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ABSTRACT 

This paper presents a framework for integrating a discrete mode choice model with agent-based simulation. 
The integrated framework provides a more realistic representation of long-haul freight transport and is 

applied to the real-world scenarios of moving freight from ports to inland destinations via road, rail, and 
inland waterways. It incorporates a mode choice component that captures demand shifts between modes in 
response to different policy and vehicle technology interventions. The objective is to investigate the 
financial and environmental impacts of introducing new vehicle technologies and associated energy sources 
under different future scenarios in a UK multimodal freight system. 

1 INTRODUCTION 

Climate change is one of the most pressing global challenges facing us today. Emissions of Greenhouse 
Gases (GHG) resulting from human activity are the primary driver of global warming. Transportation, 
which meets the movement needs of people and goods, is the most significant contributor to GHG emissions 
globally. GHG emissions from transportation primarily come from burning fossil fuels by different modes 
of transport (e.g., cars, trucks, trains, ships, and airplanes). In 2020, transportation was the largest emission 
sector in the UK; the entire transport sector accounts for about 24 % of the total UK GHG emissions. 

Emissions of moving freight using heavy goods vehicles (HGVs) and vans make up about 35 % of UK 
domestic transport GHG emissions (Department for Transport 2021). Road freight, the backbone of trade 
and commerce, will more than double by 2050 as economic activities increase. Road freight is, thus, a fast-
growing GHG emitter (Haugen et al. 2022; Mulholland et al. 2018; Paddeu and Denby 2020).  

As we are moving closer to the net-zero transition deadline by 2050, delivering effective 
decarbonization strategies for logistics systems is crucial to reducing GHG emissions and addressing 

climate change linked to freight activities. Mckinnon (2016) discussed the challenges and opportunities for 
decarbonizing freight transport, which involves implementing strategies to minimize the carbon footprint 
of freight transport operations. It argues that freight transport will face increasing pressure to decarbonize 
as global trade, economic development, and climate change adaptation create more demand for freight 
movement. Various decarbonization measures have been identified, such as using alternative fuels, 
optimizing delivery routes, transferring freight to greener transport modes, collaborating and sharing 

resources, improving energy efficiency, and enhancing vehicle loading. Achieving deep decarbonization of 
logistics by 2050 will require a combination of these measures and a strong political commitment to 
environmental objectives. 
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Shifting freight to lower carbon intensity modes can be an effective way to reduce the carbon emissions 
associated with logistics (Kaack et al. 2018; Nassar et al. 2023). For example, transporting goods by rail or 
inland waterway freight mode produces lower emissions than transporting them by road haulage. In addition 

to reducing carbon emissions, shifting freight to lower-carbon modes can also help reduce traffic 
congestion, improve air quality, and reduce transportation costs. However, the effectiveness of this strategy 
varies depending on factors such as the distance of the shipment and load factors. Furthermore, while rail 
and waterway transport have a lower environmental impact in transporting goods compared to trucking, 
road haulage remains the dominant freight mode due to the flexibility and convenience of its service 
characteristics.  

There is a strong commitment to enhancing the environmental sustainability of freight transport across 
all modes. The application of new vehicle technologies has the potential to reduce the environmental 
impacts of all freight transport modes. Many technical advancements have been made to vehicle 
technologies. Improving the energy efficiency of vehicles, increasing vehicle carrying capacity, and 
switching to alternative fuels could be effective approaches to reducing the environmental impact of freight 
transport. Switching to low-carbon or zero-carbon alternative fuels can significantly reduce GHG emissions 

relative to conventional fossil fuels (Gómez Vilchez et al. 2022; Van Grinsven et al. 2021). The road freight 
industry has been undergoing rapid advancements in alternative fuel vehicle technologies. For example, 
heavy goods vehicles (HGV) can be powered via renewable electricity or green hydrogen. The application 
of these new vehicle technologies could significantly reduce emissions compared to conventional fossil 
fuel-powered vehicles. 

This paper aims to develop an agent-based model (ABM) to assess the effectiveness of two strategies 

in decarbonizing an inland multimodal freight system that relies on road, rail, and inland waterway (IWW) 
transport. The first strategy involves the adoption of alternative fuel vehicle technologies (i.e., battery 
HGVs and Hydrogen-powered HGVs) in road freight transport. The second strategy considers the use of 
carbon pricing as a means of shifting freight to lower carbon intensity modes.  

