 2010/2011 moment magnitude MW 7.1–6.2
Christchurch sequence, New Zealand; 2019 MW 6.4–7.1 Ridgecrest sequence, USA; and
2023 Turkey–Syria MW 7.8–7.5 sequence) have emphasized the need to explicitly account
for time dependencies in seismic risk assessments. This is because short-term (i.e. months
to years) space-time clustering of earthquakes after large mainshocks can cause significant
amplification of damage and loss due to the relatively large ground-motion intensities that
aftershocks can produce (e.g. Marzocchi and Taroni, 2014; Papadopoulos and Bazzurro,
2020), and the increased vulnerability of building stock/infrastructure systems after the
main event and before any repair actions (e.g. Gentile and Galasso, 2021; Hatzigeorgiou
and Beskos, 2009; Kam et al., 2011). The occurrence of mainshocks is also governed by
long-term (i.e. decades to centuries) time-dependent mechanisms, such as elastic rebound-
ing (Reid, 1910)—that is, faults cyclically accumulating elastic strain energy and releasing
it when the fault rocks’ internal strength/capacity is reached—and stress-based fault-inter-
action triggering (Toda et al., 1998), which causes long-term clustering of large main-
shocks (Mignan et al., 2018).

Yet, the current state-of-practice in seismic portfolio risk assessment involves some sig-
nificant simplifications that neglect the aforementioned time-dependent features of earth-
quake risk. Investigations of the effects of these simplifications on portfolio risk
calculations have been sparse. Porter et al. (2017) performed a sensitivity study with the
long-term time-dependent version of the Uniform California Earthquake Rupture
Forecast (UCERF3, Field et al., 2014), exploring the effect of elastic rebound behavior on
financial risk (monetary loss) estimates for the state of California. Papadopoulos and
Bazzurro (2020) accounted for both aftershocks and (a relatively simplistic representation
of) damage accumulation in an investigation of monetary loss estimates for a region in
Central Italy. These studies further underline the importance of considering various time
dependencies in seismic risk calculations, but neither incorporate a complete suite of time-
dependent features in their respective assessments. Other related sensitivity studies have
limited their focus to site-specific risk implications associated with aftershocks and damage
accumulation for specific building types (e.g. Han et al., 2015, 2016; Tesfamariam and
Goda, 2017).

This study involves a more comprehensive investigation of the effects of time dependen-
cies in portfolio earthquake risk models, which is specifically intended to provide impor-
tant insights for the catastrophe (CAT) insurance and reinsurance industry. The event-
based time-dependent earthquake risk assessment approach presented here is an end-to-
end framework that integrates existing methodologies for: (1) long-term time-dependent
fault modeling that includes fault-interaction triggering between major known faults; (2)
aftershock occurrence modeling; and (3) state-dependent vulnerability modeling to capture
the impact of damage accumulation due to multiple ground motions. This study then
explores the sensitivity of a selection of portfolio-level monetary loss metrics to the inte-
grated features of the framework. For the first time in the literature (to the best of the
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authors’ knowledge), the investigation also considers the hours clause, a time-dependent
earthquake insurance policy feature stipulating that the insurer will cover all financial
losses that accumulate in a prescribed number of hours after a catastrophic event begins.
Accurately modeling the implications of this clause in CAT risk models is challenging,
given the lack of a standard approach in insurance practice for assigning loss claims to
specific hours or events (Mitchell-Wallace, 2017) and the absence of spatiotemporal seis-
micity clustering (i.e. aftershock occurrence modeling) in conventional earthquake risk
models.

The study focuses on common monetary loss metrics, that is, average annual loss (AAL,
also known as the pure premium or expected annual loss) and return period (RP) loss (also
known as ‘‘value at risk’’). These metrics cover both ground-up loss (the total amount of
loss incurred before applying any insurance or reinsurance financial structures) and gross
loss (the loss to the insurer after limits and deductibles are accounted for, but before any
form of reinsurance is considered). The case-study portfolio examined for the investigation
is located in Central Italy. It is a subset of the European Seismic Risk Model 2020 exposure
dataset (ESRM20, Crowley et al., 2021a), including 136,000 buildings and a total replace-
ment cost (structural, non-structural, and contents) of e27.4 billion.

Event-based time-dependent earthquake risk assessment framework

Figure 1 outlines the event-based time-dependent earthquake risk assessment framework
used in this study. The framework follows the general structure of a conventional CAT
risk model, integrating hazard, exposure, vulnerability, and financial modules (Mitchell-
Wallace, 2017). Time-dependent components are represented as a series of input options,
which are subsequently investigated through a sensitivity analysis. These input options rep-
resent epistemic uncertainty in the considered CAT risk model.

