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Abstract: Coenzyme A (CoA) is essential to all life on Earth, and its functional subunit, 10 
pantetheine, is central to many origins of life scenarios, but how pantetheine emerged on the early 
Earth remains a mystery. Earlier attempts to selectively synthesize pantetheine failed, leading to 
suggestions that ‘simpler’ thiols must have preceded pantetheine at the origin of life. Here we 
report the first high-yielding prebiotic syntheses of pantetheine by routes that selectively yield its 
unique structure in water. Chemoselective multicomponent aldol, iminolactone and aminonitrile 15 
reactions deliver spontaneous differentiation of pantoic acid and proteinogenic amino acid 
syntheses, as well as the dihydroxyl, gem-dimethyl, and b-alanine-amide moieties of pantetheine 
in dilute water. Our results support the role of canonical pantetheine at the outset of life on Earth. 
 

One-Sentence Summary: Multicomponent prebiotic nitrile chemistry is predisposed to yield 20 
pantetheine, a universally conserved constituent of cofactor CoA, in water. 
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Main Text: There are competing views concerning the nature of the chemistry that preceded life 
on Earth (1-12). However, inorganic and organic cofactors play an essential role in both 
biochemical and prebiotic reactions, so there is a strong consensus across all the conceptual 
divisions in prebiotic chemistry that cofactors must have played an important role at the origin of 
life (2, 3, 5, 9, 13-21). Coenzyme A (CoA) is unique amongst cofactors: not only is it universally 5 
conserved across all living organisms (19, 22) like adenosine triphosphate (ATP), RNA and 
proteins, but it also combines RNA and peptide structural elements within a linchpin of 
metabolism, making CoA a unique ‘molecular fossil’ that unites the ‘RNA-’, ‘peptide-’ and 
‘thioester world’ hypotheses for the origins of life (6, 10).  
CoA is the fulcrum about which metabolism turns (19, 23, 24). For example, CoA-thioesters drive 10 
anabolic pathways, including fatty acid, polyketide, and non-ribosomal peptide syntheses (13, 24, 
25), and are so integral to ancient autotrophic carbon fixation pathways, including the reverse-
Krebs cycle and acetyl-CoA pathway (5, 9, 10, 23), that thioester-based protometabolism (a 
‘thioester world’) has been proposed to have paved the way to biochemistry (2, 3, 13, 16, 21).  

CoA contains two distinct fragments: pantetheine 1 and a nucleotide (Fig. 1A). The nucleotide 15 
fragment may have been a later evolutionary modification of 1 (14, 16), however its ribozyme-
catalyzed incorporation into RNAs (26-28) provides a mechanism for 1 to be recruited even prior 
to genetically coded enzymes and the advent of translation. CoA is also still incorporated into 
RNAs during the initiation of transcription in modern organisms (29, 30). Furthermore, CoA is 
one of the smallest known ribozymes (a ‘coribozyme’ (28)), that can catalyze prebiotic peptide 20 
ligation in water (31), and may be an ancient remnant of an RNA-based metabolism (14, 17, 18). 
However, pantetheine 1 is the crucial fragment that, for example, forms high-energy thioesters in 
enzyme active sites (3, 13, 25), whereas the nucleotide is a binding motif or is lost during the 
attachment of 1 to enzymes. Therefore, particular importance has been placed upon the functional 
thiol fragment of CoA, pantetheine 1, acting as an organocatalyst for protometabolic reactions 25 
before its recruitment by genetically encoded enzymes (2, 3, 16). 

