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Sixty years of predictive perception

It is often lamented that scientific progress is slow, perhaps driven by scientists stubbornly
persisting with underperforming ideas, testing accounts that are not truly open to the scientific
mode of interrogation, and the fundamentally noisy relationship between data and theory (Press,
Yon & Heyes, 2022; Oude Maatman, 2021). However, when considering a longer timescale, we
should be heartened by the clear evidence that understanding has progressed dramatically. The
scientific community understands considerably more than we did several decades ago. Here, we
consider the advances in our understanding of the role of prediction in the mind and brain, focusing
on its influences on perception. We outline the shifts in explanation, along with methodological

developments that have rendered these possible.

Predictive theories of the mind and brain (Clark, 2013; Friston, 2009; Friston, 2010) propose
that we integrate incoming sensory evidence with expectations based on our prior experience to
form representations of the world. Because sensory input is noisy and the world is generally stable,
we can leverage these expectations to bias us toward accurate representations. For example, our
vision is less reliable during darkness or fog, so in those conditions we take advantage of what we
know of our surroundings. This expectation helps us to conclude that the large indistinct object is a
parked car when we’re walking down a dark foggy street (see Figure 1, Torralba, 2003). Not only can
we coghnitively understand that the object in this scenario is a car, but we will also perceive it as more

car-like than the large indistinct blob would allow without these expectations (Clark, 2013)*.

Some of the knowledge that led to these accounts has been around for decades. For
instance, patients with specific disruptions provide a great demonstration of expectations
overcoming uncertainty about sensory inputs. Take the description of feature-by-feature object
identification, in the case of visual agnosia. Luria (1966, as cited in Thaiss and de Bleser, 1992)
described a patient who cannot fluently identify a pair of glasses. However, they could talk through a
process in which they recognise a circle, and another circle, joined by a bar, and conclude that this
object must be a bicycle. Such disruption in object recognition not only shows potential pathways to
resilience in a complex system, but demonstrates clearly that prior experience is essential for

perceptual tasks. This explicit, conscious example is of course not the only level at which predictive

! Note that this has interesting implications for perception during early development (Ward

etal., in prep).



mechanisms operate, but it is a rare opportunity to peer inside the mechanics of the process before
the dawn of the technological advances necessary to unpack the underlying mechanisms more

precisely.

Figure 1. Adapted from Torralba, 2003. Two blurry scenes emulating a dark foggy street, with a
prominent object in the foreground of each. In panel A, the object appears to be a car, while in
panel B the object appears to be a person.

These objects are in fact the same image superimposed on the background, and only differ due to
being rotated by 90 degrees. Our prior experience of the structure of the world scaffolds
perception of a car in panel A since cars are the most common horizontal objects of this size in a
street scene. Conversely, it generates a percept of a person in panel B, as pedestrians are the most
common vertical objects of this size in such scenes.

Although predictive theories of brain and cognition are hundreds of years old (Bubic, von
Cramon & Schubotz, 2010), experimental work on predictive motor, sensorimotor, perception and
attention processes has rapidly escalated in recent years. Considerable advances in the technology at
our disposal, and the ways we conceive of and investigate mental processes, have allowed the field
to both collect the data to answer old questions and to generate new questions about predictive
theories and their role in perception. The advent of neuroimaging has allowed mechanistic
description not possible with patient work, and with it, a cycle of iterative implementation,
specification and theorising which allow for the development of new explanatory frameworks (Guest
& Martin, 2021). Due to this continuous iterative cycle, theoretical and technological advances are
difficult to disentangle, but we have attempted here to outline some of the major advances in our
understanding of predictive theories of perception through: 1) the technology used for behavioural

experiments, (2) neuroimaging techniques, and (3) shifts in conceptual approaches.



1. Advances via behavioural methods

A host of experimental methods, from adaptation after-effect (Gibson, 1933; Stocker &
Simoncelli, 2005) and category learning (Attneave, 1957; Posner & Keele, 1968) to priming (for a
review, see Bar, 2004) studies, had already rendered it clear that previous experience directly
influences perception not only in the long-term case as demonstrated in visual agnosia patients, but

also at timescales in the order of seconds and minutes.
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Figure 2. Adapted from Walther, Schweinberger & Kovacs, 2013. Adaptation after-effects on facial
identity perception.