The seismic hazard module generates stochastic event sets (i.e. synthetic catalogs of
earthquake ruptures) based on simulated seismicity for the region of interest over a num-
ber of years. A number of time-dependent input modeling options that influence the

Figure 1. Flowchart of the event-based time-dependent earthquake risk assessment methodology used
in this study. Time-dependent input options are displayed in red font.
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stochastic event-set generation process are included and relate to: (1) fault rupture occur-
rence modeling (which can be either time-independent –TI– or time-dependent –TD); (2)
fault-interaction modeling (included –fi– or not –fi); and (3) aftershock occurrence model-
ing (included –as– or not –as). The simulated earthquakes include rupture information
required for the ground-motion intensity calculations (e.g. location, magnitude, and nodal
planes). Consistent with the approach of Crowley and Silva (2013), one ground-motion
field for each rupture is then simulated by sampling the probability distribution defined by
a set of appropriate ground-motion models (GMMs), accounting for site effects. Spatial
and cross-IM correlation models (e.g. Huang and Galasso, 2019; Jayaram and Baker,
2009; Weatherill et al., 2015) can be used to produce more accurate ground-motion fields.

The exposure module contains a portfolio of assets, which are mapped to specific build-
ing types. The taxonomy information is then used to select appropriate vulnerability mod-
els in the vulnerability module. These vulnerability models are used in conjunction with the
ground-motion fields generated at each asset’s location to compute a set of ground-up (gu)
loss metrics. The first of these metrics is LRgu,a,e, which is the ground-up loss ratio (LR) for
the ath asset and the eth earthquake obtained from the corresponding mean vulnerability
model (where the loss ratio is the estimated repair cost divided by the asset’s replacement
cost). Two alternative approaches to vulnerability modeling are considered for computing
LRgu,a,e:

� The approach used in conventional seismic risk assessments (indicated with dacc),
in which the vulnerability calculations do not account for damage accumulation.
This means that the vulnerability module has no memory of the building’s existing
damage state (DS) due to previous events, and LRgu,a,e is evaluated independently
for each earthquake with the same vulnerability model (i.e. the assets are considered
repaired immediately after each ground motion). In this approach, the annual
ground-up losses of each asset can exceed their replacement cost (e.g. Iacoletti
et al., 2023);

� The approach of Iacoletti et al. (2023) which makes use of the state-dependent vul-
nerability models to capture loss accumulation due to multiple ground motions
(indicated with dacc). These vulnerability models define the LRgu,a,e of an initially
damaged building (i.e. which reached a certain dsj damage state during previous
ground motions). In this approach, the annual ground-up losses of each asset can-
not exceed their replacement cost (see Iacoletti et al., 2023, for more details).

The asset-level ground-up loss related to each earthquake, Lgu,a,e, is calculated by multiply-
ing the LRgu,a,e with the replacement cost of the ath asset. The portfolio ground-up loss for
an earthquake, Lgu,e, is then the sum of all Lgu,a,e across the portfolio. The annual portfolio
ground-up loss for each simulated year of the stochastic event set, Lgu, is calculated as the
sum of the corresponding Lgu,e values. The ground-up aggregate exceedance probability
(AEP) curve then provides the annual probability of Lgu exceeding a certain loss level and
is determined as outlined in Crowley and Silva (2013). Ground-up AAL, AALgu, is calcu-
lated as the integral under the Lgu AEP curve. The Lgu corresponding to a prescribed RP
X, in the Lgu AEP curve (denoted as the X-RP Lgu) is read directly from the curve.

The hours clause input option to the financial module is implemented for the ath asset,
the nth simulated year of the stochastic event set, and t hours in the clause, according to
the following procedure:
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1. Identify the events simulated within the nth year;
2. Order the identified events according to their associated LRgu,a,e value, from the

highest to the lowest;
3. For each ordered event (referred to at this stage as a ‘‘payout event’’), do the

following:

(a) If the event belongs to the hours-clause window of a previous payout event,
skip the next two steps and relabel the event as a ‘‘cumulative event’’ (see next
step);

(b) Identify other events (referred to as ‘‘cumulative events’’) occurring within
t from the current payout event;

(c) Add the LRgu,a,e of the identified cumulative events to that of the current payout
event, to produce LR�gu, a, e.