Pantetheine biosynthesis is a complex multistep pathway that consumes methylene 
tetrahydrofolate, nicotinamide dinucleotides, several nucleoside triphosphates, and requires 
pyruvoyl- and flavin-dependent decarboxylases (22, 32). The multistep biosynthesis and structural 
complexity of pantetheine 1 have led to speculation that ‘simpler’ thiols may have fulfilled its 30 
essential role on the early Earth (4, 5, 9, 10, 33, 34). However, 1 is strictly conserved, suggesting 
it may have persisted from the onset of life. Accordingly, elucidating the prebiotic origin of 
pantetheine 1, and why complex thiol 1 is pervasive in enzyme-catalyzed reactions across all 
domains of life, rather than other simpler thiols, is a key challenge for understanding the origins 
of life. For pantetheine 1 to be selected as a part of nascent metabolism, it must have been available 35 
and in plentiful supply. Therefore, we suspected that a high-yielding selective synthesis of 1 must 
be chemically predisposed. 
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Fig. 1. Overview of prebiotic pantetheine synthesis by nitrile-activation. (A) Coenzyme A. (B) 
Selective, high-yielding nitrile-mediated pathway to pantetheine 1.  1H NMR spectra showing selectivity 
of: (C) The aqueous aldol reaction of aldehydes 2 (22 mM), 3 (17 mM), 5 (22 mM) and 6 (22 mM) in PBS 
(pH 7, 500 mM) after: (i) 20 mins at 20ºC, followed by NaCN (300 mM) at 20ºC; (ii) 1 day at 60°C, 
followed by NaCN (300 mM) at 20ºC, yielding pantoic acid nitrile 23 (57%).  (D) Pantoic acid and 5 
proteinogenic amino acid differentiation upon reaction of aldehydes 2 (20 mM), 3 (17 mM), 4 (20 mM), 5 
(31 mM) and 6 (20 mM) with NH3 (500 mM) and NaCN (150 mM) after 1 day in PBS (pH 9.5, 500 mM) 
at 20ºC, yielding proteinogenic aminonitrile 7G, 7A, 7V, 7S and pantoic acid amidine 26. * = methanol.  (E) 
Pantoylation during the stoichiometric competition of b-alanine-nitrile 10 (6.2 mM) and glycine nitrile 16G 
(6.2 mM) with aldehyde 4 (3.1 mM) and HCN (4.7 mM) in PBS (pH 9, 31 mM) at 20°C after 3 days, 10 
yielding pantothenic acid nitrile 11 (44%). The non-canonical a-homolog 20 was not observed. (F) 
Activating-agent-free pantetheine synthesis upon reaction of pantothenic acid nitrile 11 (500 mM) with 
cysteamine 13 (2 equiv.) in PBS (pH 7, 500 mM) at 20°C after 60 days, yielding pantetheine 1 (93%). 

 

Here we report selective prebiotic syntheses of pantetheine 1 (Fig. 1B) that harness the unique 15 
reactivity of the aldehyde and nitrile products of prebiotic hydrogen cyanide (HCN) reduction (7, 
12, 35). Our multicomponent reaction pathways demonstrate that the neutral pH aldol reaction of 
glycine (Gly) and valine (Val) precursors (i.e., formaldehyde 2 and isobutyraldehyde 3) selectively 
yield hydroxypivaldehyde 4, even within mixtures of enolizable aldehydes (e.g., 2 + 3 + 5 + 6; 
Fig. 1C). Furthermore, we found that the newly installed hydroxyl moiety of aldehyde 4 excludes 20 
it from undergoing a Strecker reaction (7, 35) to allow in-situ one-pot spontaneous chemical 
differentiation of a-hydroxy-pantoic acid and proteinogenic a-amino acids (Fig. 1D). 
Additionally, we discovered that the hydroxyl moiety of aldehyde 4 also promotes selective 
incorporation of the b-alanyl-motif of 1 via iminolactone 7 (Fig. 1E).  This allows the less reactive 
lactone 8, which has previously been proposed as a prebiotic reagent (20, 36), to be bypassed. By 25 
exploiting the more reactive iminolactone 7, our synthesis of pantetheine 1 was achieved at 
extremely low concentration. For example, whereas lactone 8 (50 mM) was only observed to 
hydrolyze to pantoic acid 9 (Fig. 2A), the formation of iminolactone 7 (from 3 mM aldehyde 4 and 
HCN) and in-situ reaction with b-alanine-nitrile 10 yields pantothenic acid nitrile 11 as the major 
product. In addition to observing kinetic and thermodynamic b-alanyl-selectivity in these reactions 30 
to favor the canonical structure of pantetheine 1 over its homologs, the nitrile mediated 
iminolactone pathway also blocks access to non-canonical (undesired) a-analogues of pantetheine 
1 that would otherwise arise preferentially from carboxylic acids (20, 36). Whilst there remain 
interesting questions with respect to the (subsequent) evolution of CoA biosynthesis, our results 
suggest nitrile reactivity could underpin the chemical selection of pantetheine 1 and proteinogenic 35 
peptides (31, 37), and provide support for the cyanosulfidic origins of life (7, 8, 11, 12, 31, 35, 37).  