Familiarise yourself with the three faces, and then look at the face on the left for 5 seconds,
followed by looking at the central face. Which person does the central face resemble more?

Now look at the face on the right for 5 seconds, followed by the central face. Which person does
the central face resemble more now?

Early behavioural paradigms typically relied on participants verbally reporting an embodied
experience such as wearing prism glasses (Gibson, 1933) or responding with button presses to static
stimuli presented on slides (Posner & Keele, 1968), and while they established a strong evidence
base for effects of prior experience on perception, the underlying mechanisms remained somewhat
elusive. With the development of stimulus presentation technology, the mystery reduces. For
example, with the use of continuous flash suppression (Wolfe, 1984), we have learnt that expected
stimuli enter conscious awareness faster (Pinto et al., 2015). With the possibility of fine-tuning of
animated avatars, we have learnt that observed expected actions are perceived as higher contrast
than unexpected actions (Yon & Press, 2017), while manipulated images have been used to show
that expected images are perceived as less blurry (Rossel, Peyrin & Kauffmann, 2023) and higher
contrast (Han & van Rullen, 2016) than unexpected images, and virtual reality paradigms have
demonstrated that highly expected objects are remembered better than objects which are

moderately expected in a given context (Quent, Greve & Henson, 2022). This combination of findings



has allowed us to understand that expectations may shape perception by increasing the gain of
expected sensory channels relative to unexpected channels (Feuerriegel et al., 2021; Thomas,
Rittershofer & Press, 2023), generating increased perception of, sensitivity to, and intensity of

percepts that we expect.

2. Advances via neuroimaging techniques

The explosion of fMRI studies in the 1990s (Coltheart, 2006; Price, 2012) enabled spatially-
distinct representations in the brain to be distinguished in ways that previously available methods
could not, and the development of multivariate approaches (Haynes & Rees, 2006) permitted
characterisation of representational fidelity alongside more simple activation profiles. More recently,
the application of higher-field fMRI to cognitive neuroscience (Lawrence, Formisano, Muckli & de
Lange, 2019) has allowed us to distinguish functional roles of cortical layers. These developments
have proven key in our understanding of how the brain makes and transmits predictions, how and
when expected and unexpected sensory inputs are represented in the brain, and how these signals

are differentiated.

For example, univariate approaches have demonstrated that the brain takes advantage of
temporal structure to predict upcoming stimuli (Fiebach & Schubotz, 2006; Kotz, Schwartze &
Schmidt-Kassow, 2009), and that when stimuli are expected, mismatches can be processed faster
than when they are unexpected (Johnston et al., 2016), perhaps due to sensory cortex pre-activating
a template of expected inputs (Kok, Mostert & de Lange, 2017). Furthermore, despite enhanced
perception of these expected inputs, they are associated with a reduced signal in early sensory
processing regions such as primary visual cortex (Alink et al., 2010; Richter, Ekman & de Lange, 2018;
Shergill et al., 2013). Multivariate techniques in the form of linear support vector machines
demonstrated that the signal in response to expected stimuli may be weaker, but that pattern
classifiers identify them with greater accuracy (Kok, Jehee & de Lange, 2012). It was thus proposed
that superior behavioural performance may be due to mechanisms that suppress the representation
of unlikely events to generate sharper neural signals. In the last few months, laminar fMRI has
demonstrated that these sharper expected signals may exist only in deep cortical structures, and that
unexpected events are represented with greater fidelity in superficial layers (Thomas et al., 2023).
Thus, mechanisms supporting the role of prediction in perception appear not to consist simply of
processes to suppress the gain of unexpected representations. In contrast, predictions may be
represented with high fidelity in deep cortical layers, sensory input received in middle layers and
superficial layers represent the discrepancy, or error (note that single cell work has also contributed

to this mechanistic picture; e.g., Bastos et al., 2020). The error can in turn be passed up the hierarchy



for prediction-updating (see Friston, 2005). This mechanistic picture of how exactly visual events are
processed required recent developments in neuroimaging and would not have been possible solely
with neuropsychological methods and patient studies. In contrast, patient work can show that
particular representations may be necessary behaviourally, and in this way, across methods, we

progress our understanding of predictive mechanisms.