This procedure is based on the idea that the event most likely ‘‘triggering’’ a claim is the
one causing the largest loss to the policyholders (which might be different for each asset).
However, this assumption might not be consistent with the practices of all insurers and
reinsurers. The number of hours in a typical hours clause depends on the peril and is typi-
cally 168 for earthquakes (Mitchell-Wallace, 2017). Table 1 provides an example imple-
mentation of a 168-h clause. Event e2 is the first payout event since it is associated with
the largest LRgu,a,e. Events e3 and e4 are cumulative events of e2 because they occur within
a 168-h time window. Event e5 is identified as the second payout event since it is associ-
ated with the second largest LRgu,a,e value and did not feature as a cumulative event for
e2. Events e6 and e7 are the corresponding cumulative events because they respectively
occur within 44 and 140 h of event e5. The final payout events, e8 and e1, do not have
any associated cumulative events. In a year like the one shown in Table 1, the insurer
would have to pay a policyholder twice for the LRgr,a,e caused by two clusters of events
(regardless of whether the payout event in the cluster was a mainshock or an aftershock).

Gross (gr) loss metrics are computed as the final output of the framework. The asset-
level gross loss ratio, LRgr,a,e, is calculated by applying insurance limits and deductibles to
each asset’s LR�gu, a, e (i.e. the modified loss ratio). The deductible is the amount of loss a
policyholder has to pay before reclaiming from the policy and is selected by insurance com-
panies to avoid incurring running expenses with minor claims. Typical earthquake deducti-
bles vary between 0% and 15% (Goda et al., 2015). The insurance limit is the maximum
amount a policy will pay out. Most modern insurance contracts apply an insurance limit of

Table 1. Example implementation of a 168-h clause for one asset in a simulated year.

Event
ID

Decimal
year

Hours from the
start of the year

LRgu,a,e LRgu,a,e for
payout event e2

LRgu,a,e for
payout event e5

Modified
LR�gu, a, e

LRgr,a,e

e1 1.007 61 0.020 0.020 0.000
e2 1.010 88 0.200 0.200 (p) 0.260 0.160
e3 1.025 219 0.040 0.040 (c) 0.000
e4 1.028 245 0.020 0.020 (c) 0.000
e5 1.560 4909 0.045 0.045 (p) 0.115 0.015
e6 1.565 4953 0.030 0.030 (c) 0.000
e7 1.576 5049 0.040 0.040 (c) 0.000
e8 1.580 5080 0.030 0.030 0.000

(p) Identifies payout events, and (c) identifies cumulative events. LRgr,a,e is calculated with a 10% deductible and a 100%

insurance limit.
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100% on customers. In this study, the deductible and the insurance limit are expressed as a
percentage of the replacement cost. Extending the hours-clause window likely increases the
number of cumulative events included within each window, therefore growing the chances
of exceeding the deductible. This is consistent with the structure of real-life insurance poli-
cies. Lgr,a,e is calculated by multiplying the corresponding LRgr,a,e with the replacement
cost of the ath asset (where all variables are as previously defined). Lgr,e, Lgr, AALgr, and
X-RP Lgr are calculated analogously to corresponding ground-up loss metrics. Insurance
companies commonly also cede portions (or layers) of Lgr,e to reinsurance companies to
limit the risk of incurring an exceedingly large loss for any given eth event.

Variance-based sensitivity analysis

Variance-based sensitivity analysis is used to investigate the effects of introducing earth-
quake risk modeling time-dependent features on AALgu, AALgr, and X-RP Lgu outputs.
For a given model of the form Y = g(X), variance-based methods quantify the sensitivity of
Y to X in terms of a reduction in the variance of Y (e.g. Saltelli et al., 2010). In contrast to
simpler sensitivity analysis methods (e.g. local sensitivity analyses depicted on tornado
plots), variance-based sensitivity analyses provide quantitative sensitivity measures that
consider the interaction among inputs X (Borgonovo and Plischke, 2016). In this study, Y
is the loss metric of interest (such as AALgu or AALgr), the function g( � ) represents the
methodology used in this study to calculate losses (described in the ‘‘Event-based time-
dependent earthquake risk assessment framework’’ section), and X represents the time-
dependent input options to be investigated. The first-order (main) sensitivity coefficient Si

is used to estimate the contribution of the ith input to the output variance (i.e. it measures
the effect of varying the ith input alone, averaged over variations in other inputs). Si values
are calculated through the sampling procedure proposed by Saltelli et al. (2010). The logic-
tree approach (e.g. Bommer and Scherbaum, 2008) is used to sample the considered time-
dependent features, where each set of time-dependent input options (marked in red in
Figure 1) corresponds to a section of the tree. In the absence of further information, all
branches within a given section are equally weighted, which allows for general conclusions
on the importance of different inputs to be drawn. Four matrices are developed from the
samples produced: (1) A, built with N samples of each input of interest; (2) B containing
another set of N samples generated in the same way as A; (3) Ci, built by substituting the
ith column of matrix A for the ith column of matrix B; and (4) Di, built by substituting the
ith column of matrix B for the ith column of matrix A. The qth column of each matrix cor-
responds to a section of the logic tree. The pth row is a sampled set of branches from each
section, used to generate K-years stochastic events sets and compute the loss metrics of
interest. YA, YB, YCi

, and YDi
are the vectors of a given loss metric corresponding to A, B,

Ci, and Di, respectively. Si is then estimated as:

Si =
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, respec-
tively. More details on variance-based sensitivity analysis can be found in Saltelli et al.
(2010) and Cremen and Baker (2020).

