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Abstract

Poorly-Differentiated NeuroEndocrine Carcinomas (PD-NECs) are rare cancers garnering interest 

as they become more commonly encountered in clinic. This is due to improved diagnostic 

methods and the increasingly observed phenomenon of ‘NE lineage plasticity’, whereby non-

NeuroEndocrine (non-NE) epithelial cancers transition to aggressive NE phenotypes after targeted 
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treatment. Effective treatment options for patients with PD-NEC is challenging for several 

reasons. This includes a lack of targetable, recurrent molecular drivers, a paucity of patient-

relevant preclinical models to study biology and test novel therapeutics, and the absence of 

validated biomarkers to guide clinical management. Whilst advances have been made pertaining 

to molecular subtyping of Small Cell Lung Cancer (SCLC), a PD-NEC of lung origin, Extra-

Pulmonary (EP)-PD-NECs remain understudied. This review will address emerging SCLC-like, 

same-organ non-NE cancer-like and tumour type-agnostic biological vulnerabilities of EP-PD-

NECs, with the potential for therapeutic exploitation. The hypotheses surrounding the origin 

of these cancers and how ‘NE lineage plasticity’ can be leveraged for therapeutic purposes is 

discussed. SCLC is herein proposed as a paradigm for supporting progress towards precision 

medicine in EP-PD-NECs. The aim of this review is to provide a thorough portrait of the current 

knowledge of EP-PD-NEC biology, with a view to informing new avenues for research and future 

therapeutic opportunities in these cancers of unmet need.
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1 Introduction

Neuroendocrine neoplasms are a heterogenous family of malignancies that can originate 

from different anatomical sites and share a neuroendocrine (NE) phenotype. This manifests 

histologically in a resemblance of the tumour cells to cells of the NE system, including 

presence of intra-cytoplasmatic neurosecretory granules and organoid-like cyto-architectural 

organisation plus expression of NE immunohistochemical (IHC) markers (synaptophysin 

and/or chromogranin A)(1,2). Neuroendocrine neoplasms are broadly divided into two 

main categories, based on their degree of morphological differentiation and replicative 

potential/biological aggressiveness; well differentiated neuroendocrine tumours (WD-NETs) 

and poorly differentiated neuroendocrine carcinomas (PD-NECs) [Figure 1](3). PD-NECs 

represent the most aggressive subgroup; at a morphological level they are characterised 

by partial or complete loss of cyto-architectural organisation, a high proliferative rate 

(Ki-67 fraction ≥20%, often ≥55%), frequent mitoses and presence of necrosis. PD-NECs 

can present as a ‘small cell’ variant with diffuse sheets of cells having scant cytoplasm, 

a high nuclear/cytoplasmatic ratio and fusiform nuclei with inconspicuous nucleoli and 

finely granular chromatin, or a ‘large cell’ variant with loosely defined organoid-like 

patterns of round/polygonal cells with moderate amounts of cytoplasm and large nuclei with 

prominent nucleoli and vesicular chromatin(1,2). While expression of synaptophysin and/or 

chromogranin A is required for a neuroendocrine neoplasm diagnosis in clinical practice, it 

is acknowledged that occasionally ‘small cell’-PD-NECs lack expression of both markers; 

in such cases, a ‘small cell’-PD-NEC diagnosis is made by exclusion and based on highly 

suggestive morphological features(4). Unlike WD-NETs, PD-NECs are rapidly growing and 

have a prognosis estimated in months rather than years(5). Both WD-NETs and PD-NECs 

can be found in co-existence with a variable proportion of a tumour histology lacking 

features of NE differentiation (non-NE). In the gastro-entero-pancreatic (GEP) tract, mixed 

NE/non-NE tumours with at least 30% of each component are classified separately from 
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their pure counterparts and named mixed neuroendocrine non-neuroendocrine neoplasms 

(MiNENs)(1). Progression from a WD-NET to a PD-NEC is an extremely rare observation 

in clinic. Most commonly PD-NECs originate de novo, or through NE trans-differentiation 

of pre-existing non-NE epithelial cancers under selective pressure within the tumour 

microenvironment such as that induced by targeted therapies(6,7); a phenomenon known 

as NE lineage plasticity, and which will be discussed in this review.

While the majority of PD-NECs (~90%) originate from the lung, namely small cell lung 

cancer (SCLC) (~86%) and large cell pulmonary neuroendocrine carcinoma (LCPNEC) 

(~4%), a minority (~10%) arise from other anatomical sites and are generally termed 

extra-pulmonary (EP)-PD-NECs(5). Around a third (~37%) of EP-PD-NECs develop in 

the GEP tract, whereas approximately a quarter (~28%) remain of unknown origin (UNK)

(5). In addition to GEP- and UNK-PD-NECs, this review will also address less common 

EP-PD-NEC subgroups per site of origin, each accounting for ≤10% of all EP-PD-NECs(5), 

namely prostate-, bladder-, uterine cervix-, and head and neck (H&N)-PD-NECs, in which 

some degree of molecular characterisation has been achieved. Merkel cell carcinoma has 

been excluded from this review, as this cutaneous NEC is etiologically related to clonal 

integration of a polyomavirus or chronic ultra-violet light exposure, and clinically managed 

as a separate entity from other EP-PD-NECs(8,9). Extra-pulmonary-PD-NECs are rare (age 

adjusted annual incidence of ~1/100,000 individuals according to the US Surveillance, 

Epidemiology, and End Results-18 registry 2000-2012 (5)), yet lethal diseases; patients 

predominantly have metastatic disease at diagnosis and a median life expectancy of less than 

1 year(5,10). Their low incidence limits the ability to conduct clinical trials, dramatically 

narrowing the spectrum of therapeutic opportunities. Platinum/etoposide chemotherapy 

remains the only standard-of-care first-line treatment for patients with EP-PD-NEC not 

amenable to curative surgery(10,11). Although the majority of those patients show initial 

sensitivity to platinum/etoposide, tumour control is short-lived and overall survival benefit is 

limited. In addition, there is no consensus on second-line options(10,11).

Development of effective treatments for EP-PD-NECs has also been hampered by the 

paucity of knowledge of their biology and molecular drivers. Recent progress in the 

molecular subtyping of their NEC pulmonary counterpart SCLC may inform biological 

understanding and therapeutic development for EP-PD-NECs. Transcriptomic profiling of 

SCLC has revealed distinct molecular subtypes according to the expression of lineage-

defining transcriptions factors; achaete-scute family bHLH transcription factor 1 (ASCL1), 

neuronal differentiation 1 (NEUROD1), atonal bHLH transcription factor 1 (ATOH1), POU 

class 2 homeobox 3 (POU2F3) and yes1 associated transcriptional regulator (YAP1)(12,13). 

These emerging transcription factor-based SCLC molecular subtypes are differentially 

enriched in NE and non-NE phenotypes and upregulation of MYC family oncogenes, 

and have unique biological vulnerabilities(12,14); they therefore represent a potential step 

forward in the direction of precision medicine.