Integrating these neuroimaging findings with those from behavioural psychophysics, we may
thus deduce that perceptual enhancements of expected events are observable over a variety of
behavioural measures, and may be due to increased gain of expected representations in deep
cortical layers (Aitken et al., 2020; Thomas et al., 2023) that are sometimes activated in advance of
the presentation of sensory events (Kok, Mostert & de Lange, 2017). Sensory input signals arrive in
middle cortical layers, and an error signal encoding the difference between the expectation and the
input is represented in superficial layers. This profile confirms the novel hypotheses generated by
predictive theories of perception (Yu et al., 2019) that would have been unthinkable to test 60 years

ago.

3. Advances in conceptual approaches

Alongside neuroimaging and modelling now accompanying patient studies as methods for
understanding the brain, the last 60 years have seen shifts in broad conceptualisations of mind that
have increased the explanatory power of our models. Most notably perhaps, there is a decreased
emphasis on modularity and increase in distributed and domain-general theorisation, which has
been accompanied by the application of dynamical systems approaches to the mind and brain
(Horgan & Tienson, 1992). Such a shift is logical when considering the rapid methods development
that was ongoing at the time, and is in line with the postulation that the complexity of a system is
not inherent to the system itself but a result of how we are able to observe it (Rosen, 1977). To
illustrate the radical change in psychological research following from this shift, take for example the
idea of general intelligence. It was assumed up until 20 years ago that perhaps neuropsychology
would not concern itself with general intelligence, because they “study bits of the mind and a “bits”
(modular) approach is antithetical to the notion” (Anderson, 2005). There was also a community-led
discussion on double dissociations, asking whether they were a valid form of enquiry if the brain was
not modular (see for example, Dunn & Kirsner, 2003; Gurd & Marshall, 2003; Bullinaria, 2003). The
new manners of understanding the brain allow us to understand more precisely the nature of
representation emerging through distributed networks between nodes, as well as the content of the

representation in nodes themselves.



Perhaps one result of surrendering the view that encapsulated modules are performing
distinct operations (Fodor, 1980) is that it is more frequent for discoveries to be taken from one
classic domain of cognitive neuroscience to potentially yield insights in another. This has led to both
more efficient progress, as fields benefit from knowledge elsewhere, and the emergence of new
guestions when proposed mechanisms appear to conflict. One clear example comes from the fact
that, in contrast with the ideas discussed above that expected information is perceptually enhanced,
prevailing in the vision and language sciences, action researchers have claimed that expected input is
instead perceptually attenuated (Blakemore, Wolpert & Frith, 1998). For example, these accounts
claimed that we cannot tickle ourselves, because we have precise expectations of the incoming
sensory input, which therefore generates less intense sensation. This proposed mechanism would
allocate fewer resources to processing the expected input to maximise resources for processing
surprising information — information that is relevant for model-updating. While it is possible that
sensory expectations from acting on the world attenuate perception while other types of expectation
enhance it, it is unclear how the brain would implement these opposing influences and why it would
be adaptive for the organism to do so. Interestingly, a more domain-general approach has suggested
that there is no special influence of expectations on perception in the action domain, as comparable
empirical approaches across domains yield comparable, rather than opposite, answers (e.g. Yon,

Gilbert, de Lange & Press, 2018; Yon et al., 2021).

The idea that similar underlying mechanisms may support perception across domains,
however, does not resolve this conflict, as it does not answer why perception is biased towards
expectations in some instances and away in others. These opposing directions of influence have also
been shown in other sensory domains. For example, in adaptation after-effects, perception can be
strongly and rapidly repulsed from recent experience. In the visual demonstration shown in Figure 2
(from Walther, Schweinberger & Kovacs, 2013), an image of a face representing a 50-50 morph
between two identities can be perceived as unambiguously depicting either one of the identities

after a short exposure to the opposite one (see Figure 2 caption for demonstration instructions).

