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Sixty years of predicƟve percepƟon 

It is oŌen lamented that scienƟfic progress is slow, perhaps driven by scienƟsts stubbornly 

persisƟng with underperforming ideas, tesƟng accounts that are not truly open to the scienƟfic 

mode of interrogaƟon, and the fundamentally noisy relaƟonship between data and theory (Press, 

Yon & Heyes, 2022; Oude Maatman, 2021). However, when considering a longer Ɵmescale, we 

should be heartened by the clear evidence that understanding has progressed dramaƟcally. The 

scienƟfic community understands considerably more than we did several decades ago. Here, we 

consider the advances in our understanding of the role of predicƟon in the mind and brain, focusing 

on its influences on percepƟon. We outline the shiŌs in explanaƟon, along with methodological 

developments that have rendered these possible.  

PredicƟve theories of the mind and brain (Clark, 2013; Friston, 2009; Friston, 2010) propose 

that we integrate incoming sensory evidence with expectaƟons based on our prior experience to 

form representaƟons of the world. Because sensory input is noisy and the world is generally stable, 

we can leverage these expectaƟons to bias us toward accurate representaƟons. For example, our 

vision is less reliable during darkness or fog, so in those condiƟons we take advantage of what we 

know of our surroundings. This expectaƟon helps us to conclude that the large indisƟnct object is a 

parked car when we’re walking down a dark foggy street (see Figure 1, Torralba, 2003). Not only can 

we cogniƟvely understand that the object in this scenario is a car, but we will also perceive it as more 

car-like than the large indisƟnct blob would allow without these expectaƟons (Clark, 2013)1.  

Some of the knowledge that led to these accounts has been around for decades. For 

instance, paƟents with specific disrupƟons provide a great demonstraƟon of expectaƟons 

overcoming uncertainty about sensory inputs. Take the descripƟon of feature-by-feature object 

idenƟficaƟon, in the case of visual agnosia. Luria (1966, as cited in Thaiss and de Bleser, 1992) 

described a paƟent who cannot fluently idenƟfy a pair of glasses. However, they could talk through a 

process in which they recognise a circle, and another circle, joined by a bar, and conclude that this 

object must be a bicycle. Such disrupƟon in object recogniƟon not only shows potenƟal pathways to 

resilience in a complex system, but demonstrates clearly that prior experience is essenƟal for 

perceptual tasks. This explicit, conscious example is of course not the only level at which predicƟve 

 
1 Note that this has interesƟng implicaƟons for percepƟon during early development (Ward 

et al., in prep). 
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mechanisms operate, but it is a rare opportunity to peer inside the mechanics of the process before 

the dawn of the technological advances necessary to unpack the underlying mechanisms more 

precisely. 

Figure 1. Adapted from Torralba, 2003. Two blurry scenes emulaƟng a dark foggy street, with a 
prominent object in the foreground of each. In panel A, the object appears to be a car, while in 
panel B the object appears to be a person. 
These objects are in fact the same image superimposed on the background, and only differ due to 
being rotated by 90 degrees. Our prior experience of the structure of the world scaffolds 
percepƟon of a car in panel A since cars are the most common horizontal objects of this size in a 
street scene. Conversely, it generates a percept of a person in panel B, as pedestrians are the most 
common verƟcal objects of this size in such scenes. 

 

Although predicƟve theories of brain and cogniƟon are hundreds of years old (Bubic, von 

Cramon & Schubotz, 2010), experimental work on predicƟve motor, sensorimotor, percepƟon and 

aƩenƟon processes has rapidly escalated in recent years. Considerable advances in the technology at 

our disposal, and the ways we conceive of and invesƟgate mental processes, have allowed the field 

to both collect the data to answer old quesƟons and to generate new quesƟons about predicƟve 

theories and their role in percepƟon. The advent of neuroimaging has allowed mechanisƟc 

descripƟon not possible with paƟent work, and with it, a cycle of iteraƟve implementaƟon, 

specificaƟon and theorising which allow for the development of new explanatory frameworks (Guest 

& MarƟn, 2021). Due to this conƟnuous iteraƟve cycle, theoreƟcal and technological advances are 

difficult to disentangle, but we have aƩempted here to outline some of the major advances in our 

understanding of predicƟve theories of percepƟon through: 1) the technology used for behavioural 

experiments, (2) neuroimaging techniques, and (3) shiŌs in conceptual approaches.  