Although EP-PD-NECs and SCLC share morphological and phenotypic similarities, there 

are differences in etiopathogenesis, clinical presentation and treatment outcomes, including 

weaker association with tobacco smoking, lower incidence of brain metastases and response 

rates to platinum-based chemotherapy in EP-PD-NECs(10), suggestive of some degree of 
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biological divergence between these entities. Studies aimed at elucidating the genomic 

landscape of EP-PD-NECs, although mostly small, depict a complex scenario characterised 

by coexistence of pathognomonic alterations of SCLC (e.g. TP53 and RB1 loss), which are 

consistent across PD-NECs of different sites of origin (SCLC-like), and typical alterations 

of non-NE epithelial cancers from the same sites of origin (non-NE cancer-like)(6,15). This 

raises the question as to whether patients with EP-PD-NEC should be treated according 

to the phenotype (similar to SCLC) or site of origin of their cancer. In addition, there 

is wide inter-patient variability in treatment and survival outcomes within the EP-PD-

NEC family(5,10), indicating underlying biological heterogeneity, and underscoring the 

critical need for biomarkers for patient stratification and treatment prediction. Other major 

challenges are the difficulty of accessing good quality tumour tissue for molecular analysis, 

and the paucity of patient-relevant preclinical models to assist biological studies and drug 

development.

This review will highlight emerging SCLC-like, same-organ non-NE cancer-like and 

tumour-type agnostic molecular vulnerabilities of EP-PD-NECs and will discuss 

opportunities for their therapeutic exploitation by leveraging knowledge of therapeutics in 

use, or under evaluation, in either SCLC or non-NE cancers from the same sites of origin.

2 SCLC-like vulnerabilities of EP-PD-NECs

2.1 Cell-cycle and DNA damage repair dysregulations

Genomic inactivation of TP53 and RB1 owing to either gene or chromosome aberration 

is nearly ubiquitous in SCLC (co-occurring at a frequency of ~98% in a large dataset of 

surgical human samples)(16), and is frequent in LCPNEC (TP53; 92%, RB1; 42%)(17). 

Genomic aberrations in TP53 and RB1 are also common in EP-PD-NECs(18-44)[Figure 2, 

Table 1], whereas they are rare in WD-NETs(19,20,22,23,44). Evidence from Trp53/Rb1 
knockout mouse models of SCLC and prostate-PD-NEC indicates that combined Trp53/Rb1 
loss acts synergistically as a potent driver of a lethal NE cancer phenotype; both de novo 
and in the background of a pre-existing non-NE epithelial cancer(6). Although disruption 

of TP53 and RB1 signalling is regarded as a hallmark of PD-NEC, genomic aberrations 

in these two tumour suppressors, in particular RB1, do not appear to be as prevalent in 

PD-NECs, other than in SCLC. A comprehensive multi-omic characterisation is still lacking 

for the majority of EP-PD-NECs and may unveil a higher prevalence of such aberrations, 

as shown in two recent whole exome/genome sequencing studies in GEP-PD-NECs(30,45). 

Other phenotypic-specific PD-NEC molecular drivers may also exist and are yet to be 

elucidated, and may be responsible for genotypic/phenotypic heterogeneity within the 

EP-PD-NEC family. For example, genomic and transcriptomic profiling of LCPNEC has 

unveiled two main molecular subgroups; one enriched in TP53 and RB1 co-inactivation 

(42%) and featuring low expression of NE-related genes, and the other enriched in TP53 
and Serine/Threonine Kinase 11 (STK11)/Kelch Like ECH Associated Protein 1 (KEAP1) 

co-alteration (37%) and featuring high expression of NE-related genes. Alternatively, in 

TP53- and/or RB1-wild type EP-PD-NECs, TP53 and RB1 signalling can be suppressed by 

events other than aberrations at their genomic loci, such as amplification of MDM2 (a TP53 
repressor)(32), mutation of TP73 (a TP53 paralog)(18,45), deletion or epigenetic silencing 

Frizziero et al. Page 4

Clin Cancer Res. Author manuscript; available in PMC 2022 May 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



of CDKN2A (which encodes for the RB1 signalling effector p16)(26,45) and amplification 

of CCNE1 (an RB1 antagonist)(26,30,38,45). Finally, TP53 and/or RB1 protein function 

can be counteracted by viral onco-proteins, and when this suppression is chronic, it can 

lead to PD-NEC development, as shown in Merkel cell carcinoma, which most commonly 

is caused by a polyomavirus infection and lacks dual TP53/RB1 loss(8). For example, 

high-risk human papillomavirus has been reported in a subset of PD-NECs from the uterine 

cervix- (42.5-92.2%)(37,38,40) and colon-rectum (28.0%)(26), where it is thought to play a 

pathogenetic role through inhibitory interaction with RB1 protein.

Cancer cells defective in TP53 and/or RB1 function have a reduced ability to undergo 

cell cycle arrest and enable DNA damage repair (DDR), if present. This makes those cells 

critically reliant on other cell-cycle checkpoints, (e.g. cyclin-dependent kinases (CDKs), 

WEE1, Aurora kinases (AURKs)) and components of the DDR pathway (e.g. CHK1, 

poly(ADP-ribose) polymerase (PARP) proteins), especially in the context of DNA-damaging 

treatment, such as platinum-based chemotherapy or radiotherapy(46-49). Growing evidence 

points towards frequent dysregulation of the DDR pathway in both SCLC and EP-PD-

NECs, providing further rationale for the therapeutic exploitation of the synthetic lethal 

relationship between cell-cycle deficiency and DDR in these cancers. Transcriptomic 

profiling of SCLC (cell lines) and prostate-PD-NEC (human samples and patient-derived 

xenografts) has unveiled significant enrichment in the expression of DDR proteins as 

compared to non-NE epithelial cancers from the same organs(46,50). In EP-PD-NECs, 

somatic alterations in DDR genes are present, albeit with varying prevalence partially 

owing to differences in the number and selection of DDR genes evaluated (2.5-70.6%)

(18,20,27-29,31,32,34-38,40,41,44) [Figure 2, Table 1]. Germline mutations in DDR genes 

occur in 29% and 20% of patients with SCLC and EP-PD-NEC, respectively, and are 

predictive of increased sensitivity to platinum-based chemotherapy, laying the ground for 

the investigation of DDR inhibitors in combination with DNA-damaging agents in this 

patient subgroup(51). Inhibitors of CHK1, WEE1, CDKs, AURKs and PARP proteins, 

as monotherapy or in combination with other cell-cycle/DDR inhibitors or chemotherapy, 

have shown promising in vitro and in vivo activity in SCLC(46-49,52) and prostate-PD-

NEC(50,53-55) [Figure 3, “i” suffix = inhibitor]. Cell-cycle/DDR-directed therapies are 

currently being evaluated in clinical trials in patients with SCLC(11) and EP-PD-NEC 

[Table 2]. For example, a combination of the inhibitors of two DDR effectors; the ATR 

Serine/Threonine Kinase (ATR) and DNA topoisomerase I (TOP1) demonstrated potent 

synergy in a drug screening study in SCLC cell lines and was selected for clinical 

investigation. A phase II clinical trial provided initial evidence of its activity in patients 

with SCLC (n=25) or EP-PD-NEC (n=10), previously treated with platinum/etoposide(56).

2.2 MYC family upregulation

MYC family proto-oncogenes, MYC, MYCL, MYC, are lineage-defining transcription 

factors mutually exclusively amplified in ~20% of SCLC(16). In SCLC genetically 

engineered mouse models (GEMMs) and human cell lines, MYCL amplification is enriched 

in the ASCL1high subtype, and MYC amplification in the NEUROD1high subtype(57,58), 

each driving distinct metabolic programmes(59). New evidence from SCLC GEMMs shows 

that MYC drives phenotypic evolution, promoting loss of NE identity through NOTCH 
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upregulation, leading to a temporal shift from ASCL1high (NEhigh) to NEUROD1high 

(NElow) to YAP1high or POU2F3high (non-NE) states(60). In SCLC preclinical models, 

MYC sensitises cells to AURKA/B inhibition(57,61) (also shown in an early-phase clinical 

trial(62)) and arginine-deprivation(59), and enhances sensitivity to CHK1(47) and CDK7 

inhibition(49)[Figure 3].