6 Earthquake Spectra 00(0)



Case study

The case study is contained within the bounding box of longitudes [13�, 13.9�] and lati-
tudes [41.9�, 42.8�] in Central Italy (Figure 2). The sensitivity results are presented for the
entire portfolio described in the ‘‘Exposure module’’ section, and for the cities of L’Aquila,
Teramo, and Avezzano specifically (i.e. only considering assets in these cities), which col-
lectively represent around 40% of the portfolio’s total replacement value.

Seismic hazard module

The stochastic event sets used in the case study have been developed by Iacoletti et al.
(2022a) for Central Italy, within the bounding box of longitudes [12.6�, 14.2�] and lati-
tudes [41.6�, 43.2�]. Iacoletti et al.’s (2022a) approach for stochastic event-set generation
combines fault-based seismicity, distributed seismicity, and aftershocks simulated with a
simulator based on the Epidemic-Type Aftershock Sequence (ETAS) model. Fault-based
seismicity is simulated based on 43 fault segments (shown in Figure 2) from the
Fault2SHA Central Appennines laboratory (Faure Walker et al., 2021; Scotti et al., 2021).
Fault data required to calibrate the fault-based seismicity modeling component (i.e. slip
rates, paleoseismic records, and date of the last event) are taken from the works by Scotti
et al. (2021) and Valentini et al. (2019), and other available data sources (see Iacoletti
et al., 2022a, for more details). One time-independent and three time-dependent fault

Figure 2. Case-study portfolio (subset of that presented in Crowley et al. (2021a), blue dots within the
blue polygon, representing density-weighted centroids). The red polygon is the study area used in
Iacoletti et al. (2022a) to generate the stochastic event sets. The 43 considered fault segments (Scotti et
al., 2021) are shown in black (fault trace) and gray (geometry at depth).
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rupture occurrence models are used. The time-dependent fault rupture occurrence models
are based on the Brownian Passage Time (BPT; Matthews et al., 2002) model with differ-
ent levels of recurrence uncertainty (Field et al., 2015): high (TD =BPThigh), medium
(TD =BPTmid), and low (TD =BPTlow). The time-dependent fault rupture occurrence mod-
els account for the time elapsed since the last event when available; otherwise, the metho-
dology proposed by Field and Jordan (2015) is applied. For more details, the reader is
referred to Iacoletti et al. (2021). The fault system is considered to be unsegmented, follow-
ing the methodology of UCERF3 (Field et al., 2014). Fault interaction is modeled by
introducing a stress-based proxy (i.e. Coulomb stress changes; King et al., 1994) that
modifies the rupture occurrence probabilities computed with the fault rupture occurrence
model (Iacoletti et al., 2021; Toda et al., 1998). The ‘‘Catalogo Parametrico dei Terremoti
Italiani’’ (CPTI15, Rovida et al., 2020) is used to calibrate the time-independent distribu-
ted seismicity model. The stochastic event-set generation also accounts for the initial stress
state of the 43 considered fault segments, using information on stress built up by all
MW ø 6 events in the CPTI15 and more recently until 2022, the starting year of the analy-
sis (Iacoletti et al., 2022a). Aftershocks are generated with an ETAS-based simulator cali-
brated with the Homogenized Instrumental Seismic Catalog (HORUS, Lolli et al., 2020)
according to Iacoletti et al. (2022b). The ETAS-based simulator is a modified version of
the classic ETAS model (e.g. Ogata and Zhuang, 2006) that includes: (a) a truncated ver-
sion of the Omori–Utsu law (Cattania et al., 2018; Utsu et al., 1995); (b) fault geometry
information to account for the anisotropic spatial distribution of aftershocks (Guo et al.,
2015); (c) a double-truncated magnitude-frequency distribution, as defined in Iacoletti
et al. (2022a); and (d) short-term magnitude incompleteness (Page et al., 2016) to emulate
the initial b-value decrease (e.g. Omi et al., 2014). Five years of historical seismicity before
the simulation period (i.e. between 2017 and 2021) are used to account for the aftershocks
due to past seismicity (Iacoletti et al., 2022a). The stochastic event sets that include after-
shocks contain a slightly lower number of 5\MW\5:5 events than the undeclustered
CPTI15 observed catalog (Iacoletti et al., 2022a). However, this is deemed a minor discre-
pancy and we consider them generally acceptable for the purpose of this study. The
ground-motion fields are computed at each asset in the portfolio with the GMM devel-
oped by Cauzzi et al. (2015), and accounting for both spatial and cross-IM correlation
using the procedure proposed by Markhvida et al. (2018). The site effects are accounted
for using the mean VS30 (shear-wave velocity in the upper 30 m) values from the map
developed by Mori et al. (2020).