Results 

By-passing b-alanine, wet-dry cycles, and electrophilic activation in water  
Earlier attempts to uncover a prebiotic synthesis of pantetheine 1 (20) assumed the condensation 
of pantolactone 8 (36), b-alanine 12 (1, 7, 36, 38, 39), and cysteamine 13 (39-44) would generate 40 
pantetheine 1. However, the reaction of lactone 8 with b-alanine 12 in water produced only very 
low yields of pantothenic acid 14 at high (>500 mM) concentration, and completely failed to yield 
14 at low (<100 mM) concentration, due to preferential hydrolysis (Fig. 2A & table S2). 
Furthermore, electrophilic activation of pantothenic acid 14 led to fragmentation of 14 back to b-
alanine 12, lactone 8 and pantoic acid 9 (Fig. 2C). Importantly, at high concentration, where amino 45 
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acids can be acylated by lactone 8, a-amino acid Gly reacts preferentially with lactone 8 over b-
alanine 12 (Fig. 2B). Therefore, the reaction of lactone 8 with amino acids selectively yields non-
canonical homolog 15, and these carboxylic acid studies provide no rationale for the observed 
canonical structure of pantetheine 1 (36).  

 5 

 
Fig. 2 Previous work: Failed carboxylic acid-mediated pathways to pantetheine. 1H NMR spectra to 
show: (A) Incubating lactone 8 (50 mM) with b-alanine 12 (2 equiv.) in PBS (pH 9; 500 mM) at 20ºC gave 
hydrolysis product, pantoic acid 9 (94%) after 8 days. (B) Incubating lactone 8 (500 mM) with glycine Gly 
(2 equiv.) and b-alanine 12 (2 equiv.) in PBS (pH 9; 500 mM) at 20ºC gave hydrolysis product pantoic acid 10 
9 (59%) and the non-canonical pantoyl-a-glycine 15 (29%) as the major products after 7 days, alongside 
only 11% of canonical pantothenic acid 14 as the minor product. (C) Failed coupling of cysteamine 13 and 
pantothenic acid 14 with model electrophilic activating agent 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC). Electrophilic activation of 14 with EDC resulted in 
fragmentation of pantoyl-amide 14, whilst the rapid reaction of 13 with EDC blocks onward reaction and 15 
synthesis of pantetheine 1. See Supplementary Text 3 for further details. (D) Failed synthesis of pantothenic 
acid 14 by wet-dry cycling. 1H NMR spectra to show: (i) a solution of pantolactone 8 (500 mM) and b-
alanine 12 (500 mM; pH 7.0), and (ii) products of this solution after a slow stream of air was passed over 
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the solution for 2.5 days at 20ºC, followed by heating the residue at 100°C for 24 hours and then dissolution 
in H2O (1 mL), which revealed the sublimation of pantolactone 8 (>99%). See Supplementary Text 2 for 
further details. 

In an attempt to overcome these problems, Miller and co-workers proposed a dry-state synthesis 
of pantetheine 1 (20). However, we found pantetheine 1 could only be detected in trace yield (<1%) 5 
in an artificially sealed reaction vessel (fig. S11). The reaction failed completely if dried lactone 
8, b-alanine 12, and cysteamine 13 were not sealed in an airtight reaction vessel before heating 
(fig. S10) due to the sublimation of lactone 8 (Fig. 2D). To compound the problems of dry-state 
heating, we discovered pantothenic acid 14 decomposes to b-alanine 12 and pantoic acid 9 under 
hot-dry conditions (fig. S7). These results demonstrate that the dry-state synthesis of pantetheine 10 
1 cannot be prebiotically plausible since it demands an artificially sealed reaction vessel (20). This 
led us to suspect that alternative prebiotic substrates were needed for the effective synthesis of 
pantetheine 1. 