A B 
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1. Advances via behavioural methods 

A host of experimental methods, from adaptaƟon aŌer-effect (Gibson, 1933; Stocker & 

Simoncelli, 2005) and category learning (AƩneave, 1957; Posner & Keele, 1968) to priming (for a 

review, see Bar, 2004) studies, had already rendered it clear that previous experience directly 

influences percepƟon not only in the long-term case as demonstrated in visual agnosia paƟents, but 

also at Ɵmescales in the order of seconds and minutes. 

Figure 2. Adapted from Walther, Schweinberger & Kovács, 2013. AdaptaƟon aŌer-effects on facial 
idenƟty percepƟon. 
Familiarise yourself with the three faces, and then look at the face on the leŌ for 5 seconds, 
followed by looking at the central face. Which person does the central face resemble more? 
Now look at the face on the right for 5 seconds, followed by the central face. Which person does 
the central face resemble more now? 

 

Early behavioural paradigms typically relied on parƟcipants verbally reporƟng an embodied 

experience such as wearing prism glasses (Gibson, 1933) or responding with buƩon presses to staƟc 

sƟmuli presented on slides (Posner & Keele, 1968), and while they established a strong evidence 

base for effects of prior experience on percepƟon, the underlying mechanisms remained somewhat 

elusive. With the development of sƟmulus presentaƟon technology, the mystery reduces. For 

example, with the use of conƟnuous flash suppression (Wolfe, 1984), we have learnt that expected 

sƟmuli enter conscious awareness faster (Pinto et al., 2015). With the possibility of fine-tuning of 

animated avatars, we have learnt that observed expected acƟons are perceived as higher contrast 

than unexpected acƟons (Yon & Press, 2017), while manipulated images have been used to show 

that expected images are perceived as less blurry (Rossel, Peyrin & Kauffmann, 2023) and higher 

contrast (Han & van Rullen, 2016) than unexpected images, and virtual reality paradigms have 

demonstrated that highly expected objects are remembered beƩer than objects which are 

moderately expected in a given context (Quent, Greve & Henson, 2022). This combinaƟon of findings 

100%     50-50     100% 

Ben Affleck    Morph    Heath Ledger 
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has allowed us to understand that expectaƟons may shape percepƟon by increasing the gain of 

expected sensory channels relaƟve to unexpected channels (Feuerriegel et al., 2021; Thomas, 

RiƩershofer & Press, 2023), generaƟng increased percepƟon of, sensiƟvity to, and intensity of 

percepts that we expect.  

2. Advances via neuroimaging techniques 

The explosion of fMRI studies in the 1990s (Coltheart, 2006; Price, 2012) enabled spaƟally-

disƟnct representaƟons in the brain to be disƟnguished in ways that previously available methods 

could not, and the development of mulƟvariate approaches (Haynes & Rees, 2006) permiƩed 

characterisaƟon of representaƟonal fidelity alongside more simple acƟvaƟon profiles. More recently, 

the applicaƟon of higher-field fMRI to cogniƟve neuroscience (Lawrence, Formisano, Muckli & de 

Lange, 2019) has allowed us to disƟnguish funcƟonal roles of corƟcal layers. These developments 

have proven key in our understanding of how the brain makes and transmits predicƟons, how and 

when expected and unexpected sensory inputs are represented in the brain, and how these signals 

are differenƟated. 