Aberrant activation of MYC family members also occurs in EP-PD-NECs [Figure 2, 

Table 1]. In GEP-PD-NECs, MYC is amplified in up to 51% of cases(18,19,26,28-30,44), 

whereas MYCN or MYCL amplification is rarer (8.3%(26,28) and 4.3%(30), respectively). 

In uterine-cervix-PD-NEC, either of the three MYC family members is amplified in 

12.9-18.4% of cases(37,38). In prostate-PD-NEC, MYCN amplification or overexpression 

is highly prevalent (MYCN amplification; 40.5-52.0%)(50,53,63,64), whereas MYC 
amplification is less common (8.3%)(34)[Figure 2, Table 1]. Multiple lines of evidence 

point towards MYCN upregulation as a pathogenetic driver and a critical therapeutic 

vulnerability for prostate-PD-NEC, whereby MYCN upregulation promotes the emergence 

of an androgen receptor-independent PD-NEC phenotype(50,53-55,64). Inhibitors of 

MYCN synthetic lethal partners have shown promising preclinical activity in prostate-

PD-NEC [Figure 3], and some of these compounds have entered clinical investigation 

[Table 2]. The epigenetic and transcriptional regulator enhancer of zeste 2 polycomb 

repressive complex 2 subunit (EZH2) is highly expressed in prostate-PD-NEC(53,54,65), 

where it cooperates with MYCN to repress androgen receptor signalling and drive a 

PD-NEC gene expression programme, and MYCN overexpression sensitises to EZH2 

inhibition in vitro and in vivo(64). AURKA amplification or overexpression is also highly 

prevalent in prostate-PD-NEC (AURKA amplification; 40-68%, predominantly co-occurrent 

with MYCN amplification)(53,63). In fact, MYCN and AURKA reciprocally enhance 

protein stability by physical interaction, and AURKA inhibition destabilises MYCN, 

causing tumour regression in MYCN-overexpressing prostate-PD-NEC cell lines and mouse 

models(53,54,64). Transcriptomic analysis of prostate-PD-NEC human tumours and patient-

derived xenografts has revealed significant upregulation of DDR (e.g. PARP1/2) and mitotic 

cell-cycle (e.g. CDK5) genes, alongside MYCN, and in vitro experiments have uncovered a 

critical link between MYCN and DDR pathways in the establishment and maintenance of a 

PD-NEC phenotype in prostate cancer cells(50,55). Both dual PARP/AURKA inhibition and 

PARP/CDK5 can suppress prostate-PD-NEC growth in vitro and in vivo, with the former 

combination showing enhanced activity compared to AURKA inhibition alone(50,55). 

Although a single-agent AURKA inhibitor yielded disappointing results in a molecularly 

unselected phase II clinical trial in patients with prostate-PD-NEC or adenocarcinoma with 

clinical features of androgen receptor independency progressing after antiandrogen therapy, 

tumour samples from exceptional responders showed MYCN and/or AURKA amplification 

or overexpression(66). Mechanistic studies investigating the biological function of MYC 

family members and potential associated therapeutic vulnerabilities in other EP-PD-NECs 

should be pursued.

2.3 Disruption of epigenetic regulation

Disruption of epigenetic regulation is among the most common oncogenic processes in 

SCLC(16) and EP-PD-NECs [Figure 2, Table 1]. CREB Binding Protein (CREBBP) and 
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E1A Binding Protein p300 (EP300) encode for histone acetyltransferases and are mutually 

exclusively inactivated in ~13-15% of SCLC(16). They act as transcriptional co-activators 

by interacting with transcription factors and enabling their access to promoters, and their 

activity is counterbalanced by histone deacetylases (HDACs). In SCLC, CREBBP functions 

as a tumour suppressor and its deficiency sensitises to HDAC inhibition in GEMMs(67) and 

EP300 inhibition in cell lines and xenografts(68) [Figure 3].

Overexpression of the histone methyltransferase EZH2 or its protein product is frequent in 

SCLC(46) and prostate-PD-NEC(53,54,65). In SCLC, EZH2 promotes chemoresistance by 

epigenetic silencing of the cell-cycle regulator Schlafen family member 11 (SLFN11), and 

EZH2 inhibition prevents/reverts acquired resistance to DNA damaging agents in vitro and 

in vivo(69) [Figure 3]. In prostate-PD-NEC, EZH2 inhibitors are effective in suppressing 

tumour growth when used in combination with enzalutamide in Trp53/Rb1 knockout mouse 

models and derived cell lines(65), and as monotherapy in MYCN-overexpressing cell lines 

and xenografts(64) [Figure 3].

Genomic data indicates that a large proportion of EP-PD-NEC human samples of different 

sites of origin harbour alterations in at least one epigenetic regulator(18-20,26,28-32,34-42) 

[Figure 2, Table 1], with the AT-Rich Interaction Domain 1A (ARID1A), histone lysine 

methyltransferase 2 (KMT2) and histone lysine demethylase (KMD) family genes being 

the most frequently affected. This is supported by data from an organoid panel of 18 

GEP-PD-NECs/MiNENs(45). Taken together, these data support epigenetic regulation as a 

viable therapeutic target in EP-PD-NECs.

2.4 Expression of the delta-like ligand 3

The delta like canonical Notch ligand 3 (DDL3) is a NOTCH ligand which inhibits NOTCH 

signalling through mechanisms yet to be fully elucidated in cancer. DLL3 is expressed with 

high prevalence (~70-80%) and specificity on the cell surface of NE cancers, including 

SCLC(70), LCPNEC(71), prostate-(72), GEP-(73), bladder-(74) and uterine cervix-PD-

NECs(37), and DLL3 targeting is being explored as a strategy for selective delivery of 

anti-cancer treatment to NE cancer cells. Rovalpituzumab tesirine, an anti-DLL3 antibody-

drug conjugated showed promising preclinical and early-phase clinical activity in DLL3-

(over)expressing solid tumours(72,75,76), yet yielded poor efficacy and safety results in 

subsequent larger clinical trials(77,78). This led to discontinuation of further development 

of this drug. In SCLC, adoptive cell therapies using DLL3 as target antigen, including 

bispecific T-cell engagers monoclonal antibodies and chimeric antigen receptor T-cells, 

have shown in vitro and in vivo tumour-suppression activity, which is enhanced by the 

combination with immune checkpoint blockade (ICB)(79,80) [Figure 3]; these strategies are 

currently in early-phase clinical investigation in patients with SCLC(77) and EP-PD-NEC 

[Table 2].

2.5 Upregulation of antiapoptotic signalling

The BCL2 apoptosis regulator (BCL2) is an anti-apoptotic member of the BCL2 family 

of mitochondrial apoptosis regulators. The majority of SCLC human samples overexpress 

BCL2 protein(81) and BCL2 mRNA expression is predominantly high in SCLC cell 
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lines, and predicts in vitro and in vivo SCLC sensitivity to the selective BCL2 inhibitor 

venetoclax(82). The combination of venetoclax and a bromodomain and extraterminal 

(BET) protein family inhibitor has also shown promising preclinical activity in SCLC(83) 

[Figure 3]. A clinical trial is currently evaluating venetoclax in combination with or 

after first-line platinum/etoposide +/- ICB in patients with SCLC (NCT04422210). BCL2 

inhibition may also translate to EP-PD-NECs. In fact, a transcriptomic analysis of prostate-

PD-NEC human samples, cell lines and patient-derived xenografts revealed significant 

BCL2 mRNA and protein overexpression. Furthermore, in vivo and in vitro prostate-PD-

NEC models showed sensitivity to the pan-BCL2 family inhibitor navitoclax and was 

synergistic with WEE1 inhibition(84) [Figure 3]. Expression of BCL2 protein has been also 

reported at a high prevalence in pancreatic-(85) and colorectal-PD-NEC human samples(23), 

providing further rationale for extending investigation of BCL2 inhibitors to PD-NECs from 

other anatomical sites.