 

 15 
Fig. 3. Chemoselective pantoylation of aminonitriles.  1H NMR spectra to show: (A) Incubating lactone 
8 (500 mM) with b-alanine-nitrile 10 (2 equiv.) and b-alanine 12 (2 equiv.) in PBS (pH 9; 500 mM) at 20ºC 
yields pantothenic acid nitrile 11 (84%) as the major product after 2 days, alongside 9 (11%) and 14 (3%).  
(B) Incubating lactone 8 (500 mM) with b-alanine-nitrile 10 (2 equiv.) and g-aminobutyric-acid-nitrile 18 
(2 equiv.) in PBS (pH 9; 500 mM) at 20ºC yields pantothenic acid nitrile 11 (71%) as the major product 20 
after 2 days, alongside 9 (19%) and 19 (10%).  (C) Incubating lactone 8 (500 mM) with b-alanine-nitrile 
10 (2 equiv.) and glycine nitrile 16G (2 equiv.) in PBS (pH 9; 500 mM) at 20ºC yields: (i) after 6 hours, 
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11/20(~1:1), and then (ii) after 6 days, canonical pantothenic acid nitrile 11 as the major product (11/20; 
>5:1).  
 

Aminonitriles are prebiotic precursors of amino acids (7, 35), but their hydrolysis to amino acids 
dissipates the energy stored within the nitrile moiety. However, taking advantage of the latent 5 
nitrile activation of a-aminonitriles 16, we recently reported a chemoselective synthesis of 
proteinogenic a-peptides in water (31, 37). These mechanisms by-passed a-amino acids to 
generate a-peptides without the electrophilic carboxylate-activation that would be necessary with 
amino acids. Electrophilic activation is not only incompatible with various proteinogenic amino 
acid side chains (31, 37), but is also incompatible with pantetheine 1 synthesis. To demonstrate 10 
this, our attempts to synthesize pantetheine 1 from cysteamine 13 and carboxylic acids 9, b-alanine 
12 and pantothenic acid 14 were thwarted by a myriad of detrimental reactions (fig. 2C & 
Supplementary Text S3). Chief amongst these problems were the incompatibility of cysteamine 
13 with electrophilic carboxylate-activation (fig. S24) (45), and the fragmentation of pantothenic 
acid 14 (fig. S20). Reflection upon our recent a-peptide coupling strategies (31, 37) led us to 15 
suspect that latent nitrile-activation could be exploited to achieve pantetheine 1 synthesis and 
overcome these problems. We recognized that different chemistries would be required for selective 
pantetheine 1 synthesis, which contains an a-hydroxy-acid and a b-amino acid, rather than 
proteinogenic a-amino acids (31, 37). Specifically, we hypothesized that b-alanine-nitrile 10 (pKaH 

= 7.8) would possess a key nucleophilic advantage over b-alanine 12 (pKaH = 10.5) to allow 20 
selective coupling of b-alanine-nitrile 10 with lactone 8 to generate pantothenic acid nitrile 11 in 
water. Importantly, 11 would retain latent activation, within its nitrile moiety, which would allow 
its onward activating-agent-free reaction with cysteamine 13 to furnish pantetheine 1.  

To test the first element of our hypotheses we incubated lactone 8 with b-aminonitrile 10 in water. 
Pleasingly, we observed pantothenic acid nitrile 11 in up to 94% yield, but near-quantitative 25 
coupling required high (>100 mM) lactone 8 concentration (table S5). Nevertheless, incubating 
lactone 8 with equimolar b-alanine-nitrile 10 and b-alanine 12 returned 84% pantothenic acid 
nitrile 11, alongside only 3% acid 14 (fig. 3A) in a clear demonstration of the superior reactivity 
of b-alanine-nitrile 10.  
 30 

Latent electrophilic nitrile activation  
We next investigated the latent activation of pantothenic acid nitrile 11. Despite their latent 
activation, we had previously observed b-alanyl-nitriles resisted reaction with thiol nucleophiles 
which blocked their unwanted incorporation into peptides by thiol-catalyzed peptide ligation (31). 
However, the ambident nucleophilicity of cysteamine 13, and irreversible thiazoline formation, 35 
were found to switch on b-alanine-nitrile reactivity. Therefore, incubating pantothenic acid nitrile 
11 with cysteamine 13 led to the formation of thiazoline 17 in good-to-excellent yield across a 
broad pH range (table S7). Furthermore, incubating pantothenic acid nitrile 11 with cysteamine 13 
at neutral pH directly yielded pantetheine 1 (93%) (fig. S33). Therefore, in three high-yielding 
activating-agent-free steps, pantetheine 1 was produced through the remarkable nucleophilicity of 40 
b-alanine-nitrile 10 and the latent electrophilicity of pantothenic acid nitrile 11 in water. 
 