Exposure module

The case-study portfolio (shown in Figure 2) is a subset of the ESRM20 residential build-
ing portfolio for Italy, which was developed using 2011 public census data provided by the
Department of Civil Protection (Crowley et al., 2020, 2021a). The number of buildings and
associated total replacement costs (structural, non-structural, and contents) of this portfo-
lio are aggregated at Administrative Level 3 (i.e. roughly equivalent to a township or a
municipality) and represented by a density-weighted centroid, which is calculated from the
built-up area density map (Crowley et al., 2021a; Dabbeek et al., 2021). Each centroid is
associated with assets of different building types (classes), which describe the material and
type of the lateral load-resisting system, the seismic code or ductility level, and the building
height (in terms of number of stories). This case-study portfolio contains around 136,000
buildings, representing 8188 asset entries, 157 unique locations, 32 different building types,
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and a total replacement cost of e27.4 billion. A summary of the ESRM20 residential build-
ing classes that feature in the case-study portfolio is provided in Table 2.

Vulnerability module

We use the suite of single-ground-motion (i.e. mainshock-only) and state-dependent vul-
nerability models developed by Iacoletti et al. (2023) for the building types used in this
study (available at https://github.com/SalvIac/sequence_frag_vuln). These models have
been developed based on the energy-based probabilistic seismic demand model by Gentile
and Galasso (2021), which is a physically consistent model that accounts for the accumula-
tion of damage (even though it is solely based on numerical analyses and requires further
experimental/field validation). The IM associated with each state-dependent and single-
ground-motion vulnerability model is the average spectral acceleration at a range of peri-
ods of interest (which vary for each building type), calculated from the capacity curve
associated with each taxonomy (Iacoletti et al., 2023; Martins and Silva, 2021). Each
state-dependent vulnerability model is conditional on the previous dsj reached, ranging
from ds0 to ds3, representing no (ds0), slight (ds1), moderate (ds2), or extensive (ds3) dam-
age (Iacoletti et al., 2023). The approach proposed in Iacoletti et al. (2023) is used in this
study to capture loss accumulation due to multiple ground motions (i.e. dacc branches).

Ground-up losses

Figure 3 provides the uniformly weighted logic tree of time-dependent input options inves-
tigated. The number of samples N and the number of years K of generated seismicity are
case-study-dependent and affect the computational time needed to run the sensitivity anal-
ysis. For this study, N = 2000 and K = 10000 yr have been selected after several tests, which
provide a reasonable compromise between the numerical stability of the Si values and the

Table 2. Building classes in the case-study exposure model (see ‘‘Data and resources’’ section for more
information).

Building class Description

CR-LFINF-CDL-FY-HX Reinforced concrete (CR) building with infilled frames (LFINF),
low-code level (CDL, designed for lateral resistance using
allowable stress design), FY = 0%, 5%, or 10%, HX = 1–4 stories
(H1–H4)

CR-LFINF-CDM-FY-HX Reinforced concrete (CR) building with infilled frames (LFINF),
moderate-code level (CDM, designed for lateral resistance with
modern limit state design), FY = 0%, 5%, or 10%, HX = 1–4
stories (H1–H4)

MCF-LWAL-DUL-HX Confined masonry (MCF) building with load-bearing walls
(LWAL), low ductility (DUL), HX = 1–4 stories (H1–H4)

MUR-STRUB-LWAL-DNO-HX Rubble stone masonry (MUR-STRUB) building with load-bearing
walls (LWAL), non-ductile (DNO), HX = 1–3 stories (H1–H3)

MUR-STDRE-LWAL-DNO-H4 Dressed stone masonry (MUR-STDRE) building with load-
bearing walls (LWAL), non-ductile (DNO), 4 stories (H4)

HX indicates the number of stories. FY is the lateral force coefficient, that is, the percentage of weight specified as the

design lateral force in the seismic design code. All other acronyms are explained in the table. The code levels of CR-

LFINF buildings correspond to the age of construction; buildings built before 2001 are assigned CDL, and all other

buildings are assigned CDM. For further details, the reader is referred to Crowley et al. (2021b).