For example, univariate approaches have demonstrated that the brain takes advantage of 

temporal structure to predict upcoming sƟmuli (Fiebach & Schubotz, 2006; Kotz, Schwartze & 

Schmidt-Kassow, 2009), and that when sƟmuli are expected, mismatches can be processed faster 

than when they are unexpected (Johnston et al., 2016), perhaps due to sensory cortex pre-acƟvaƟng 

a template of expected inputs (Kok, Mostert & de Lange, 2017). Furthermore, despite enhanced 

percepƟon of these expected inputs, they are associated with a reduced signal in early sensory 

processing regions such as primary visual cortex (Alink et al., 2010; Richter, Ekman & de Lange, 2018; 

Shergill et al., 2013). MulƟvariate techniques in the form of linear support vector machines 

demonstrated that the signal in response to expected sƟmuli may be weaker, but that paƩern 

classifiers idenƟfy them with greater accuracy (Kok, Jehee & de Lange, 2012). It was thus proposed 

that superior behavioural performance may be due to mechanisms that suppress the representaƟon 

of unlikely events to generate sharper neural signals. In the last few months, laminar fMRI has 

demonstrated that these sharper expected signals may exist only in deep corƟcal structures, and that 

unexpected events are represented with greater fidelity in superficial layers (Thomas et al., 2023). 

Thus, mechanisms supporƟng the role of predicƟon in percepƟon appear not to consist simply of 

processes to suppress the gain of unexpected representaƟons. In contrast, predicƟons may be 

represented with high fidelity in deep corƟcal layers, sensory input received in middle layers and 

superficial layers represent the discrepancy, or error (note that single cell work has also contributed 

to this mechanisƟc picture; e.g., Bastos et al., 2020). The error can in turn be passed up the hierarchy 
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for predicƟon-updaƟng (see Friston, 2005). This mechanisƟc picture of how exactly visual events are 

processed required recent developments in neuroimaging and would not have been possible solely 

with neuropsychological methods and paƟent studies. In contrast, paƟent work can show that 

parƟcular representaƟons may be necessary behaviourally, and in this way, across methods, we 

progress our understanding of predicƟve mechanisms.  

IntegraƟng these neuroimaging findings with those from behavioural psychophysics, we may 

thus deduce that perceptual enhancements of expected events are observable over a variety of 

behavioural measures, and may be due to increased gain of expected representaƟons in deep 

corƟcal layers (Aitken et al., 2020; Thomas et al., 2023) that are someƟmes acƟvated in advance of 

the presentaƟon of sensory events (Kok, Mostert & de Lange, 2017). Sensory input signals arrive in 

middle corƟcal layers, and an error signal encoding the difference between the expectaƟon and the 

input is represented in superficial layers. This profile confirms the novel hypotheses generated by 

predicƟve theories of percepƟon (Yu et al., 2019) that would have been unthinkable to test 60 years 

ago.  

3.  Advances in conceptual approaches 

Alongside neuroimaging and modelling now accompanying paƟent studies as methods for 

understanding the brain, the last 60 years have seen shiŌs in broad conceptualisaƟons of mind that 

have increased the explanatory power of our models. Most notably perhaps, there is a decreased 

emphasis on modularity and increase in distributed and domain-general theorisaƟon, which has 

been accompanied by the applicaƟon of dynamical systems approaches to the mind and brain 

(Horgan & Tienson, 1992). Such a shiŌ is logical when considering the rapid methods development 

that was ongoing at the Ɵme, and is in line with the postulaƟon that the complexity of a system is 

not inherent to the system itself but a result of how we are able to observe it (Rosen, 1977). To 

illustrate the radical change in psychological research following from this shiŌ, take for example the 

idea of general intelligence. It was assumed up unƟl 20 years ago that perhaps neuropsychology 

would not concern itself with general intelligence, because they “study bits of the mind and a “bits” 