Nitrile-controlled b-alanyl-selective pantoylation  
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Pantetheine 1 possesses a unique b-alanyl-motif, so we next questioned whether lactone 8 would 
discriminate b-alanine-nitrile 10 from its shorter and longer homologs, a-aminonitrile 16G and g-
aminonitrile 18 (Fig. 3). g-Aminonitrile 18 (pKaH = 10.2) is substantially more basic than b-alanine-
nitrile 10, and so 18 did not effectively couple with lactone 8. Indeed, the reaction of lactone 8 
with equimolar 10 and 18 selectively produced pantothenic acid nitrile 11 (71%), alongside only 5 
10% of g-homolog 19 (Fig. 3B). Under the same conditions, we observed the reaction of lactone 
8 with equimolar b-alanine-nitrile 10 and glycine-nitrile 16G produced nearly equal amounts of 
pantothenic acid nitrile 11 and pantoyl-a-glycyl-nitrile 20 after 6 hours. However, upon further 
incubation an unanticipated equilibration yielded nitrile 11 as the major product (11/20; >5:1) after 
6 days (Fig. 3C). This dynamic reactivity was confirmed by incubating isolated nitrile 20 with b-10 
alanine-nitrile 10, which yielded pantothenic acid nitrile 11 in up to 93% yield (table S10). These 
results demonstrate the reactivity of b-alanine-nitrile 10 markedly favors the synthesis of the 
canonical structure of pantetheine 1 over both shorter and longer homologs in water. 

 

 15 
Fig. 4. Multicomponent syntheses of pantetheine via lactone 8. (A) One-pot multicomponent reaction 
of lactone 8, b-alanine-nitrile 10, and cysteamine 13 yields pantetheine 1 in water. (B) 1H NMR spectra of 
lactone 8 (500 mM), 10 (2 equiv.) and 13 (2 equiv.) in PBS (pH 9, 500 mM) at 20ºC which, (i) after 4 days 
yields 17 (57% from 8); and then (ii) after in-situ (rapid) hydrolysis of 17 at pH 4, yields pantetheine 1 
(57% from 8). For experimental details see Supplementary Pages S64–S66. (C) Single crystal x-ray 20 
structure of pantothenic acid nitrile 11. (D) Aldol-product hydroxypivaldehyde 4 reacts in-situ with HCN 
and b-alanine-nitrile 10 to yield pantoic acid nitrile 23 which undergoes intramolecular g-hydroxyl-
catalyzed interrupted nitrile hydrolysis to yield pantolactone 8. This locks the final carbon atom of pantoic 
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acid’s carbon-framework into lactone 8, whilst retaining chemical activation towards amide-bond 
formation. (E) 1H NMR spectra of 4 (3.1 mM), 10 (6.3 mM) and NaCN (3.4 mM) in PBS (pH 7; 31 mM) 
after: (i) 10 mins, and (ii) 11 days at 20°C, yielding lactone 8 (54% from 4) and pantothenic acid nitrile 11 
(13% from 4). For experimental details see Supplementary Pages S113–S115. 

 5 

One-pot multicomponent synthesis of pantetheine from pantolactone in water  

We next investigated the one-pot multicomponent synthesis of pantetheine 1 (Fig. 4A). Incubating 
lactone 8 (500 mM) with b-alanine-nitrile 10 (2 equiv.) and cysteamine 13 (2 equiv.) yielded 
thiazoline 17 (57%) after 3 days at pH 9 (Fig. 4B). Moreover, incubating lactone 8 with b-alanine-
nitrile 10, cysteamine 13 and glycine-nitrile 16G under the same conditions furnished thiazoline 10 
17 (33%) as the major pantoyl-amide product (fig. S52–S53). During this four-component 
reaction, the rapid reaction of glycine-nitrile 16G with cysteamine 13 suppressed the reaction of 
the a-aminonitrile with lactone 8. This favored the addition of b-alanine-nitrile 10 to lactone 8.  
Remarkably, we also observed cysteamine 13 was released back into solution to drive thiazoline 
17 synthesis. Thiazoline 17 synthesized in these multicomponent reactions was observed to 15 
hydrolyze in near-quantitative yield at neutral or acidic pH (pH 7 – 4) to yield pantetheine 1 (up 
to 57% yield from lactone 8). Our results demonstrate a nitrile-directed multicomponent synthesis 
of pantetheine 1 from lactone 8 in water – albeit at high concentration. However, we suspected 
that further investigation of the role of nitriles in pantoic acid synthesis would resolve the apparent 
need for high reagent concentrations. Therefore, we turned our attention to the origins of pantoic 20 
acid precursors from the aldehydes generated by prebiotic reduction of HCN (7, 12).  