The remainder of the paper is structured as follows. Section 2 reviews the relevant literature. Section 3 
describes the model logic, while the data and experiments setup are given in Section 4. Section 5 provides 

a detailed discussion of the simulation results and compares the effectiveness of the two strategies for 
decarbonizing freight transport. The final section summarizes the main findings and suggests directions for 
future research. 

2 LITERATURE REVIEW  

In the freight system, the choice of transport mode can have a significant impact on the environment, and 
the environmental consequences of our transportation choices should be considered. Modal shift to more 

sustainable alternatives, such as rail and waterways with lower environmental impacts (emissions are 
several times less per tonne-km), is one of the most cost-effective ways of reducing transport emissions 
(Nicolet et al. 2022; Pearce and Zdemiroglu 2002). Modal shift could be driven by multiple factors. Kaack 
et al. (2018) examine the literature and data on road, rail, and IWW freight activities on the potential and 
barriers of shifting freight from road to low-carbon alternatives. They found that rail and IWW freight 
transport is much more efficient and less carbon-intensive than road freight, but most countries are 

experiencing growth in road freight. Policies, such as infrastructure investment in rail, internalizing external 
costs of road freights, and subsidies could promote modal shifts from road to low-carbon modes. Arencibia 
et al. (2015) estimated freight shipper preferences using data obtained from a stated preference (SP) survey 
and analyzed the relative importance of factors that could influence modal choices between road and rail in 
domestic freight transport. Important attributes of transport cost, transit time, punctuality, and service 
frequencies, are included in the stated-choice experiment. Regmi and Hanaoka (2015) developed a mode 

choice model using the data from an SP survey. The attributes of travel time, transport cost, and reliability 
are included in the SP experiment. They analyzed modal shifts from road to rail freight in a freight corridor 
and estimated the CO2 emissions reduction from modal shift. Tao et al. (2017) analyzed the mode choice 
behavior of shippers between alternatives (i.e., road, combined road, rail, combined road, and IWW) and 
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calculated mode shares using a random coefficient logit model. Using a bottom-up estimate of CO2 
emissions, reductions were observed because of modal shifts from road to combined road and rail transport 
induced by a subsidy policy in a container transport corridor. Yan et al. (2021) developed a freight transport 

modeling framework in which a discrete choice model is used to estimate mode shares and decide the types 
of alternative fuel vehicles based on the cost of transport modes and associated vehicle types. Energy and 
emissions are also projected with current and future scenarios. The potential of policy, vehicle technology, 
and infrastructure on the modal shares. Different criteria (both quantitative and qualitative) are considered 
in freight modal choice decisions. However, environmental criteria that might influence choice decisions 
are not included as mode choice variables. Emissions are important attributes for decision-makers (e.g., 

shippers). They will not only consider the transport cost and time as primary criteria but explicitly evaluate 
the cost of emitting carbons in their choice decision-making process. The current understanding of how 
emission costs impact transportation mode selection is limited, and there is a need to develop models that 
incorporate emissions as a factor (attribute) in decision-making. 

Many existing freight models are originally developed for passenger transport, for example, the use of 
a four-step travel forecasting approach (with modifications) comprising trip generation, trip distribution, 

modal choice, and traffic assignments. In passenger transport, the integration of mode choice models in 
agent-based simulation has been widely investigated. These integrated models have been used to understand 
the behavior in response to various technology and policy interventions. MATSim is an agent-based 
transport simulation framework that integrates mode choice models to simulate the behavioral response of 
travelers for different future scenarios, including the introduction of carsharing systems and automated 
mobility-on-demand systems (Axhausen 2016; Hörl et al. 2021; Liu et al. 2017). Wang et al. (2022) 

developed an agent-based modeling framework using the Anylogic platform to simulate competition 
between multiple urban automated-mobility-on-demand operators. A mode choice component is 
implemented to capture the behavioral response to different prices (fares). SimMobility, with the 
implementation of behavioral models, investigates the impacts of emerging transportation services and 
infrastructures on people's travel and land use (Adnan et al. 2020; Azevedo et al. 2016; Basu et al. 2021; 
Gopalakrishnan et al. 2020; Nguyen-Phuoc et al. 2023; Zhu et al. 2018).  