(modular) approach is anƟtheƟcal to the noƟon” (Anderson, 2005). There was also a community-led 

discussion on double dissociaƟons, asking whether they were a valid form of enquiry if the brain was 

not modular (see for example, Dunn & Kirsner, 2003; Gurd & Marshall, 2003; Bullinaria, 2003). The 

new manners of understanding the brain allow us to understand more precisely the nature of 

representaƟon emerging through distributed networks between nodes, as well as the content of the 

representaƟon in nodes themselves. 
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Perhaps one result of surrendering the view that encapsulated modules are performing 

disƟnct operaƟons (Fodor, 1980) is that it is more frequent for discoveries to be taken from one 

classic domain of cogniƟve neuroscience to potenƟally yield insights in another. This has led to both 

more efficient progress, as fields benefit from knowledge elsewhere, and the emergence of new 

quesƟons when proposed mechanisms appear to conflict. One clear example comes from the fact 

that, in contrast with the ideas discussed above that expected informaƟon is perceptually enhanced, 

prevailing in the vision and language sciences, acƟon researchers have claimed that expected input is 

instead perceptually aƩenuated (Blakemore, Wolpert & Frith, 1998). For example, these accounts 

claimed that we cannot Ɵckle ourselves, because we have precise expectaƟons of the incoming 

sensory input, which therefore generates less intense sensaƟon. This proposed mechanism would 

allocate fewer resources to processing the expected input to maximise resources for processing 

surprising informaƟon – informaƟon that is relevant for model-updaƟng. While it is possible that 

sensory expectaƟons from acƟng on the world aƩenuate percepƟon while other types of expectaƟon 

enhance it, it is unclear how the brain would implement these opposing influences and why it would 

be adapƟve for the organism to do so. InteresƟngly, a more domain-general approach has suggested 

that there is no special influence of expectaƟons on percepƟon in the acƟon domain, as comparable 

empirical approaches across domains yield comparable, rather than opposite, answers (e.g. Yon, 

Gilbert, de Lange & Press, 2018; Yon et al., 2021).  

The idea that similar underlying mechanisms may support percepƟon across domains, 

however, does not resolve this conflict, as it does not answer why percepƟon is biased towards 

expectaƟons in some instances and away in others. These opposing direcƟons of influence have also 

been shown in other sensory domains. For example, in adaptaƟon aŌer-effects, percepƟon can be 

strongly and rapidly repulsed from recent experience. In the visual demonstraƟon shown in Figure 2 

(from Walther, Schweinberger & Kovacs, 2013), an image of a face represenƟng a 50-50 morph 

between two idenƟƟes can be perceived as unambiguously depicƟng either one of the idenƟƟes 

aŌer a short exposure to the opposite one (see Figure 2 capƟon for demonstraƟon instrucƟons). 

It may therefore be the case that the same mechanisms are at work in all sensory modaliƟes, 

but that there are mulƟple mechanisms underlying the influence of previous experience on 

percepƟon (Press et al., 2020a; Feuerriegel, 2023; Teufel & Fletcher, 2020). If the field pursues such 

explanaƟons, this represents an interesƟng trajectory, from modular accounts proposing mulƟple 

domain-specific mechanisms, to domain-general unified theories, and then subsequent further 

mechanisƟc parcellaƟon to accommodate effects that resist a unifying explanaƟon. In this way we 

hope that science generates progressively beƩer explanaƟons through large-scale shiŌs and smaller-

scale refinement. These advancements necessarily, and importantly, show that the cogniƟve and 
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neuroscience community is oŌen working collecƟvely to address similar challenges, and that some of 

these challenges only become apparent when comparing across domains.  