Chemoselective aldol synthesis of hydroxypivaldehyde and pantolactone at neutral pH 
We found that the conversion of formaldehyde 2 and isobutyraldehyde 3 to hydroxypivaldehyde 
4 was highly effective at neutral pH and catalyzed by phosphate (46, 47). For example, incubation 
of 2 (22 mM) and 3 (17 mM) in phosphate buffer solution (PBS) at pH 7 gave hydroxypivaldehyde 25 
4 (94%) after 2 days at 60ºC (fig. S61). To test the selectivity of this aldol reaction, we next 
incubated 2, 3, and another enolizable aldehyde, acetaldehyde 5, at pH 7. We again observed the 
formation of 4 (94%) after 2 days, but now alongside quantitative recovery of acetaldehyde 5 (fig. 
S64). Finally, incubation of 2, 3, acetaldehyde 5 and glycolaldehyde 6 also yielded 
hydroxypivaldehyde 4 as the major aldol product (fig. S67–70, table S25), with excellent recovery 30 
of acetaldehyde 5. Interestingly, partial conversion of glycolaldehyde 6 to dihydroxyacetone – 
which is a C3-sugar precursor of nucleic acids, amino acids, and lipids (7, 12, 35) – was also 
observed (table S25). Subsequent addition of HCN led to in-situ quantitative conversion of 
aldehydes 2-6 to their respective cyanohydrins 21-25 (fig. S67–70), however, continued incubation 
under the same conditions provided a mild one-pot conversion of cyanohydrin 23 to lactone 8 35 
(54% from hydroxypivaldehyde 4) (Fig. 4E, fig. S80). Encouraged by the facile synthesis of 
lactone 8, we next investigated the chemoselectivity required to integrate pantoate and 
proteinogenic a-aminonitrile syntheses (7, 35).  

Differentiation of pantoate from proteinogenic a-aminonitriles and in-situ formation of 
pantoyl-amides 40 

The selective concurrent synthesis of pantoate and proteinogenic a-aminonitriles 16 represents an 
intrinsic challenge because the pantoate precursor, hydroxypivaldehyde 4, must not form an a-
aminonitrile. The aminonitrile of hydroxypivaldehyde 4 would have an a-amine, not the canonical 
pantoate a-hydroxyl moiety. Conversely, at the same time and under the same conditions, amino 
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acid precursors aldehydes 2, 3, 5 and 6 must form a-aminonitriles 16 that possess an a-amine 
moiety necessary for proteinogenic a-peptide synthesis (31, 37). Remarkably, we found incubating 
aldehydes 2-6 under Strecker conditions (7, 35) with cyanide and ammonia led to the complete 
differentiation of peptide and pantoate precursors (fig. S73). Chemoselective proteinogenic a-
aminonitrile 16G, 16V, 16A, and 16S formation was observed, but hydroxypivaldehyde 4 was 5 
crucially excluded from a-aminonitrile synthesis by rapid formation of a-hydroxy-amidine 26. 
This spontaneous differentiation of proteinogenic a-amino acid and pantoate syntheses 
demonstrates the required reactivity to selectively deliver the a-hydroxyl moiety of pantetheine 1.  

Importantly, the differentiation of hydroxypivaldehyde 4 implicated iminolactone 7 as an 
intermediate and suggested a mechanism to overcome the high-concentration requirements for 10 
pantetheine 1 synthesis from lactone 8. We anticipated that HCN addition to a mixture of 
hydroxypivaldehyde 4 and b-alanine-nitrile 10 would initiate a reaction cascade that would 
generate 7, which would then be intercepted by b-alanine-nitrile 10 to yield pantothenic acid nitrile 
11 (Fig. 5). We envisaged that this multicomponent reaction would streamline pantetheine 1 
synthesis by creating new carbon-carbon and amide bonds, as well as bypassing the less 15 
electrophilic lactone 8, in a single step and at low concentration.  
To investigate this hypothesis, we next monitored the reaction of aldehyde 4 and HCN across a 
broad pH range. We observed transient formation of iminolactone 7 between pH 7.5–9.8 (tables 
S15–S21). Furthermore, the multicomponent reaction of aldehyde 4, b-alanine-nitrile 10 and HCN 
furnished pantothenic acid nitrile 11. The optimal yield of 11 was observed between pH 9–9.5 20 
(tables S27–S28), where the optimal formation of iminolactone 7 was also observed. At lower pH 
the synthesis of 11 was slower and more pantolactone 8 was observed. However, pleasingly, nitrile 
11 synthesis was observed across a broad concentration range (1.6–100 mM); for example, 
incubating hydroxypivaldehyde 4 (3.1 mM), b-alanine-nitrile 10 (2 equiv.) and HCN (1.5 equiv.) 
in PBS (pH 9, 31 mM) returned pantothenic acid nitrile 11 in 44% yield (fig. S77). This 25 
demonstrated the enhanced electrophilicity of iminolactone 7 and provides a new mechanism for 
pantoyl-amide bond formation that is effective even at high dilution. 