SimMobility urban freight transport modeling functionalities have been developed for evaluating 
logistics solutions at a disaggregate level associated with establishments, shipments, and goods vehicles 
(Le et al. 2016; Sakai et al. 2020). MASS-GT is an agent-based modeling framework for urban goods 
transport that could model logistical choices at individual levels (De Bok and Tavasszy 2018). The 
modeling framework has been applied to analyze the impacts of zero-emission vans in the Netherlands (de 
Bok et al. 2022). However, the application of these integrated models to long-haul freight transport has 

been limited due to unique characteristics of freight transport, such as shipment size and weight, mode and 
route selections, and energy consumption and emissions levels. To overcome the limitation, a framework 
is presented for integrating a discrete mode choice model with agent-based long-haul transportation 
simulation. The framework allows for the simulation of domestic long-haul freight transportation, including 
the choice of mode. The proposed framework considers the cost of emissions in the choice decision. This 
integration provides an approach to understanding how demand responds to different policies (e.g., carbon 

cost) and emerging vehicle technology interventions in future scenarios. 
There has been significant development of alternative fuel and vehicle technologies (Gómez Vilchez et 

al. 2022). Hydrogen and electricity are key fuels of relevance for use in road freight. The use of battery 
HGVs and hydrogen-powered HGVs (whose electric motor is powered by fuel cells) with zero tailpipe 
emissions is being considered in business and policy decisions (Cantillo et al. 2022). These alternative fuel 
and vehicle technologies have the potential to provide benefits, including emission reductions and 

profitability for businesses. However, the magnitude of these benefits compared to the use of conventional 
diesel-powered HGVs in the current market application is uncertain. The carbon savings and profitability 
of using alternative fuel and vehicle technologies are important considerations for logistics service 
providers. To address the uncertainty, the developed ABM is used to estimate the carbon and cost impacts 
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of using battery HGVs and hydrogen-powered HGVs in road freight and to describe the modal shift under 
different current and future scenarios with such vehicle technology interventions.  

The main contributions are summarized as follows:  

Firstly, a service attribute of GHG emissions is included in the model choice component. The model 
choice component is integrated into an agent-based framework for inland multimodal freight transport in 
which freight is transported via road, rail, and IWW transport. 

Secondly, by incorporating a mode choice component, this paper conducts simulations to predict modal 
shift resulting from the adoption of battery and hydrogen HGV technology interventions in long-haul 
transportation applications. The analysis also examines how different carbon prices on the selection of 

freight modes with lower carbon intensity.  
Thirdly, this paper estimates the cost and GHG emissions impacts of battery and hydrogen-powered 

HGVs in both current and future scenarios and compares these impacts to those of conventional vehicles. 

3 MODE LOGIC 

Agent-based modeling is an approach to modeling a complex system by describing its constituents (agents) 
and their interaction (Bonabeau 2002; MacAl and North 2010; Macal and North 2014). Each agent can 

make its own decisions to respond to changes in its environment or learn to improve its performance. These 
flexibilities make the agent-based approach suitable for modeling logistics systems in which multiple agents 
(e.g., shippers, carriers, and establishments) interact with each other and with the environment.  

The developed modeling framework is able to simulate the movement of port freight to different inland 
destinations by road, rail, and IWW transport. The choice sets include three alternatives-road, rail, and 
inland waterways. The mode choices were modeled at an aggregate level. The multinomial logit model 

(MNL) allocates freight transport demand in an area over the available transport modes. The probability of 
choosing a specific alternative is calculated based on a multinomial logit model (see Equation (1)) (Samimi 
et al. 2011). The probability of choosing an alternative is assumed to increase monotonically with that 

alternative's systematic utility.  
To reflect the quantified disutility, the generalized cost in Equation (2) is used and mapped into the 

utility space as the systematic part of the utility. In this study, the generalized costs are the direct monetary 
costs of transporting goods, such as transport costs, as well as the influence of other qualitative 

characteristics of the modes, such as travel times and carbon emissions, expressed in monetary terms. Time 
is converted to a monetary value using a value of time, and a carbon price is factored in as a cost for emitting 
GHGs. This allows for the incorporation of the carbon cost component in the generalized cost function, 
explicitly assigning a price to GHG emissions and thereby reflecting the disutility of emissions.   