3 ‘non-NE cancer-like’ vulnerabilities of EP-PD-NECs

3.1 Dysregulation of receptor tyrosine kinase pathways

Aberrant activation of receptor tyrosine kinase pathways is common in non-NE epithelial 

cancers from different anatomical sites, including the GEP tract, prostate, bladder and 

female genital tract(86,87), whereas it is infrequent in SCLC(16,46). Activating mutations 

in KRAS and BRAF (predominantly V600E) are reported in GEP-PD-NECs at a similar 

frequency as in GEP adenocarcinomas(18-28,44,88-90)[Figure 2, Table 1]. Similar to 

their adenocarcinoma counterparts, pancreatic-PD-NEC is enriched in KRAS mutations 

(23.1-41.7%)(18,28), and colorectal-PD-NEC enriched in KRAS (8.3-60%)(18,23-27,44,90) 

and BRAF mutations (4.2-58.6%)(18,23-27,44,90), with the latter predominantly occurring 

in the right colon. This suggests that targeted treatments for GEP adenocarcinomas may 

also find application in patients with PD-NECs from the same site of origin. For example, 

BRAF inhibitors are emerging as promising therapeutic strategies for BRAFV600E-mutant 

colorectal-PD-NEC. Both single-agent BRAF inhibitors and combined BRAF and MEK1/2 

inhibitors have shown remarkable activity in BRAFV600E-mutant colorectal-PD-NEC human 

cell lines, xenografts and patients (case reports)(25,89,91,92) [Figure 2]. A recent study 

showed that BRAFV600E-mutant colorectal-PD-NEC has an EGFR methylation signature 

close to that of melanoma, which suppresses EGFR signalling and results in response to 

single-agent BRAF inhibition(25). Collectively, these data support clinical investigation of 

BRAF inhibitors in a subset of patients with colorectal-PD-NEC.

Dysregulations of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR 

pathway are also recurrent events in EP-PD-NECs of different sites of origin [Figure 2, 

Table 1]. Mutations and amplifications or copy number gains of PI3KCA are more frequent 

in PD-NECs from the colon-rectum (4.9-12.5%)(18,24,26,27), bladder (14.8-16.7%)(35,36) 

and uterine cervix (12.2-46.7%)(37-41), whereas mutations and deletions or copy number 

losses of PTEN are more frequent in prostate-PD-NEC (16.7-52.9%)(31-34,63). Therapeutic 

strategies targeting PI3K/AKT/mTOR signalling are currently being evaluated in clinical 

trials in a number of non-NE epithelial cancers(87), and may also apply to patients with 

EP-PD-NEC harbouring the same molecular vulnerabilities.
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3.2 Microsatellite instability

Microsatellite instability (MSI) is an established oncogenic driver for a subset of GEP 

adenocarcinomas, most commonly of colorectal and gastric origin, occurring at a frequency 

of ~7.5-22%(93). MSI is typically associated with a high tumour mutation/neoantigen 

burden, dense lymphocytic infiltrates and immune checkpoint upregulation, and is a 

positive predictor of response to ICB(94). Clinical trials utilising ICB demonstrated 

durable responses in approximately half of patients with MSI-high cancers, including GEP 

adenocarcinomas(94-96). This led to US Food and Drug Administration (FDA) approval of 

two anti-PD-1 monoclonal antibodies: pembrolizumab for all patients with MSI-high cancer, 

and nivolumab for patients with MSI-high metastatic colorectal adenocarcinoma.

MSI-high has a variable frequency in GEP-PD-NECs (0-69.2%), predominantly occurring 

in those of gastric and colorectal origins(18-20,24,25,88,90,97-99)[Table 3]. Similar to 

MSI-high gastric and colorectal adenocarcinomas, MSI-high GEP-PD-NECs have more 

conspicuous lymphocytic infiltrates, are significantly enriched in CpG island methylator 

phenotype and BRAF mutation, and have a more favourable prognosis compared to their 

microsatellite stable counterpart(88,97,98). Overall, there is indication that MSI is a site-

specific driver for a subgroup of GEP-PD-NECs, mainly of gastric and colorectal origin, 

which share biological similarities with MSI GEP adenocarcinomas, and may also benefit 

from ICB.

4 Tumour-type agnostic immune biomarkers of EP-PD-NECs

ICB has proven effective in eliciting T-cell anti-tumour cytotoxicity with dramatic and 

durable responses in a subset of patients with cancer. Yet, the majority of patients do not 

respond to ICB or rapidly develop resistance (100). Currently, IHC expression of PD-L1, 

high levels of tumour-infiltrating lymphocytes (TILs), and high tumour mutation burden 

(TMB) predict ICB benefit in a number of cancer types(101,102). However, these are 

imperfect predictive biomarkers and there is an urgent need for improved biomarkers for 

patient selection and identification of synergistic therapeutic combinations.

ICB is currently in clinical trials in patients with EP-PD-NEC [Table 2], with initial 

evidence of activity for the combination of the anti-PD-1 monoclonal antibody nivolumab 

with the anti-CTLA4 monoclonal antibody ipilimumab(103). However, the EP-PD-NEC 

immune landscape is not fully characterised. IHC expression of PD-L1 is reported 

in 6-70% of patients(19,20,37,74,99,104-112)[Table 3]; similar variability is observed 

in other cancer types, including SCLC, and is due to factors including spatial and 

temporal intra-tumour heterogeneity of PD-L1 expression, lack of standardised methods, 

and differences in clinico-pathological characteristics across studies(100,101). In EP-PD-

NECs, IHC expression of PD-L1 is more prevalent in tumour-associated immune cells 

than in tumour cells(20,74,104,106-108), and is most commonly of low intensity and 

restricted to a small proportion of the tumour sample(74,99,104,107,108,112). Tumour-

associated immune cells are present in the majority of EP-PD-NECs, with TILs reported 

in 45.5-100% of cases(99,104,106,108,109,112), although usually at low density and 

located at the tumour edges or at the tumour/stroma interface, rather than within the 

tumour parenchyma(106,108). Recently, transcriptomic profiling of oesophageal-PD-NEC 
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human samples revealed downregulation of immune response pathways with significantly 

reduced expression of TIL and cytotoxic-TIL gene signatures compared to epithelial non-NE 

oesophageal cancers. In addition, IHC showed exclusion of cytotoxic-TILs from the tumour 

parenchyma in 85% of cases(30). Although further characterisation of tumour-associated 

immune cell populations in EP-PD-NECs is needed, the evidence favours a predominant 

‘immune-altered’ phenotype, as per Galon et al.(113). This suggests that the majority 

of patients with EP-PD-NEC will likely show low sensitivity to ICB alone, but could 

potentially benefit from the combination of ICB with therapies that can stimulate immune 

checkpoint upregulation and immune cell infiltration, such as DNA-damaging agents. For 

example, ICB alone has proven ineffective in SCLC, which is known to be immunologically 

‘altered’/’cold’, in spite of a high TMB(114). However, the combination of ICB with 

first-line platinum/etoposide recently received FDA approval with superior efficacy over 

chemotherapy alone, in spite of a modest overall survival gain (<3 months)(115,116). 