Next, it was essential to establish that the conditions for a-aminonitrile 16 syntheses were 
compatible with pantothenic acid nitrile 11 formation, and that amidine 26 formation did not block 
synthesis of pantothenic acid nitrile 11 from iminolactone 7.  Surprisingly, the in-situ addition of 30 
b-alanine-nitrile 10 to crude amidine 26 yielded pantothenic acid nitrile 11 (64% from 
hydroxypivaldehyde 4) through intramolecular g-hydroxyl-catalyzed transamidation, even in the 
presence of a large (25 equiv.) excess of ammonia (Fig. 5D & table S28). The subsequent addition 
of cysteamine 13 and hydrolysis of the resulting thiazoline 17 – still in the presence of ammonia – 
resulted in the in-situ conversion of pantothenic acid nitrile 11 to pantetheine 1 (51% from 35 
hydroxypivaldehyde 4; fig. S90). 

Blocking non-biological pantoyl-a-amino acid analogs 
The synthesis of pantothenic acid nitrile 11 via iminolactone 7 suggested an inherent mechanism 
to block the synthesis of (non-canonical) a-homologs by intramolecular (5-exo-dig) cyclization 
(i.e., 27 to 28; Fig. 5).  Therefore, we carried out competition reactions with b-alanine-nitrile 10 40 
and a-aminonitrile 16G in anticipation that pantothenic acid nitrile 11 would emerge as the only 
pantoyl-amide capable of onward reaction with cysteamine 13, and thus would selectively yield 
pantetheine 1. Pleasingly, the reaction of aldehyde 4, b-alanine-nitrile 10, glycine-nitrile 16G, and 
cyanide resulted in a highly chemoselective formation of pantothenic acid nitrile 11 (44% from 
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aldehyde 4). Only a trace yield of aminoimidazole 28 (<4%) was observed (Fig. 5C) and, 
importantly, pantoyl-a-glycine-nitrile 20 was not detected. Under comparable conditions, the 
competition of amino acids (i.e., Gly and 12) not only resulted in poor coupling yields, but also 
favored the synthesis of non-canonical pantoyl-a-glycine 15 (16%) over the canonical pantothenic 
acid 14 (9%) (Fig. 5B). These results demonstrate that the reaction of iminolactone 7 with amino 5 
acids disfavors pantothenic acid 14 synthesis, whereas the reaction of 7 with aminonitriles 
overwhelmingly favors the synthesis of the canonical pantothenic acid nitrile 11. The reaction of 
7 with aminonitriles also irrevocably blocks the synthesis of non-biological pantetheine analogues 
by a mechanism unique to aminonitriles. Therefore, nitrile reactivity provides the selectivity 
essential for pantetheine 1 synthesis by routes that unequivocally account for the chemical basis 10 
of the b-alanyl fragment of pantetheine 1. 

 