This shiŌ from modularity towards emphasis on distributed neural representaƟons has also 

seen our models largely replace discrete with probabilisƟc representaƟon. Sixty years ago, cogniƟve 

scienƟsts were beginning to understand the importance of variability of prior experience on, for 

example, learning and categorisaƟon (see for example, Posner & Keele, 1968), but the limitaƟons of 

the Ɵme led to theories based on a one-dimensional staƟsƟc. For example, theories of prototypes 

(AƩneave, 1957) and ensemble coding (Ariely, 2001) both posit the average of previously-seen 

sƟmuli as embodying the mental representaƟon of a category. The computaƟonal limits at the Ɵme 

limited the degrees of experimental freedom, and with these constraints came limits on our ability as 

scienƟsts to conceive of probabilisƟc underlying processes. The reducƟon of these pracƟcal 

constraints has led to considerable theoreƟcal advances, presenƟng dynamically-generated sƟmuli, 

and compuƟng more complex staƟsƟcs, which further scaffold new empirical discoveries. Describing 

mental processes as operaƟng over probability distribuƟons rather than discrete point esƟmates is 

essenƟal for many proposals within predicƟve theories (Clark, 2013; Friston, 2009; Friston, 2010; 

Friston & Stephan, 2007; see Figure 3C). This allows not only for efficient coding of prior expectaƟons 

as a two-dimensional distribuƟon with a mean and a variance, but also allows for conceptualising 

more complex cogniƟve processes than could have been achieved with one-dimensional summaries. 

ComputaƟonal proposals have suggested that the expectedness of a sƟmulus is derived from the 

extent of overlap between the probability distribuƟons represenƟng the prior expectaƟon and the 

incoming sensory input, and this overlap has been shown to predict behaviour – such as saccades to 

informaƟve areas of an image (Iƫ & Baldi, 2009). Stronger sƟll, recent model-based analyses of fMRI 

data suggest that not only are these probabilisƟc formulaƟons useful abstracƟons, but that the brain 

may indeed be encoding experiences as probability distribuƟons (van Bergen, Ma, PraƩe & Jehee, 

2015). 
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Figure 3. The nuts and bolts of our models have altered considerably across the decades, which 
have yielded advances in explanatory power. A: Box-and-arrow model of the interacƟons between 
sensory input and short- and long-term memory (Atkinson & Shiffrin, 1968). B: Formal model of 
the interacƟon of sensory input and prior expectaƟons in the brain (Friston, 2009). C: SchemaƟc of 
the interacƟon of sensory input and prior expectaƟons as probability distribuƟons (Yon, Heyes & 
Press, 2020). 

 

What we do not yet know about expectaƟons and percepƟon 

Despite these impressive advances over the past 60 years, there are, of course, sƟll many 

open quesƟons regarding the influence of expectaƟons on percepƟon. We know that we use our 

prior experience of the world to predict future observaƟons (Iƫ & Baldi, 2009; Bubic, von Cramon & 

Schubotz, 2010; Bar, 2004), but as outlined above, it is sƟll not clear exactly when our percepƟon is 

biased towards our expectaƟons (Figure 1) and when it is biased away from them (Figure 2).  This 

quesƟon is especially important as being biased towards our expectaƟons, on average, increases the 

chances our percepƟon is veridical in the face of noise, but being biased away from our expectaƟons, 

on average, increases the chances we perceive an informaƟve new input. 

The account that we have been tesƟng states that while percepƟon is iniƟally biased towards 

expected events, sufficiently unexpected observaƟons trigger reacƟve processes to generate more 

precise percepts and allow for accurate model-updaƟng (Press, Kok, Yon 2020a). It was proposed 

that this could potenƟally be achieved by phasic noradrenaline release triggered by the unexpected 

observaƟon, which would increase the gain of sensory input and increase precision of the predicƟon 

error (Press, Kok & Yon, 2020a). Under this account, sensory sensiƟvity to all events may be higher 

shortly aŌer the unexpected observaƟon. Recent findings, however, have shown that unexpected 

observaƟons lead to inferior sensory sensiƟvity across a number of dimensions (Ward & Press, in 

prep). Another possibility is that unexpected observaƟons lead to poor percepts but trigger either 

saccades towards the unexpected sƟmulus (Iƫ & Baldi, 2005; Press et al., 2020a) or other types of 

increased epistemic foraging, in which observers seek out more informaƟon to reduce uncertainty 