Iacoletti et al. 9
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computational cost required. Figure 4 displays the Lgu AEP curves for a set of logic-tree

branches (i.e. as�dacc�TI� fi, as� dacc�BPTmid� fi, and as�dacc� BPTmid� fi),
and the range of variability of these curves across all logic-tree branches. Figure 4 also
provides the ratio (for each specific annual probability of exceedance) of the

as�dacc�BPTmid� fi and as�dacc�BPTmid� fi curves with respect to that of

as�dacc�TI� fi. The time-dependent fault rupture occurrence model leads to lower val-

ues of Lgu in general; the AALgu for as�dacc�BPTmid� fi is approximately 9% less than

that for as� dacc�TI� fi. This is because the time-dependent rupture occurrence prob-
ability of the considered fault system in Central Italy is lower than that calculated with a
time-independent model (Iacoletti et al., 2022a). Aftershock inclusion, fault interaction,
and the inclusion of state-dependent vulnerability calculations (denoted by
as�dacc�BPTmid� fi) lead to an increase in AALgu of around 22% and an increase of
approximately 25% in the 200-year-RP Lgu, relative to the respective values obtained for

as�dacc�BPTmid� fi. These increases are predominantly due to the inclusion of after-
shocks, which considerably amplify hazard (and potential losses) following relatively
large-magnitude mainshocks.

Figure 5 provides Si values associated with AALgu and 2500-year RP Lgu (denoted as
Si, AALgu

and Si, RP2500gu
, respectively) for the cities of L’Aquila, Teramo, and Avezzano, and

the entire portfolio. Si values associated with fault-interaction modeling are close to negli-
gible in all cases. This is consistent with the findings of Iacoletti et al. (2022a) for the same
region. It is explained by the fact that typical ruptures generated by the 43 considered fault
segments (Figure 2) cannot produce stress changes large enough to affect the occurrence
probabilities of other ruptures (Iacoletti et al., 2021). However, this result is highly depen-
dent on the specific details of the case study, including fault geometry and earthquake
magnitudes (e.g. Iacoletti et al., 2022c). The Si, AALgu

values associated with vulnerability
modeling are generally small. The corresponding Si, RP2500gu

values are larger, implying that
the consideration (or not) of damage accumulation is more important in the tail of the Lgu

Figure 3. Logic tree used in the sensitivity analysis.
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AEP curve (corresponding to high RP Lgu values). The AALgu and 2500-year RP Lgu are
most sensitive to variations in the fault rupture occurrence models (i.e. time-dependent
versus time-independent model) and the inclusion (or not) of aftershocks.

At L’Aquila, the highest Si, AALgu
and Si, RP2500gu

values are associated with fault rupture
occurrence modeling. This is because time-dependent seismic hazard is expected to be
notably lower than time-independent hazard at this location, due to the rupture of the
Paganica fault in 2009 (e.g. Iacoletti et al., 2022a; Pace et al., 2016). At Teramo, the highest
Si, AALgu

values are associated with aftershock modeling and fault rupture occurrence model-
ing and the highest Si, RP2500gu

is associated with fault rupture occurrence modeling. For
Avezzano and for the overall portfolio, the highest Si, AALgu

and Si, RP2500gu
values are associ-

ated with aftershock modeling (although the overall portfolio Si, RP2500gu
value for fault rup-

ture occurrence modeling is similar to that for aftershock modeling). The 2500-year RP
Lgu of the overall portfolio is more sensitive than the AALgu to variations in the fault rup-
ture occurrence modeling. This reflects the fact that the choice of fault rupture occurrence
model affects rare, longer-term hazard estimates the most (Iacoletti et al., 2022a). The
inclusion or not of aftershocks affects short-term hazard estimates, which helps to explain
why the Si, AALgu

value associated with aftershock modeling is generally higher than the cor-
responding Si, RP2500gu

value.

The sensitivity analysis for AALgu is repeated at each centroid of the portfolio (see
Figure 2) separately to explore the spatial variability of corresponding Si, AALgu

values.
Figure 6a displays a map of the time-dependent input options associated with the highest