  

𝐺𝑚𝑔  =  𝐶𝑚  + 𝛼𝑔𝑇𝑚   + 𝐸𝑚  + 𝐴𝑆𝐶                                                     (2)  

 

Where  
𝐺 = generalized costs (Pounds/ton) 
𝐶 = transport costs (Pounds /ton) 
𝑇 = transport time (hour) 

𝛼 = value of time (Pounds /ton*hour) 
𝐸=emission costs (Pounds/ton) 
ASC=alternative specific constant  
 

𝑃𝑚𝑔 =
𝑒𝜇𝐺𝑚𝑔

∑ 𝑒𝜇𝐺𝑚𝑔
𝑚

                                                                         (1) 
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Factors that influence modal shift include transport cost, transport time, reliability, flexibility, service 
frequency, transshipments, and shipment attributes. The MNL model includes three attributes of modes: 
travel cost, travel time, and GHG emissions. Other explanatory factors have not been considered. The ASC 

is used to account for unobserved factors and captures the influence of factors that are not explicitly 
included as attributes. In this study, the ASC improves the model fit to real choices. 

In the system under investigation, ports are considered as the senders. The ports are the starting points 
of shipments, where goods are loaded onto vessels or other modes of transportation for further distribution. 
Warehouses serve as receivers and are the locations where goods are stored. In this ABM, port agents and 
warehouse agents are created. The specific locations and attributes (e.g., cargoes) of the port and 

warehouses are determined accordingly. The port and warehouse agents were connected by road, rail and 
inland waterway networks. The mode-specific routes between a port and a warehouse are established. For 
each pair of origin and destination (OD), mode-specific routes were calculated using shortest route 
algorithms. e.g., when considering the freight train, the length of the rail network connecting the port and 
the nearest location to the warehouse was calculated based on OSM data.  

Disaggregate models capture individual decision-makers' choices, while aggregate models consider 

groups or aggregates of decision-makers within a specific geographic zone. Disaggregate models are less 
commonly used in freight transport due to the limited availability of publicly accessible data, which is often 
considered sensitive and confidential by firms. In our study, we analyze modal share at an aggregate level 
by allocating freight flows across available modes for each OD pair, which is represented by a port and a 
warehouse. By explicitly modeling the location and spatial relationships between the port and warehouse 
agents, the model can provide a more realistic spatial representation. By modeling the freight flow and 

routes between OD pairs, this framework is able to calculate the mode-specific route distance traveled for 
transporting freight (given that load factors are known). 

 

Figure 1: The overall modeling framework.  

The use of different energy sources and vehicle technologies can have a significant impact on transport 
costs and emission costs. For example, battery HGVs powered by renewable energy sources may have 

lower carbon emissions and lower operational costs compared to vehicles powered by fossil fuels. To 
estimate the carbon impacts, we rely on emission data that captures the emissions associated with the 
transportation modes and technologies under consideration. Similarly, operating cost data is utilized to 
assess the financial implications of implementing these vehicle technology interventions in road freight. By 
incorporating data on energy consumption, carbon emissions, and route distance traveled between OD pairs, 
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the developed modeling framework is able to analyze the cost and emissions impacts of adopting battery 
and hydrogen-powered HGVs. 

In the modeling framework, As shown in Figure 1, the calibration uses an optimizer to find model 

parameter values so that its behavior in particular conditions matches a real or known pattern. Calibration 
is an important step in model development as it can help ensure that the model represents the system and 
can provide accurate assessment and useful insights. The model cannot be validated because we simulate 
future scenarios without real-world data, which is a common challenge in modeling future scenarios. 
However, we establish baseline scenarios using diesel-powered vehicles and compare them to scenarios 
involving battery HGVs and hydrogen-powered HGVs in road freight. In this comparison, we aim to assess 

the magnitude of benefits associated with the adoption of battery HGVs and hydrogen-powered HGVs 
relative to the baseline scenarios. 

 

Figure 2: Snapshot of modeling simulation in Anylogic. 

4 EXPERIMENTS SETUP AND INPUT DATA  

This model is applied to the case of the Port of Immingham, its hinterland, and logistics operators who have 
freight flows from the Port of Immingham. The Port of Immingham is one of the largest dry ports in the 
United Kingdom. It is building a dedicated storage facility to keep pace with increased imports and provide 
transit storage for exports. The dry port is an inland intermodal terminal directly connected are directly 
connected by road, rail, and inland waterways to inland destinations (e.g., warehouse locations). The model 

is populated with real data.  
 