 
Fig. 5. Chemoselective multicomponent reaction cascades.  (A) Nitriles (R=CN): Incubating 
hydroxypivaldehyde 4, b-alanine-nitrile 10, glycine-nitrile 16G and HCN selectively yields canonical 15 
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pantothenic acid nitrile 11. a-Homolog 20 synthesis is blocked by cyclization of amidine 27. Incubating 
aldehyde 4, HCN and NH3 yields a,g-dihydroxyamidine 26, which undergoes selective transamidation with 
b-alanine-nitrile 10 to yield canonical pantothenic acid nitrile 11.  Amino acids (R=CO2H): Incubation of 
aldehyde 4, b-alanine 12, glycine Gly and HCN selectively yields non-natural 15, not canonical pantothenic 
acid 14.  1H NMR spectra of: (B) 4 (3.1 mM), 12 (6.3 mM), Gly (6.3 mM) and NaCN (4.7 mM) in PBS 5 
(pH 9, 31 mM) at 20°C after (i) 10 mins and (ii) 8 days, yielding 9 (65%), 15 (16%) and 14 (9%).  (C) 4 
(3.1 mM), 10 (6.2 mM), 16G (6.2 mM) and HCN (4.7 mM) in PBS (pH 9, 31 mM) at 20°C after (i) 10 mins 
and (ii) 3 days, yielding 11 (44%). See fig. S85 for spectra that demonstrate b-alanine-nitrile 10 
outcompetes b-alanine 12 (2:1) in a direct stoichiometric competition. (D) 4 (20 mM), NaCN (30 
mM) and NH3 (500 mM) in PBS (pH 9.5, 500 mM) at 20ºC, after (i) 4.5 hours, yielding 26 (82%), followed 10 
by (ii) the addition of 8 (40 mM) yielding 11 (46% from 4) after 6 days. See fig. S90 for one-pot synthesis 
of pantetheine 1 via 26. 

 

Discussion 
We have discovered a series of reactions that are exclusive to prebiotic nitrile chemistry that 15 
contribute to the synthesis of pantetheine 1, the key functional component of CoA, with 
unprecedented selectivity over non-biological homologs. By querying the chemical relationship of 
pantetheine 1 to Strecker aldehyde precursors of a-peptides, we have discovered the phosphate-
catalyzed reaction of formaldehyde 2 and isobutyraldehyde 3 (the Strecker precursors of Gly and 
Val (7, 12, 35)) yields hydroxypivaldehyde 4 in the first step towards 1. This aldol condensation 20 
is highly effective at low concentration and neutral pH, even within mixtures that include other 
enolizable aldehydes. The reaction of aldol-product 4 with HCN and b-alanine-nitrile 10 
selectively generates pantothenic acid nitrile 11, even in direct competition with a-aminonitriles 
16. No activating agents are required for the synthesis of pantetheine 1 by nitrile chemistry; latent 
nitrile-activation is preinstalled within pantoic acid nitrile 23 and pantothenic acid nitrile 11. 25 
Moreover, pantoyl-amide formation requires no external catalysis because the ideally poised g-
hydroxyl moiety of pantoic acid nitrile 23 is an intramolecular nucleophilic catalyst for amide bond 
formation. The g-hydroxyl of pantoic acid nitrile 23 also blocks a-aminonitrile synthesis and 
provides a highly selective mechanism to differentiate proteinogenic a-aminonitriles from a-
hydroxy-pantoate derivatives. Although pantoic acid nitrile 23 was transformed into pantoic acid 30 
amidine 26 under Strecker conditions (necessary for a-aminonitrile 16 synthesis), the g-hydroxyl-
catalyzed transamidation of ammonia with b-alanine-nitrile 10 yielded pantothenic acid nitrile 11, 
even in the presence of a large excess of ammonia. Collectively, our results suggest that the 
chemical origins of pantetheine 1 are best rationalized through prebiotic nitrile, not carboxylic 
acid, chemistry. 35 

The selective syntheses of pantetheine 1 in water challenges the persistent dogma that, despite it 
being the ‘solvent of life’ (48), water is problematic (or even a ‘poison’) for prebiotic chemistry 
(49). We observed highly effective nitrile-activated amide bond formations in water, even below 
physiological CoA concentrations within modern cells (50). This chemistry not only favors the 
canonical structure of 1 but also closely aligns with previously reported prebiotic pathways to a-40 
peptides, RNA, and lipids (7, 12, 31, 35, 37). Therefore, our results suggest that 1 would have been 
a product of cyanosulfidic reaction pathways prior to the emergence of life on Earth (7, 12). Once 
available, it is simple to envisage how pantetheine 1 could have been deployed at the origins of 
life, for example, as a (nucleotide-coded) catalyst or cofactor to enhance the functional limitations 
of early ribozymes (14, 26, 28) or peptide catalysts (31). This would mirror its essential role in 45 
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augmenting the functional repertoire of enzymes in extant biochemistry (14, 17, 22), and provide 
a mechanism to couple 1 to the evolutionary development of life.  
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