Compelling preclinical evidence shows enhanced ICB via combined inhibition of cell-cycle 

or DDR regulators, such as CHK1, PARP (via cGAS-STING pathway)(117) or CDK7(118), 

which generates genomic instability to stimulate the host adaptive immune response [Figure 

3]. A number of ICB combination strategies have entered clinical investigation in SCLC(11) 

and EP-PD-NECs [Table 2].

Pembrolizumab has US FDA approval for the treatment of patients with advanced solid 

tumours and TMB≥10 mutations/megabase (mut/Mb). In SCLC, a high TMB enriched 

for clinical benefit in patients treated with ICB alone in the phase II Checkmate032 trial 

(TMB assessed by whole-exome sequencing in tumour tissue)(119), whereas it did not 

predict increased response to ICB in combination with platinum/etoposide in the phase III 

IMpower133 trial (TMB assessed by targeted sequencing in cell-free DNA)(120). However, 

the sensitivity of the methods for TMB assessment and the threshold for TMB-high differed 

between these two studies. Overall, EP-PD-NECs exhibit a lower median TMB (1.7-7.1 

mut/Mb)(18,19,30,37,40,42,44,99,121) [Table 3] than SCLC (~9 mut/Mb)(16), which may 

be partially explained by a lesser role for tobacco smoking in EP-PD-NEC pathogenesis. 

Bladder-PD-NEC represents an exception with a median TMB close to that of SCLC [Table 

3], although secondary to enrichment in APOBEC rather than tobacco smoking mutational 

signature(35,36). Nevertheless, a fraction of patients with EP-PD-NEC (~3-21.4%) exhibit a 

high TMB and may benefit from ICB alone.

5 Origin and NE lineage plasticity

The origin of EP-PD-NECs remains elusive. Accumulating evidence from clinical 

observations, genomic and transcriptomic studies suggests a distinct pathogenesis and, in 

some anatomical sites, cell of origin for WD-NETs and PD-NECs(122-124). WD-NETs are 

thought to develop from mature NE cells or pluripotent precursors primed for a NE lineage 

commitment(122,123). SCLC predominantly originates from pulmonary NE cells(125), 

whereas the cell of origin of EP-PD-NECs has never been formally identified. Comparative 

analyses of the mutational landscape of PD-NECs, non-NE epithelial cancers, and mixed 

NE/non-NE epithelial cancers from the GEP, bladder and prostate point towards a common 

clonal precursor for same-organ PD-NEC and non-NE epithelial cancer histologies at these 

anatomical sites(23,25,27,28,31,35,36). Multi-omic analyses of oesophageal-, bladder-, and 
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prostate-PD-NECs indicate that, in spite of a close resemblance with their non-NE epithelial 

cancer counterparts at a mutational level, their transcriptomic(30,84,126-128) and epigenetic 

profiles(126-128) largely overlap with those of SCLC. A study looking at clonal phylogeny 

of bladder-PD-NECs showed that site-specific mutations shared with non-NE epithelial 

cancers appear earlier than PD-NEC phenotype-specific genomic events, such as TP53/RB1 
loss or genome doubling(35). Therefore, the predominant emerging hypothesis is that EP-

PD-NECs have distinct cells of origin, shared with same-organ non-NE epithelial cancers(6), 

but a convergent phenotypic evolution shared with SCLC(35,126-128). Two main, non-

mutually exclusive mechanisms of EP-PD-NEC pathogenesis have been postulated: 1) origin 

from a multi-potent, undifferentiated (stem cell-like) site-specific precursor with the ability 

to alternatively acquire a non-NE cancer cell identity, 2) or through NE trans-differentiation 

from an originally non-NE epithelial cancer cell. The latter phenomenon, known as NE 

lineage plasticity, is emerging as the main mechanism underpinning the emergence of a 

lethal NE phenotype in lung and prostate adenocarcinoma following targeted therapies, such 

as anti-EGFR tyrosine kinase inhibitors and the antiandrogens enzalutamide and abiraterone. 

Lineage plasticity is the ability of cancer cells to transition to an alternative developmental 

lineage to adjust to adverse environmental conditions, such as those created by the selective 

pressure of targeted therapies, leading to loss of dependency on the original oncogenic 

driver, treatment resistance and tumour progression(6,7,129). To date, non-NE to NE cancer 

lineage transition secondary to therapeutic suppression of an oncogenic driver has been 

documented in the lung and prostate; a number of putative drivers have been identified, 

including TP53/RB1 loss, MYCN amplification or overexpression and perturbations in 

epigenetic regulators such as EZH2, establishing vulnerabilities that can be therapeutically 

leveraged(7,129). However, this phenomenon may also occur at other anatomical sites, and 

through different mechanisms, and will likely become increasingly observed in clinic due to 

the implementation of targeted therapies for a wider population of patients with cancer. This 

may include patients with non-NE epithelial cancers from the GEP tract, bladder or uterine 

cervix where the use of targeted therapies has so far been limited, yet is likely to increase 

with the rapid progress in their molecular and biological characterisation. For example, a 

study in patient samples provided initial evidence of NE trans-differentiation in pancreatic 

adenocarcinoma, and NE trans-differentiation was driven by MYC overexpression in 

GEMMs, and was associated with resistance to gemcitabine chemotherapy and increased 

by gemcitabine in human cell lines(130). In addition, anatomical sites other than the lung 

and prostate may be more prone to a different lineage reprogramming, such as epithelial-to-

mesenchymal transition, when cancer cells are forced into an identify shift by anti-cancer 

treatment(7).

Finally, NE lineage plasticity might not only occur in the late stages of tumour evolution, 

but also early in the oncogenic process(129), and may drive intra-tumour NE/non-NE 

phenotypic heterogeneity in mixed epithelial cancers and, at least in part, be implicated 

in the development of de novo PD-NECs. This implies that NE lineage plasticity-

directed therapies currently under investigation for treatment-induced PD-NECs could also 

potentially find application for mixed or pure de novo PD-NECs.

The hypotheses surrounding the origin of EP-PD-NECs presented herein are still debated 

and may not explain the whole spectrum of pathogenetic pathways. For example, two studies 
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proposed a possible evolution of SCLC and LCPNEC from pulmonary-WD-NETs, based on 

genomic sequencing of patient samples utilising a targeted panel of 40/88 genes commonly 

altered in these cancers, suggesting that this may also apply to EP-PD-NECs(131,132), 

although progression from a WD-NET to a PD-NEC is an extremely rare observation in 

clinic, both in and outside of the lung.

6 Conclusions

There is growing interest in EP-PD-NECs within the scientific and clinical communities 

to aid the management of these patients which are becoming more common in practice. 

This increase in patients is partially attributable to the improved sensitivity of methods for 

histopathological diagnosis, in particular the wider use of NE IHC markers. In addition, a 

new entity is emerging, namely treatment-induced PD-NEC, resulting from the phenotypic 

transition of pre-existing epithelial non-NE cancers. Rise in incidence of this is anticipated 

as molecularly targeted therapies are more widely implemented for the treatment of non-NE 

cancers. In addition, the more extensive use of liquid biopsies enabling temporal monitoring 

of changes in the tumour genotype and phenotype may unveil a higher incidence of 

treatment-induced non-NE to NE cancer lineage transition. Therefore, there is a demand 

for more research into this lethal PD-NEC diagnosis, for which chemotherapy remains the 

mainstay of treatment, yet yields short-lived benefits.