Figure 4. (a) Lgu AEP curves for as� dacc�TI� fi, as� dacc�BPTmid� fi, and as� dacc�BPTmid� fi,
and the range of variability across logic-tree branches. (b) Ratio (for each specific annual probability of
exceedance) of the as� dacc� BPTmid� fi and as� dacc�BPTmid� fi AEP curves with respect to the
corresponding curve for as� dacc�TI� fi, and the range of variability of these ratios across the
considered logic-tree branches. TI and BPTmid are time-independent and time-dependent (with mid
recurrence uncertainty) fault rupture occurrence models, respectively; fi and fi respectively indicate the
consideration of fault interaction and not; as and as respectively indicate the inclusion and non-inclusion
of aftershocks; dacc and dacc respectively indicate the consideration of damage accumulation or not.
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Si, AALgu
for each centroid. The consideration or not of aftershocks represents the highest

contribution to the variance of the AALgu (i.e. the loss metric is most sensitive to the ‘‘after-
shock inclusion’’ logic-tree branching level in Figure 3) in most of the study area (around
73%), and the loss metric is most sensitive to the choice of long-term fault rupture occur-
rence model across the remaining area. The sensitivity of AALgu to variations in the fault
rupture occurrence model is highest where the considered site is close to a fault segment
that recently ruptured (see Figure 6b) or located in an area with high background seismi-
city (northwest portion of the study area, see Figure 5 of Iacoletti et al., 2022a); this is also
clear from Figure 6c, which plots the ratio of the Si, AALgu

value associated with aftershock
modeling and that associated with fault rupture occurrence modeling, for each centroid.
This is because close to a fault segment that recently ruptured, the time-dependent fault
rupture occurrence models produce significantly lower occurrence probabilities than the
time-independent model (e.g. Polidoro et al., 2012). In areas where the background seismi-
city is high, large-magnitude mainshocks occur relatively often (compared to areas with
low background seismicity) and dominate over aftershocks in terms of seismic hazard.

Gross losses

The sensitivity of gross losses is investigated for 5-h-clause windows (see Figure 3): 0
(equivalent to no hours clause), 24, 72, 168, and 504 h, using three levels of deductible (set

Figure 5. Si, AALgu
and Si, RP2500gu

values for the cities of L’Aquila, Teramo, and Avezzano and the full case-
study portfolio.
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respectively as 0.1%, 1%, and 10% of the replacement cost of each asset). The insurance
limit is set to 100% of the replacement cost of each asset. Reinsurance considerations are
neglected in this study for simplicity.

Figure 7 demonstrates the effect of different hours-clause windows and deductibles on
AALgr, for sets of logic-tree branches that include aftershocks (as). The AALgr increases
(with a decreasing gradient) as the hours-clause window increases and more (cumulative)

Figure 6. Maps of (a) the time-dependent input option associated with the highest Si, AALgu
for each

centroid and (b) the fault system in the study area and rupture rates. Fault segments that recently
ruptured are shown in black. (c) Ratios between the Si, AALgu

associated with aftershock modeling and
those associated with fault rupture occurrence modeling, across each centroid.
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event losses are accounted for. The decreasing gradient reflects the decreasing rate of after-
shocks over time (Utsu et al., 1995).

Figure 8 displays the effect of different hours-clause windows on the Lgr AEP curve,
for the most complex set of logic-tree branches (i.e. as� dacc�BPTmid� fi), using a 10%
deductible. It can be seen that the variation in AALgr with the length of the hours-clause
window is significantly lower than the range of AALgr variability across all possible sets of
logic-tree branches presented in Figure 3.

Figure 9 provides the Si values associated with AALgr for the entire portfolio, across dif-
ferent deductible levels investigated and all possible sets of logic-tree branches (denoted in
blue). Consistent with the findings for the ground-up loss metrics, the consideration of
fault interaction has a limited effect on the variance of AALgr. The Si, AALgr

values associated
with fault rupture occurrence modeling remain reasonably constant across different deduc-
tible levels and indicate that AALgr is as sensitive as AALgu to this modeling feature. The
Si, AALgr

value associated with the hours clause is generally low and increases with deductible
level (in accordance with Figure 7). The Si, AALgr

values associated with aftershock modeling
are relatively high, except for a 10% deductible level. This is because higher deductibles are
less frequently exceeded for aftershocks (than for mainshocks). The Si, AALgr

associated with
vulnerability modeling is highest (and notable) for a 10% deductible because this deducti-
ble level is more frequently exceeded when damage accumulation is accounted for.

The sensitivity analysis is repeated to further explore Si, AALgr
in the presence of after-

shock modeling (i.e. only considering sets of logic-tree branches that include as), given the
dominant variance contribution of the fas, asg logic-tree section to AALgr. Fixing the as
branch will produce larger Si, AALgr

values for the other sections of the logic tree (due to the

Figure 7. Ratio between AALgr and AALgr, 0�hr (i.e. corresponding to a 0-h clause) across different hours-
clause windows and deductible levels, for sets of logic-tree branches that include aftershocks (as).
Curves are linearly interpolated between 0, 24, 72, 168, and 504 h. The solid lines and shaded areas
respectively represent the mean and range of AALgr=AALgr, 0�hr across the considered sets of logic-tree
branches, for a specific deductible level.
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removal of first- and higher-order interaction effects associated with uncertainty in after-
shock inclusion) but the extent of the increase for each value may not be equivalent. The
updated Si, AALgr

values are found to rank similarly to those obtained for all possible sets of
logic-tree branches (see green bars in Figure 9). The only minor difference is that the low-
est Si, AALgr

value is associated with fault interaction (instead of the hours clause) for a 10%
deductible level, which does not change the overall conclusions.