A B C 
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about the new state of the world (Koenig-Robert et al., preprint; Mirza et al., 2018; Perrykkad, 

Robinson & Hohwy, 2023; Stahl & Feigenson, 2015). It is therefore possible that a surprising event 

leads to a weak percept, but also triggers parƟcipants to forage for informaƟon in the environment 

to build up a richer percept and learn about the suspected change in the regulariƟes. One yet further 

possibility is outlined by Feuerriegel (2023), who proposes that instances of percepƟon biased away 

from previous experience, such as the adaptaƟon aŌer-effect demonstrated in Figure 2, are in fact 

not governed by expectaƟon mechanisms per se, but purely by neural faƟgue. This account sƟll 

requires bespoke empirical invesƟgaƟon but would likely require surrendering the unifying account 

of cogniƟon proposed by Friston (2009; 2010) and Clark (2013). 

In addiƟon to knowing that expectaƟons do influence our percepƟon, we also know that we 

need to update those expectaƟons when environmental regulariƟes change, in order to be able to 

learn (Behrens et al., 2007). For example, when we first see the blurry indisƟnct object in the dark 

foggy street, we assume it is a parked car (see Figure 1A). If, however, the object starts to stand up, 

and we realise that it has legs and appears to be alive, we must quickly change our expectaƟons and 

our acƟon plan for crossing the street. Nevertheless we do not yet understand how percepƟon is 

tuned in order to allow efficient learning in these moments of change (Press, Kok & Yon, 2020b), or 

whether expectaƟons that are learnt as global and context-independent influence percepƟon 

differently from local, context-dependent expectaƟons (Teufel and Fletcher, 2020). Learning from 

changes in the environment is a complex task, since we must infer the true nature of the 

environment from a noisy percept, and in the case of an environmental change we must infer this 

from a difference in noisy esƟmates before and aŌer the change. In addiƟon, as outlined above, 

percepƟon of expected events is oŌen vastly superior to that of surprising events (Bouwer, Honing & 

Slagter, 2020; Yon & Press, 2017; Rossel, Peyrin & Kauffmann, 2023; Han & van Rullen, 2016; Ward & 

Press, in prep). It is not yet clear how to reconcile the fact that we form weaker and less precise 

percepts of surprising events with the fact that we do successfully learn from changes in the 

environment that these surprising events indicate. 

A final empirical datapoint that may help to solve the mystery is that, despite this paucity of 

the percept when the input is unexpected, unexpected observaƟons are more accurately decoded 

from neural signals at parƟcular moments in Ɵme (EEG; RiƩershofer et al., in prep) and from 

superficial layers of visual cortex (laminar fMRI; Thomas et al., 2023). This combinaƟon of perceptual 

and neural findings raises the possibility that model updaƟng proceeds alongside poor conscious 

percepƟon. This possibility has been explored in a recently-proposed framework (Soto, Sheikh & 

Rosenthal, 2019), although predicƟve theories cannot currently account for this empirical paƩern. 
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The fast pace of methodological and theoreƟcal developments will hopefully allow us to answer 

these quesƟons within the next few years. 

Conclusion 

The combined approach of using imaging in combinaƟon with paƟent work, along with a 

variety of sƟmulus presentaƟon and computaƟonal modelling developments, has allowed a step 

change across 60 years in understanding how our prior experience of the structure of the world 

shapes our representaƟons of it. There may be many disputes in the domain of predicƟon but there 

are arguably more agreements than disagreements. A majority of scienƟsts now believe that sensory 

and higher order processing proceeds via integraƟng what we already knew with the sensorium in 

the here-and-now. Understanding will conƟnue to advance as we develop further an array of 

methods to compare conclusions in lab-based and naturalisƟc seƫngs (Vigliocco et al., 2023) and 

think long and hard about explanaƟons that fit the complexity of the empirical picture (Press, Yon & 

Heyes, 2022). We are excited to see what the next 60 years will bring.  
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