• Demand attracted by warehouses is proportional to the total area of the warehouses. The main 

locations for 382 warehouses are in London metropolitan area (see Figure 2), the West Midlands 
(e.g., Birmingham), the Yorkshire and the Humber (e.g., Leeds), and North West England (e.g., 
Greater Manchester). The average warehouse size is about 30187 square meters, and the Total 

demand lifted by tonnage in the port of Immingham is 32.032 million tons. 
• Transportation data: Travel times were then estimated based on the travel distances and average 

travel speeds. The average travel speed for road, rail, and IWW is set to 75 km/h, 32 km/h, and 8 
km/h, respectively. 

• In relation to the value of time (VoT), for road freight, the VoT is 5.28 per tonne hour. For rail 
freight, the VoT is 0.96 per tonne hour. This is significantly lower than the VoT for road freight. 

https://anylogic.help/anylogic/experiments/calibration.html


Wang, Utomo, and Greening 
 

 

For inland waterways transport, the VoT is the lowest among the three modes, at 0.046 per tonne 
hour.  

• Vehicle characteristics: the vehicles for long-haul transportation are typical tractor-trailers (arctics). 

For example, a vehicle has a gross combined vehicle weight of 44 tonnes (with a payload of around 
28 tonnes). They are the largest goods vehicles permitted on UK roads and are used to transport a 
large share of road freight. The annual mileage is 120,000 km. It is assumed that a shipment size 
equals the payload of a standard 44-tonne artic. 

 
Table 1 provides estimates of the current and future WTW CO2e emissions from alternative energy 

sources and vehicle technologies. The WTW emission CO2e covers GHG emissions from the production 
and use of energy sources. The GHG emissions from hydrogen-power or battery HGVs (i.e., electric HGVs) 
are highly dependent on how the electricity or hydrogen is produced. Battery HGVs have the lowest levels 
of WTW GHG emissions both now and in the future.  

Future production of hydrogen from electrolysis could significantly reduce greenhouse gas emissions. 
The emission for hydrogen-powered vehicles becomes lower; a diesel-powered freight train has a lower 

emission than diesel-powered HGVs and diesel-powered barges, and hydrogen-powered HGVs. There are 
significant uncertainties in energy production and vehicle production technologies. Data on current and 
future costs are limited and, to some extent, based on assumptions (Department for Transport 2018). As we 
move into the future, new energy and vehicle production technologies are expected to reduce operating 
costs. The determination of freight rates involves uncertainties and relies on assumptions that take into 
account mode-specific differences. 

The modeling framework was developed using the AnyLogic proprietary platform (see Figure 2), and 
subsequently, the model was recreated using the Java programming language. By developing the model in 
Java, it became possible to customize it according to specific requirements. 

Table 1: Estimates of the current (2020) and future (2030) WTW CO2e emissions and operating costs. 

Modes Road Rail IWW 

Vehicle types 
Diesel-powered 

HGVs 

battery 

HGVs 

hydrogen-

powered 
Train (diesel) Vessel (diesel) 

WTW CO2e emissions in 2020 

(gCO2e/ tonne-km) 
41.14  21.89 36.96 26.5 36.81 

WTW CO2e emissions in 2030  41.142 2.18 7.69 26.5 36.81 

Operating cost in 2020 (£/tonne-

km) 
0.037 0.025 0.031 Not use Not use 

Operating cost in 2030 (£/tonne-

km) 
0.037 0.019 0.023 Not use Not use 

Freight rate (£/tonne-km) 0.150 0.138 0.144 0.05 0.02 

 

5 SIMULATION RESULTS AND DISCUSSION 

5.1 Impacts of Zero-Emission HGVs Interventions 

The first experiment using the ABM aims to test the impacts of adopting battery and hydrogen-powered 
HGVs. The impacts of the vehicle types are determined using the efficiency of the existing technologies 
and the expected efficiency of the technologies in 2030. In the current scenario (in 2020), battery HGVs 

offer a significant advantage in terms of carbon savings compared to hydrogen-powered HGVs. As shown 
in Table 2, the carbon savings achieved by battery HGVs is higher than hydrogen powered HGVs by a 
factor of 4. In the future scenario (in 2030), both battery HGVs and hydrogen-powered HGVs can contribute 
to significant carbon reductions. Specifically, battery HGVs achieve carbon reductions that are slightly 
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higher than the reductions achieved by hydrogen-powered HGVs. It is suggested battery HGVs outperform 
hydrogen-powered HGVs both in terms of carbon savings and monetary benefits because of the low well-
to-wheel emissions and costs of battery HGVs. Moreover, road freight transport that is electrified becomes 

attractive, and demand shifts slightly from rail and inland waterways freight transport to road freight 
transport. 