This review has attempted to provide a comprehensive overview of newly emerging 

molecular vulnerabilities of EP-PD-NECs and shed light on potential directions for research 

and treatment development [Figure 3]. New insight into multi-omic features of EP-PD-

NECs and NE cancer lineage plasticity are paving the way to new therapeutic opportunities 

[Figure 4, “i” suffix = inhibitor] and also increasing the understanding of the pathogenesis of 

these cancers.

SCLC is the best characterised NE cancer, and thus offers a paradigm for modelling EP-

PD-NEC. For example, the differential expression of NE lineage defining transcriptions 

factors underpins the new emerging SCLC molecular classification, and is associated 

with unique therapeutic vulnerabilities(12,14), and may aid in deciphering biological 

heterogeneity within the EP-PD-NEC family. Variability in genomic features across and 

within EP-PD-NEC subgroups per site of origin, such as a different prevalence of TP53 and 

RB1 inactivation, underscores the need for a more granular classification of these cancers. 

Transcriptomic profiling of 18 GEP-PD-NEC/MiNEN organoids has unveiled molecular 

subtypes differentially enriched in NE lineage defining transcription factors, including 

ASCL1, NEUROD1, POU2F3 and ATOH1, shedding light on their potential role in EP-PD-

NEC biology(45). This was corroborated by a recent study in oesophageal-PD-NEC (human 

samples, n=38), where unsupervised clustering analysis of RNA sequencing data split the 

population in an ASCL1high and a NEUROD1high subgroup with similar gene enrichment to 

their SCLC counterparts(30).

Besides a better characterisation of EP-PD-NEC molecular subgroups, an improved 

understanding of the EP-PD-NEC immune landscape and tumour microenvironment is 

needed to inform development of novel effective therapeutic approaches. For example, 
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inhibitors of the VEGF/VEGFR pathway are currently being investigated in combination 

with chemotherapy or ICB in the clinical setting in patients with advanced EP-PD-NEC, 

mainly of GEP origin [Table 2], with initial encouraging results(133-135). The rationale 

behind this is that targeting angiogenesis is known to improve the efficacy of chemotherapy 

and ICB in a variety of solid cancers(136). In addition, GEP-PD-NECs have a low 

vascular density, yet prominent angiogenesis with increased endothelial cell proliferation 

and abnormal vascular architecture, likely secondary to hypoxia(137), suggesting that 

targeting angiogenesis might be effective in these cancers. In support to this, a recent study 

has demonstrated potent in vivo anti-tumour activity for two VEGF inhibitors in xenograft 

models of SCLC and colon-PD-NEC(138). Nevertheless, angiogenesis in EP-PD-NECs 

remains poorly studied.

Finally, clinically useful biomarkers and patient-relevant preclinical models of EP-PD-NECs 

remain urgently needed. Initial studies of circulating tumour cells (CTCs) and circulating 

tumour DNA in patients with EP-PD-NEC provide evidence of their feasibility and potential 

clinical utility in these cancers(21,139), with a largely untapped potential to overcome 

the limited availability of tumour tissue. In SCLC, CTCs can give rise to animal models 

which faithfully recapitulate the morphology and treatment sensitivity of donor patients’ 

tumours; so-called CTC-Derived eXplants (CDX)(13,48,140). CDX can be generated from 

a 10mL blood sample and at multiple time points from the same patient, and are proving 

valuable tools for in vivo and ex vivo biological studies and drug screening(13,48,140). The 

CDX technology may also find application in NE cancers outside the lung, as shown in a 

recent study reporting on a CDX of treatment-induced prostate-PD-NEC(141). NE cancer 

organoids are proving reproducible and tractable platforms that can support preclinical 

investigation in EP-PD-NECs.
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Figure 1. Classification of Neuroendocrine Neoplasms.
A) Table describing the current nomenclature according to the 2018 International 
Agency for Research on Cancer and World Health Organisation (WHO) consensus 
framework(3), and the 2019 WHO Classification of Tumours of the Digestive 
System(1). Categories are based on morphological features for Neuroendocrine 
Neoplasms of pulmonary origin, and a combination of morphological features and 
Ki-67 expression for Neuroendocrine Neoplasms of extra-pulmonary origin. B) 
Simplified graphic representation of Table A.

NET = neuroendocrine tumour; this refers to a neuroendocrine neoplasm with a well-

differentiated morphology (WD). NEC = neuroendocrine carcinoma; this refers to a 

neuroendocrine neoplasm with a poorly-differentiated morphology (PD). G1 (grade 1) and 

G2 (grade 2) identify low grades of proliferative activity and biological aggressiveness, and 
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are defined by a Ki-67 index ≤20% for neuroendocrine neoplasm of extra-pulmonary origin. 

G3 (grade 3) identifies a high grade of proliferative activity and biological aggressiveness, 

and is defined by a Ki-67 index >20% for neuroendocrine neoplasms of extra-pulmonary 

origin. MiNEN = mixed neuroendocrine non neuroendocrine neoplasm; this definition 

applies to cancer from the gastro-entero-pancreatic tract composed of both neuroendocrine 

and non-neuroendocrine histology, each accounting for at least 30% of the tumour mass.
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Figure 2. Common genomic alterations in Extra-Pulmonary NeuroEndocrine Carcinomas
Frequency (median and interquartile range) of samples harboring any genomic alteration 

(point mutation, copy number gain, copy number loss, amplification, deletion, chromosomal 

rearrangement) is reported for a selection all genomic studies in extra-pulmonary 

neuroendocrine carcinomas presented in this review. GEP = gastro-entero-pancreatic tract. 

UNK = unknown primary origin. H&N = head and neck. DDR = DNA damage repair. 

Remaining acronyms are defined in Table 4. Studies selected were those where samples 
included were from ≥10 patients.
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Figure 3. 
Molecular vulnerabilities of Extra-Pulmonary NeuroEndocrine Carcinomas, 
associated therapeutic opportunities and supporting preclinical and clinical evidence. 
Part A presents SCLC-like and tumour-type agnostic molecular vulnerabilities. Part B 
presents same-organ non-NE cancer-like molecular vulnerabilities.

mAB = monoclonal antibody. CTLA-4=cytotoxic T-lymphocyte antigen 4. ICB=immune 

checkpoint blockade. TMB=tumour mutation burden. MHC I or II=major histocompatibility 

complex I or II. TCR=T cell receptor. APC=cell presenting antigen. ADI-
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PEG-20=pegylated arginine deiminase. BET=bromodomain and extra-terminal domain 

proteins. BiTE=bispecific T cell engager. CAR T cell=chimeric antigen receptor T 

cell. HDAC=histone deacetylase. KMT2=histone lysine methyltransferase 2 family. 

KMD=histone lysine demethylase family. MAPKs=mitogen activated protein kinases. 

RTK=receptor tyrosine kinase. GF=growth factor. MSI=microsatellite instability. The suffix 

“i” after the name of the protein means “inhibitor”. Remaining acronyms are defined in 

Table 4.
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Figure 4. Summary of emerging therapeutic strategies for Extra-Pulmonary NeuroEndocrine 
Carcinomas
DDR = DNA damage repair. ICB = immune checkpoint blockade. BiTE = bispecific T cell 

engager. CAR T cell therapy = chimeric antigen receptor T cell therapy. TMB = tumour 

mutation burden. The ‘i’ as suffix of the name of a molecular marker means “inhibitor”. 

