Zhang, Kai;
Chen, Yunhui;
Marussi, Sebastian;
Fan, Xianqiang;
Fitzpatrick, Maureen;
Bhagavath, Shishira;
Majkut, Marta;
... Lee, Peter D; + view all
(2024)
Pore evolution mechanisms during directed energy deposition additive manufacturing.
Nature Communications
, 15
, Article 1715. 10.1038/s41467-024-45913-9.
Preview |
Text
Zhang_Pore evolution mechanisms during directed energy deposition additive manufacturing_VoR.pdf - Published Version Download (6MB) | Preview |
Abstract
Porosity in directed energy deposition (DED) deteriorates mechanical performances of components, limiting safety-critical applications. However, how pores arise and evolve in DED remains unclear. Here, we reveal pore evolution mechanisms during DED using in situ X-ray imaging and multi-physics modelling. We quantify five mechanisms contributing to pore formation, migration, pushing, growth, removal and entrapment: (i) bubbles from gas atomised powder enter the melt pool, and then migrate circularly or laterally; (ii) small bubbles can escape from the pool surface, or coalesce into larger bubbles, or be entrapped by solidification fronts; (iii) larger coalesced bubbles can remain in the pool for long periods, pushed by the solid/liquid interface; (iv) Marangoni surface shear flow overcomes buoyancy, keeping larger bubbles from popping out; and (v) once large bubbles reach critical sizes they escape from the pool surface or are trapped in DED tracks. These mechanisms can guide the development of pore minimisation strategies.
Type: | Article |
---|---|
Title: | Pore evolution mechanisms during directed energy deposition additive manufacturing |
Location: | England |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41467-024-45913-9 |
Publisher version: | http://dx.doi.org/10.1038/s41467-024-45913-9 |
Language: | English |
Additional information: | This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Mechanical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/10188175 |
Archive Staff Only
View Item |