Conclusions

This study explored the sensitivity of a selection of monetary loss metrics to various time
dependencies often neglected in conventional earthquake risk models. An event-based
time-dependent earthquake risk assessment methodology was used for the sensitivity anal-
ysis, accounting for long-term time-dependent rupture occurrences that include the effects
of fault interaction, short-term hazard increases caused by aftershocks, and damage accu-
mulation in assets due to multiple ground motions occurring in a short time period. The
investigation was designed to provide important insights for the catastrophe insurance and
reinsurance industry, so specific insurance features (e.g. hours clauses) were also considered
in the calculations. A sample portfolio in Central Italy, including the cities of L’Aquila,
Teramo, and Avezzano, was used as a case study for the investigation.

The sensitivity analysis revealed that the AALgu and 2500-year-RP Lgu loss metrics are
most sensitive to the choice of long-term fault rupture occurrence model and whether or
not aftershocks are accounted for. Thus, these two modeling features are the most impor-
tant to constrain when developing a time-dependent seismic risk model (at least for the
case study investigated). AALgu is generally more sensitive to the modeling of aftershocks

Figure 8. (a) Lgr AEP curves for as� dacc� BPTmid� fi, using different hours-clause windows and a 10%
deductible. Also shown is the range of variability of the Lgr AEP curves across all possible sets of logic-
tree branches in Figure 3. (b) Ratio (for each specific annual probability of exceedance) of the Lgr AEP
curves in (a) with respect to the Lgr AEP curve for as� dacc�BPTmid� fi� 168 (with 168-h clause), and
the range of variability of these ratios across all possible sets of logic-tree branches considered.
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than 2500-year-RP Lgu. This is because aftershocks increase the short-term hazard esti-
mates and corresponding losses at low RP. Time-dependent fault rupture occurrence mod-
els can also significantly affect AALgu close to a fault that recently ruptured (e.g. at
L’Aquila). The sensitivity of specific-RP Lgu to aftershock modeling and fault rupture
occurrence modeling respectively decreases and increases with increasing RP. This means
that the choice of fault rupture occurrence model is more important than the consider-
ation of aftershocks for large-RP Lgu (including the 2500-year-RP Lgu metric specifically
examined). The sensitivity of the loss metrics to the modeling of vulnerability is relatively
low but increases with increasing RP and larger losses produced by subsequent after-
shocks. However, the fragility/vulnerability models used in this study are based on a prob-
abilistic seismic demand model that has not been validated using experimental or field
data, which could have affected the sensitivity results. Therefore, the effects of damage
accumulation on risk obtained in this study should be treated as illustrative only. The sen-
sitivity of the ground-up loss metrics to fault interaction is low, such that this modeling
feature is the least important to constrain in a time-dependent seismic risk model.

The sensitivity results are generally similar in the case of gross losses; the long-term rup-
ture occurrence and aftershock modeling components are also the most crucial to con-
strain for AALgr. However, if there is a high deductible level associated with portfolio
assets (around 10%, as considered for the case study), then accounting for damage accu-
mulation also becomes important. The sensitivity of AALgr to the length of the hours
clause is generally relatively low.

Figure 9. Si, AALgr
for the entire case-study portfolio and different deductibles.

16 Earthquake Spectra 00(0)



The findings of this study focus on the sensitivity of relative loss metrics rather than
absolute loss estimates and are limited in applicability to the case study, the logic-tree
structure, and the underlying methodologies and assumptions. For instance, the calcula-
tion of Lgr depends on the implementation details of the hours clause. The process insurers
use for assigning loss claims to specific hours or events is not standardized across the
industry; the implementation procedure could be refined to better match the practices of
specific insurers. The methodology used in this study could be extended by additionally
considering reinsurance (and associated reinstatement clauses). Adopting alternative
hazard modeling or damage accumulation methods, and/or focusing on another case-
study region (where, for instance, fault interaction has higher impacts, e.g. California,
King et al., 1994), could lead to different sensitivity results. Nevertheless, the sensitivity
results obtained provide some valuable guidance on the treatment and importance of time
dependencies in advanced large-scale (i.e. portfolio) earthquake risk models.
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