Remaining acronyms are defined in Table 4.
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Table 3
Immune biomarkers of Extra-Pulmonary NeuroEndocrine Carcinomas

Microsatellite instability

Reference n 2019 WHO 
category Site of origin Disease stage Methods MSI-high cases

Venizelos, 
2021(18) 152 PD-NEC

Oesophagus 
(n=18), stomach 
(n=16), pancreas 
(n=13), 
gallbladder/
biliary y=tract 
(n=3), colon 
(n=45), rectum 
(n=36), unknown 
primary (n=19), 
(not reported 
n=2)

Stage IV: 79.6%
Stage I/II/III: 
20.4%

PCR (panel**: BAT-25, BAT-26, 
NR-21, NR-24, MONO-27, Penta C 
and Penta D)

8/152 (5.3%)

Puccini, 
2020(19) 135

PD-NEC or 
G3-WD-NET 
(relative 
proportions 
not reported)

GEP n/a NGS-based (MSI-high: ≥46 loci 
with insertions or deletions) 5/135 (3.7%)

Milione, 
2017(97) 112 PD-NEC

Oesophagus 
(n=5), stomach 
(n=23), 
duodenum (n=5), 
ileum-cecum/
appendix (n=13), 
colon-rectum 
(n=42), pancreas 
(n=22), 
gallbladder (n=2)

Stage IV: 59.8%
Stage I/II/III: 
40.2%

IHC for MMR proteins*
4/60 (6.7%) 
(only 60 cases 
subjected to 
MSI analysis)

Sahnane, 
2015(88) 89

PD-NEC 
(n=53), 
MiNEN 
(n=36)

Oesophagus 
(n=6), stomach 
(n=36), 
duodenum (n=4), 
colon-rectum 
(n=37), pancreas 
(n=3), 
gallbladder (n=3)

Stage IV: 24%
Stage II/III: 76%

PCR (panel**: BAT-25, BAT-26, 
NR-21, NR-22, NR-24) and IHC 

for MMR proteins*

Whole pop: 
11/89 (12.4%)
[Oesophagus: 
0%, stomach: 
11.1%, 
duodenum: 
25%, colon-
rectum: 16.2%, 
pancreas: 0%, 
gallbladder: 0%]
PD-NECs: 7/53 
(13.2%)

Busico, 
2019(20) 39 PD-NEC

Stomach (n=11), 
pancreas (n=6), 
colon (n=22)

Stage IV: 66.7%
Stage I/II/III: 
33.3%

IHC for MMR proteins* 27/39 (69.2%)

La Rosa, 
2012(98) 34

PD-NEC or 
MiNEN 
(relative 
proportions 
not provided)

Colon-rectum Stage IV: 
25-33.3%

PCR (panel**: BAT-25, BAT-26, 
NR-21, NR-22, NR-24)

5/34 (14.7%)

Xing, 
2020(101) 33 PD-NEC

Oesophagus 
(n=3), stomach 
(n=21), small 
bowel (n=1), 
colon (n=1), 
pancreas (n=6), 
gallbladder (n=1)

Stage IV: 12.1%
Stage I/II/III: 
89.9%

NGS-based classifiers mSINGS, 
MSIsensor, and MSIseq; MSI-high 
status: when >2 software programs 
showed MSI-high.

0/33 (0%)

Olevian, 
2016(90) 32

PD-NEC 
(n=14), 
MiNEN 
(n=18)

Colon-rectum
Stage IV: 59.4%
Stage I/II/III: 
40.6%

either PCR (panel**: BAT25, 
BAT26, D2S123, D5S346, 
D17S250 + CAT25) or IHC for 

MMR proteins*

2/29 (6.9%)
(only 29 cases 
subjected to 
MSI analysis)
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Lee, 
2021(24) 30 PD-NEC Colon-rectum

Stage IV: 36.7%
Stage I/II/II: 
63.3%

IHC for MMR proteins* and PCR

(panel**: BAT25, BAT26, D2S123, 
D5S346, D17S250)

1/30 (3.3%)

Capdevila, 
2019(25) 25 PD-NEC Colon n/a

PCR (panel**: BAT25, BAT26, 
NR-21, NR-24, MONO-27) and 

IHC for MMR proteins*

0/24 (0%) (only 
24 cases 
subjected to 
MSI analysis)

Pei, 
2021(38) 51 PD-NEC Uterine cervix Stage IV: 3.9%

Stage II: 96.1%
NGS-based (criteria for MSI-high 
definition not reported) 2/51 (3.9%)

Cimic, 
2020(37) 31 PD-NEC Uterine cervix n/a NGS-based (MSI-high: ≥46 altered 

microsatellite loci) 0/31 (0.0%)

Ohmoto, 
2021(42) 14 PD-NEC Head/neck

Locally 
advanced (Stage 
III, IVA, IVB): 
78.6%
Metastatic 
(Stage IVC): 
21.4%

MSI quantitative score: proportion 
of MSI unstable sites to the total 
130 homopolymer MSI marker sites 
assessed (targeted NGS-based). 
MSI-high: MSI score ≥0.1.

0/14 (0.0%)

PD-L1 expression (IHC)

Reference n 2019 WHO 
category Site of origin Ab clone used

Scoring system 
and positivity 
threshold

Stained cells PD-L1 positive 
cases

Puccini, 
2020(19) 135

PD-NEC or 
G3-WD-NET 
(relative 
proportions 
not reported)

GEP SP142 n/a n/a 8/135 (6.0%)

Ferrata, 
2019(104) 57

PD-NEC 
(n=48), 
MiNEN (n=6), 
G3-WD-NET 
(n=3)

GEP (n=21), lung 
(n=16), 
genitourinary 
(n=8), UNK 
(n=7), head/neck 
(n=4), MCC 
(n=1).

EPR19759 
(ab213524)

TPS ≥1 % Tumour cells 9/57 (15.8%)

unclear Immune cells 14/57 (24.6%)

Koshkin, 
2018(75) 53 PD-NEC Bladder SP142 or SP263

TPS ≥1 % Tumour cells 0/53 (0.0%)

≥1% of the 
tumour area 
occupied by 
PD-L1 
expressing 
immune cells

Immune cells 16/53 (30.2%)

Yang, 
2019(105) 43 PD-NEC Stomach 28-8 (ab205921) Yang et al. score 

>4 Tumour cells 21/43 (48.8%)

Cimic, 
2020(37) 39 PD-NEC Uterine cervix 22C3 CPS ≥1% Tumour and 

immune cells 4/39 (10.3%)

Roberts, 
2017(106) 37 PD-NEC GEP E1L3N

TPS ≥1 % Tumour cells 5/37 (13.5%)

≥1% of the 
tumour area 
occupied by 
PD-L1 
expressing 
immune cells

Immune cells 10/37 (27.2%)

Salhab, 
2018(107) 34 PD-NEC

Genitourinary 
(n=18), UNK 
(n=10), GEP 
(n=5), head/neck 
(n=1).