It may therefore be the case that the same mechanisms are at work in all sensory modalities,
but that there are multiple mechanisms underlying the influence of previous experience on
perception (Press et al., 2020a; Feuerriegel, 2023; Teufel & Fletcher, 2020). If the field pursues such
explanations, this represents an interesting trajectory, from modular accounts proposing multiple
domain-specific mechanisms, to domain-general unified theories, and then subsequent further
mechanistic parcellation to accommodate effects that resist a unifying explanation. In this way we
hope that science generates progressively better explanations through large-scale shifts and smaller-

scale refinement. These advancements necessarily, and importantly, show that the cognitive and



neuroscience community is often working collectively to address similar challenges, and that some of

these challenges only become apparent when comparing across domains.

This shift from modularity towards emphasis on distributed neural representations has also
seen our models largely replace discrete with probabilistic representation. Sixty years ago, cognitive
scientists were beginning to understand the importance of variability of prior experience on, for
example, learning and categorisation (see for example, Posner & Keele, 1968), but the limitations of
the time led to theories based on a one-dimensional statistic. For example, theories of prototypes
(Attneave, 1957) and ensemble coding (Ariely, 2001) both posit the average of previously-seen
stimuli as embodying the mental representation of a category. The computational limits at the time
limited the degrees of experimental freedom, and with these constraints came limits on our ability as
scientists to conceive of probabilistic underlying processes. The reduction of these practical
constraints has led to considerable theoretical advances, presenting dynamically-generated stimuli,
and computing more complex statistics, which further scaffold new empirical discoveries. Describing
mental processes as operating over probability distributions rather than discrete point estimates is
essential for many proposals within predictive theories (Clark, 2013; Friston, 2009; Friston, 2010;
Friston & Stephan, 2007; see Figure 3C). This allows not only for efficient coding of prior expectations
as a two-dimensional distribution with a mean and a variance, but also allows for conceptualising
more complex cognitive processes than could have been achieved with one-dimensional summaries.
Computational proposals have suggested that the expectedness of a stimulus is derived from the
extent of overlap between the probability distributions representing the prior expectation and the
incoming sensory input, and this overlap has been shown to predict behaviour — such as saccades to
informative areas of an image (Itti & Baldi, 2009). Stronger still, recent model-based analyses of fMRI
data suggest that not only are these probabilistic formulations useful abstractions, but that the brain
may indeed be encoding experiences as probability distributions (van Bergen, Ma, Pratte & Jehee,

2015).
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Figure 3. The nuts and bolts of our models have altered considerably across the decades, which
have yielded advances in explanatory power. A: Box-and-arrow model of the interactions between
sensory input and short- and long-term memory (Atkinson & Shiffrin, 1968). B: Formal model of
the interaction of sensory input and prior expectations in the brain (Friston, 2009). C: Schematic of
the interaction of sensory input and prior expectations as probability distributions (Yon, Heyes &
Press, 2020).

What we do not yet know about expectations and perception

Despite these impressive advances over the past 60 years, there are, of course, still many
open questions regarding the influence of expectations on perception. We know that we use our
prior experience of the world to predict future observations (Itti & Baldi, 2009; Bubic, von Cramon &
Schubotz, 2010; Bar, 2004), but as outlined above, it is still not clear exactly when our perception is
biased towards our expectations (Figure 1) and when it is biased away from them (Figure 2). This
guestion is especially important as being biased towards our expectations, on average, increases the
chances our perception is veridical in the face of noise, but being biased away from our expectations,

on average, increases the chances we perceive an informative new input.