Table 2: The impact of adopting battery and hydrogen-powered HGVs. 

Mode 

Current 

Demand 

share 

Future 

Demand 

share 

Mode 

Current 

Demand 

share 

Future 

Demand 

share 

Rail (diesel) 6.135 6.072 Rail (diesel) 6.38 6.284 

Road (battery) 89.581 89.689 Road (hydrogen) 89.163 89.327 

Inland waterways 

(diesel) 4.284 4.239 

Inland waterways 

(diesel) 4.457 4.389 

Carbon emissions 

(million tCO2e) 25.116 6.345 
Carbon emissions 

39.427 11.709 

Baseline 

emissions 

(million tCO2e) a 43.365 43.365 

Baseline 

emissions 
43.365 43.365 

Carbon savings 

(million tCO2e) b 18.248 37.020 
Carbon savings 

3.938 31.655 

Monetary 

benefits (million 

pounds) c 107400 107800 

Monetary benefits 

106800 107200 

a) Diesel baseline emissions (million tCO2e); b) Carbon savings in road freight in the scenarios of replacing diesel-powered HGVs 

(million tCO2e ); c) Monetary benefits in road freight = revenue- operating costs 

Table 3: Estimates of WTW carbon emissions for alternative energy sources in the future (2030). 

Demand \Carbon prices 
£0/tC

O2  

£100/t

CO2  

£500/t

CO2  

£1000

/tCO2  

£2000

/tCO2  

£5000

/tCO2 

 

Rail (diesel)  6.142 6.072 5.799 5.468 4.849 3.341 

Road (battery) 89.503 89.689 90.399 91.217 92.642 95.6 

Inland waterways 

(diesel)  
4.355 4.239 3.802 3.315 2.509 1.06 

Carbon savings (million tCO2e) 

in replacement of diesel-

powered HGVs 

36.934 37.020 37.347 37.719 38.354 39.602 

 

Rail (diesel)  6.337 6.284 6.072 5.813 5.316 4.016 

Road (hydrogen) 89.168 89.327 89.942 90.657 91.923 94.686 

Inland waterways 

(diesel)  
4.495 4.389 3.986 3.53 2.762 1.298 

Carbon savings (million tCO2e) 

in replacement of diesel-

powered HGVs 

31.590 31.655 31.905 32.192 32.689 33.708 

 
The second experiment aims to test the impacts of different carbon prices, assuming expected vehicle 

energy efficiencies in 2030. Table 3 shows that as carbon prices rise, demand shifts from rail and inland 
waterways transport, which run on diesel, to the battery and hydrogen-powered HGVs-equipped road 
freight transport. As a result, there is a slight carbon emissions reduction benefit. However, this is far too 
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small to be considered an effective means of reducing future carbon emissions. Moreover, compared with 
rail transport, inland waterways are more sensitive to increases in carbon prices, which discourage freight 
demand from being served via inland waterways transport. One of the main reasons for this could be diesel-

powered freight vessels (barges) emissions are relatively higher than rail transport.  
Simulation results suggest that technological interventions such as battery and hydrogen-powered 

HGVs will have a greater effect than carbon pricing in reducing carbon emissions. That is, carbon price 
increases cannot be the primary way to achieve a low-carbon future but should be considered to incentivize 
the use of low-carbon modes. Efforts to reduce carbon emissions should focus on fundamental system 
changes in energy sources used, vehicle technologies adopted, and their associated energy efficiencies.  

5.2 Detailed Demonstrations of Modal Shares at the Level of Warehouses 

As shown in Figure 3, demand shares for different transportation modes vary between the three warehouses. 
At Warehouse 1, road has the demand share (79.65 %), followed by rail transportation (11.26 %). We found 
that Warehouse 1 has a high IWW share of 9.09 %, indicating high use of inland waterways transport. In 
contrast, Warehouse 5 and 79 have no IWW share and rely on rail and road freight transport. This is because 
the warehouse is located in an area without convenient access to waterways transport. At Warehouse 79, 

road transportation has the highest demand share (97.84 %), with rail transportation accounting for only 
2.16 % of demand. The warehouse is likely located in an area with poor access to rail infrastructure. The 
simulation results show that demand shares for different transportation modes can vary significantly 
between different warehouses, depending on factors such as location, infrastructure, and the types of goods 
being handled.  