E1L3N CPS ≥1% Tumour and 
immune cells 12/34 (35.3%)

Schultheis, 
2015(108) 33 PD-NEC n/a 5H1 or E1L3N Allred Score >2

Tumour cells 0/33 (0.0%)

Immune cells 7/33 (21.2%)
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Xing, 
2020(99) 31 PD-NEC GEP 22C3 TPS ≥1 % Tumour cells 9/31 (29.0%)

Bösch, 
2019(109) 18 PD-NEC GEP E1L3N TPS ≥1 % Tumour cells 3/18 (16.7%)

Kim, 
2016(110) 17

PD-NEC or 
G3-WD-NET 
(relative 
proportions 
not reported)

GEP SP142 TPS ≥1 % Tumour cells 7/17 (41.2%)

Ono, 
2018(111) 16 PD-NEC GEP n/a TPS ≥1 % Tumour cells 6/16 (37.5%)

Busico, 
2019(20) 11 PD-NEC GEP n/a ≥1% (scoring 

system n/a)

Tumour cells 0/39 (0%)

Immune cells 11/39 (28.2%)

Morgan, 
2019(112) 10 PD-NEC Uterine cervix SP263 H-score ≥1 %

Tumour cells 7/10 (70.0%)

Immune cells 2/10 (20.0%)

Tumour mutation burden

Reference n 2019 WHO 
category Site of origin Platform used

Median or 
mean 
(mut/Mb)

Definition of 
high TMB

Cases with high 
TMB

Chalmers, 
2017(121)

117, 
674 PD-NEC UNK NGS 365-gene 

panel
6.3, 2.7 
(median) ≥20 mut/Mb 8.5%, 6.1%

n/a PD-NEC Colon-rectum NGS 365-gene 
panel   ≥20 mut/Mb ~5%

Venizelos, 
2021(18) 152 PD-NEC GEP + UNK NGS 360-gene 

panel 5.1 (median)    

Puccini, 
2020(19) 135

PD-NEC or 
G3-WD-NET
(relative 
proportions 
not reported)

GEP NGS 592/44-
gene panel 9.5 (mean) ≥17 mut/Mb 7%

Chen, 
2020(44) 83 PD-NEC Colon-rectum

Different NGS 

platforms*** 5.2 (median)    

Li, 2021(30) 46 PD-NEC Oesophagus WES 2.31 (median)    

Xing, 
2020(99) 29 PD-NEC GEP WES 5.7 (median)    

Cimic, 
2020(37) 39 PD-NEC Uterine cervix NGS 592-gene 

panel   ≥17 mut/Mb 3%

Hillman, 
2020(40) 15 PD-NEC Uterine cervix WES 1.7 (median)    

Chang, 
2018(35) 17 PD-NEC Bladder WES/WGS 10.7 (median)    

Shen, 
2018(36) 12 PD-NEX Bladder (n=11), 

prostate (n=1) WES/WGS 9.8 (median)    

Ohmoto, 
2021(42) 14 PD-NEC Head/neck NGS 523-gene 

panel 7.1 (median) ≥10 mut/Mb 21.4%

n = number of patients. MiNENs = mixed neuroendocrine non-neuroendocrine neoplasms. G3-WD-NETs = high grade (ki-67>20%) well 
differentiated neuroendocrine tumours. GEP = gastro-entero-pancreatic tract. UNK = unknown origin. MCC = Merkel cell carcinoma. PCR = 
polymerase chain reaction. IHC = immunohistochemistry. NGS = next generation sequencing. WES = whole exome sequencing. WGS = whole 
genome sequencing. n/a = information not available. Antibodies used to detect the programmed death ligand 1 (PD-L1): 5H1 = mouse monoclonal 
antibody (mAb) by Lieping Chen’s Laboratory (Yale University, US). E1L3N = rabbit mAb by Cell Signaling Technology. EPR19759 (ab213524) 
= rabbit recombinant mAb by Abcam. SP142 = rabbit mAb by Ventana (Roche). 22C3 = mouse mAb by Dako/pharmDx (Agilent). SP263 = rabbit 
mAb by Ventana (Roche). 28-8 (ab205921) = rabbit recombinant mAb by Abcam. Allred score: ranges from 0 to 8 and combines the percentage 
of PD-L1 expressing cells subdivided into 6 categories (0-5) with the intensity of PD-L1 expression subdivided into 4 categories (0-3). TPS = 
tumour proportion score; percentage of PD-L1 expressing tumour cells on the total of viable tumour cells. H-score: ranges from 0 to 300 and is 
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estimated by multiplying the percentage of PD-L1 expressing cells by the intensity of PD-L1 expression (0-3). CPS = combined positive score; 
percentage of PD-L1 expressing tumour and immune cells on the total of viable tumour cells. Yang et al. score = combines the percentage of 
PD-L1 expressing tumours cells subdivided into 4 categories (0-3) with the intensity of PD-L1 expression subdivided into 4 categories (0-3). 
*mismatch repair proteins (MLH-1, MSH-2, MSH-6, PMS-2). **panel of selected microsatellite loci analysed by PCR.***publicly accessible NGS 
database from the American Association of Cancer Research (AACR) Project Geno mics, Evidence, Neoplasia, Information, Exchange (GENIE) 
consortium. Studies selected where those which included samples from ≥10 patients.
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Table 4
List of genes cited in the paper (HUGO Genome Nomenclature Committee).

ASCL1 Achaete-Scute Family bHLH Transcription Factor 1

NEUROD1 Neurogenic Differentiation Factor 1

ATOH1 Atonal bHLH Transcription Factor 1

POU2F3 POU Class 2 Homeobox 3

YAP1 Yes1 Associated Transcriptional Regulator

TP53 Tumor Protein P53

RB1 RB Transcriptional Corepressor 1

STK11 Serine/Threonine Kinase 11

KEAP1 Kelch Like ECH Associated Protein 1

MDM2 MDM2 Proto-Oncogene

TP73 Tumor Protein P73

CDKN2A Cyclin Dependent Kinase Inhibitor 2A

CCNE1 Cyclin E1

WEE1 WEE1 G2 Checkpoint Kinase

CHEK1 (alias symbol CHK1) Checkpoint Kinase 1

ATR ATR Serine/Threonine Kinase

TOP1 DNA Topoisomerase I

MYC MYC Proto-Oncogene, bHLH Transcription Factor

MYCL MYCL Proto-Oncogene, bHLH Transcription Factor

MYCN MYCN Proto-Oncogene, bHLH Transcription Factor

AURKA Aurora Kinase A

AURKB Aurora Kinase B

CDK7 Cyclin Dependent Kinase 7

EZH2 Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit

PARP1 Poly(ADP-Ribose) Polymerase 1

PARP2 Poly(ADP-Ribose) Polymerase 2

CDK5 Cyclin Dependent Kinase 5

CREBBP CREB Protein

EP300 E1A Binding Protein p300

SLFN11 Schlafen Family Member 11

DLL3 Delta Like Canonical Notch Ligand 3

BCL2 BCL2 Apoptosis Regulator

KRAS KRAS Proto-Oncogene, GTPase

BRAF B-Raf Proto-Oncogene, Serine/Threonine Kinase

MEK1 Mitogen-Activated Protein Kinase Kinase 1

MEK2 Mitogen-Activated Protein Kinase Kinase 2

AKT1 AKT serine/threonine kinase 1

MTOR Mechanistic Target Of Rapamycin Kinase
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PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha

PTEN Phosphatase And Tensin Homolog

CD274 (alias symbol PD-L1) CD274 molecule

PDCD1 (alias symbol PD-1) Programmed Cell Death 1

CTLA4 Cytotoxic T-Lymphocyte Associated Protein 4

cGAS (CGAS in humans) Cyclic GMP-AMP Synthase

STING1 Stimulator Of Interferon Response cGAMP Interactor 1

VEGF(A/B/C/D) Vascular Endothelial Growth Factor (A/B/C/D)

FLT1 (alias symbol VEGFR1) Fms Related Receptor Tyrosine Kinase 1

KDR (alias symbol VEGFR2) Kinase Insert Domain Receptor

FLT4 (alias symbol VEGFR3) Fms Related Receptor Tyrosine Kinase 4
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