The account that we have been testing states that while perception is initially biased towards
expected events, sufficiently unexpected observations trigger reactive processes to generate more
precise percepts and allow for accurate model-updating (Press, Kok, Yon 2020a). It was proposed
that this could potentially be achieved by phasic noradrenaline release triggered by the unexpected
observation, which would increase the gain of sensory input and increase precision of the prediction
error (Press, Kok & Yon, 2020a). Under this account, sensory sensitivity to all events may be higher
shortly after the unexpected observation. Recent findings, however, have shown that unexpected
observations lead to inferior sensory sensitivity across a number of dimensions (Ward & Press, in
prep). Another possibility is that unexpected observations lead to poor percepts but trigger either
saccades towards the unexpected stimulus (Itti & Baldi, 2005; Press et al., 2020a) or other types of

increased epistemic foraging, in which observers seek out more information to reduce uncertainty



about the new state of the world (Koenig-Robert et al., preprint; Mirza et al., 2018; Perrykkad,
Robinson & Hohwy, 2023; Stahl & Feigenson, 2015). It is therefore possible that a surprising event
leads to a weak percept, but also triggers participants to forage for information in the environment
to build up a richer percept and learn about the suspected change in the regularities. One yet further
possibility is outlined by Feuerriegel (2023), who proposes that instances of perception biased away
from previous experience, such as the adaptation after-effect demonstrated in Figure 2, are in fact
not governed by expectation mechanisms per se, but purely by neural fatigue. This account still
requires bespoke empirical investigation but would likely require surrendering the unifying account

of cognition proposed by Friston (2009; 2010) and Clark (2013).

In addition to knowing that expectations do influence our perception, we also know that we
need to update those expectations when environmental regularities change, in order to be able to
learn (Behrens et al., 2007). For example, when we first see the blurry indistinct object in the dark
foggy street, we assume it is a parked car (see Figure 1A). If, however, the object starts to stand up,
and we realise that it has legs and appears to be alive, we must quickly change our expectations and
our action plan for crossing the street. Nevertheless we do not yet understand how perception is
tuned in order to allow efficient learning in these moments of change (Press, Kok & Yon, 2020b), or
whether expectations that are learnt as global and context-independent influence perception
differently from local, context-dependent expectations (Teufel and Fletcher, 2020). Learning from
changes in the environment is a complex task, since we must infer the true nature of the
environment from a noisy percept, and in the case of an environmental change we must infer this
from a difference in noisy estimates before and after the change. In addition, as outlined above,
perception of expected events is often vastly superior to that of surprising events (Bouwer, Honing &
Slagter, 2020; Yon & Press, 2017; Rossel, Peyrin & Kauffmann, 2023; Han & van Rullen, 2016; Ward &
Press, in prep). It is not yet clear how to reconcile the fact that we form weaker and less precise
percepts of surprising events with the fact that we do successfully learn from changes in the

environment that these surprising events indicate.

A final empirical datapoint that may help to solve the mystery is that, despite this paucity of
the percept when the input is unexpected, unexpected observations are more accurately decoded
from neural signals at particular moments in time (EEG; Rittershofer et al., in prep) and from
superficial layers of visual cortex (laminar fMRI; Thomas et al., 2023). This combination of perceptual
and neural findings raises the possibility that model updating proceeds alongside poor conscious
perception. This possibility has been explored in a recently-proposed framework (Soto, Sheikh &

Rosenthal, 2019), although predictive theories cannot currently account for this empirical pattern.
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The fast pace of methodological and theoretical developments will hopefully allow us to answer

these questions within the next few years.

Conclusion

The combined approach of using imaging in combination with patient work, along with a
variety of stimulus presentation and computational modelling developments, has allowed a step
change across 60 years in understanding how our prior experience of the structure of the world
shapes our representations of it. There may be many disputes in the domain of prediction but there
are arguably more agreements than disagreements. A majority of scientists now believe that sensory
and higher order processing proceeds via integrating what we already knew with the sensorium in
the here-and-now. Understanding will continue to advance as we develop further an array of
methods to compare conclusions in lab-based and naturalistic settings (Vigliocco et al., 2023) and
think long and hard about explanations that fit the complexity of the empirical picture (Press, Yon &

Heyes, 2022). We are excited to see what the next 60 years will bring.
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