The mode share for different warehouses at different locations is likely to be influenced by different 

factors, including the location of the warehouse, services provided, and the quality of transportation 
infrastructure. The demand shares at each warehouse suggest that the availability and quality of 
transportation infrastructure, such as road and rail networks and access to waterways, has a significant 
impact on the transportation choices made by shippers. In such cases, infrastructure could play a more 
significant role than policy incentives in determining the demand shares for different transportation modes.  

   

Warehouse 1: 

Rail share:11.26 % 
Road share:79.65 % 
IWW share:9.09 % 

Warehouse 5: 

Rail share:12.44 % 
Road share:87.56 % 
IWW share:0.00 % 

Warehouse 79: 

Rail share:2.16 % 
Road share:97.84 % 
IWW share:0.00 % 

Figure 3: Mode shares for different warehouses at different locations. 

6 CONCLUSIONS, LIMITATIONS, AND FUTURE DIRECTIONS 

6.1 Conclusions 

An ABM that can describe an inland multimodal freight system was developed. In this model, the freight 
was moved from ports to inland destinations (grouped warehouses) by road, rail, and inland waterways. 
The mode choice decision is made based on the travel cost and time, and carbon cost criteria. This work 
shows that the introduction of electric road freight vehicles will reduce the modal share of other carbon 
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fueled modes and achieve significant carbon reductions. Furthermore, the work shows that carbon pricing 
has minimal effect on modal choice and carbon emission reductions while promoting technological 
innovations associated with vehicle energy efficiencies has a bigger impact on decarbonizations effort. 

Finally, the work has shown that battery HGVs generate a bigger overall benefit and larger carbon reduction 
than the adoption of hydrogen-powered HGVs.  

When planning transportation policies and incentives, it is important to consider the infrastructure 
context of each warehouse location and prioritize investments in transportation infrastructure where 
necessary. By improving access to alternative transportation modes through infrastructure investments, 
policymakers can help to facilitate a more sustainable and efficient freight transportation system. 

6.2 Limitations and future directions 

Developing effective strategies for decarbonizing the inland multimodal freight transport system is full of 
challenges. The limitations of the existing ABM are identified, and future directions are recommended. 

It is assumed that the port and warehouses can be fully connected by rail or inland waterway. In reality, 
for instance, a rail journey always includes a road journey (intermodal). Therefore, in the future, combined 
road-rail transport and combined road-inland waterway transport will be added to the choice set. Second, 

the inland multimodal freight system is modeled at an aggregate level where demand is split without 
considering product specificities. In the future, the modeling framework can be extended to model mode 
choices for individual shipments at a high spatial and temporal resolution. The ABM framework will be 
extended to analyze the share of different vehicle types within a mode, e.g., the share of battery and 
hydrogen-powered HGVs can be determined in road freight. Optimization algorithms will be used to 
determine the share of vehicle types. These techniques will enable us to identify the combination of vehicle 

types that minimizes environmental impact while meeting transportation demand. This will help transport 
planners, fleet operators, and city and port authorities to make the optimal infrastructure investment and the 
optimal decisions for fleet sizes and fleet profiles (e.g., types) in an inland multimodal freight system. Last 
but more importantly, further research is needed to conduct surveys or experiments to gather data on 
decision-makers' preferences towards different transport modes and vehicle technologies. 

To meet the UK emissions target by 2030, increasing the fidelity scale of models such as the one 

developed in this work will be necessary. This will permit the evaluation of more carbon-reducing 
interventions, including land use and operational adaptation, to accelerate decarbonization efforts and 
inform science-based pathways to net zero. The need to rapidly evaluate multiple carbon-reducing 
interventions and combinations of interventions emphasizes the need to develop capacity and capability in 
developing and exercising these models.  

Without these ABMs, removing uncertainty and de-risking will rely on the slow real world, small-scale, 

overly constrained, and costly trials and demonstrations. This will likely stall investment and put the carbon 
reduction commitments beyond reach. 
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