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Abstract—In this letter, we investigate a fluid antenna system
(FAS)-assisted downlink non-orthogonal multiple access (NOMA)
for short-packet communications. The base station (BS) adopts a
single fixed antenna, while both the central user (CU) and the cell-
edge user (CEU) are equipped with a FAS. Each FAS comprises
N flexible positions (also known as ports), linked to N arbitrarily
correlated Rayleigh fading channels. We derive expressions for
the average block error rate (BLER) of the FAS-assisted NOMA
system and provide asymptotic BLER expressions. We determine
that the diversity order for CU and CEU is N , indicating that the
system performance can be considerably improved by increasing
N . Simulation results validate the great performance of FAS.

Index Terms—Block error rate (BLER), flexible-position an-
tenna, fluid antenna system (FAS), non-orthogonal multiple
access (NOMA), short-packet communication.

I. INTRODUCTION

The rapid advances in wireless technologies signal a new
chapter in wireless communications. One technology leading
to this change is non-orthogonal multiple access (NOMA),
which offers improvements in energy and spectral efficiency
[1], [2], [3], [4]. Two users are considered as the implementa-
tion complexity for user pairing is acceptable while delivering
the benefits of NOMA as suggested in [4], [5]. The work on the
downlink NOMA network with more than two users remains
challenging deserves future work to determine its practicality.
Recognizing the pressing need for reduced communication
delay, Polyanskiy et al. introduced the concept of short-packet
communications [6], where the block error rate (BLER) has
become an important performance metric [5], [6], [7].

Besides, there have been some exciting developments in the
field of antenna and radio frequency (RF) technologies. One
innovative idea is to use flexible materials such as liquid metal
to create unique antenna designs. More recently, pixel-based
switchable antennas further provide delay-free reconfiguration
of antennas. These novel designs are embraced in the concept
of fluid antenna system (FAS) which includes all forms of
movable and non-movable flexible-position antennas [8].

In [9], the ergodic capacity for a single-antenna FAS was
first studied while [10] deepened the outage probability anal-
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ysis. Later work in [11] then offered a closed-form expression
that adeptly characterizes the spatial correlation across all the
positions (known as ports), directly linking it to the size of
the fluid antenna. In [12], Khammassi et al. proposed better
models to account for the impact of spatial correlation. Then
[13] revisited the performance analysis of FAS and presented
new results to quantify the diversity order of FAS. Broadening
the scope of FAS applications, Wong et al. also delved into
its potential for multiple access, as elucidated in [14], [15].

Utilizing FAS at mobile devices even with limited space of-
fers a great spatial diversity gain, which matches perfectly with
the principles of short-packet communication. Furthermore,
when compared to the traditional orthogonal multiple access
(OMA) system, combining FAS with NOMA will further
elevate the performance. However, the integration of FAS into
NOMA short-packet systems remains unexplored. To fill this
research gap, this letter delves into exploring the potential of
the FAS-assisted downlink NOMA short-packet system. The
main contributions can be summarized as follows:
• We formulate a FAS-aided downlink NOMA short-packet

system model consisting of a base station (BS), a central
user (CU), and a cell-edge user (CEU). Both CU and
CEU are equipped with fluid antennas, enabling dynamic
repositioning amongst N preset locations (or ports). The
BS transmits short packets of Nc bits to the CU and Ne
bits to the CEU, both with a blocklength of L.

• We theoretically analyze the average BLER at the CU and
the CEU based on the Jake’s model in [13] representing
rich scattering scenarios using both the linear approxima-
tion and Gauss-Chebyshev quadrature. Additionally, we
present the asymptotic expressions for the BLER by using
the first-order Riemann integral approximation.

• The results indicate that the diversity order for both CU
and CEU is N . Consequently, a large N can significantly
improve the system performance.

• We derive the minimum common blocklength at high
SNRs. For comparison, the expressions for the minimum
common blocklength without FAS and the minimum sum
blocklength in OMA systems are derived in closed form.

• The simulation results corroborate the correctness of the
derivations of our theoretical analysis.

II. SYSTEM MODEL

Consider a FAS-assisted downlink NOMA communication
system that includes a BS, a CU, and a CEU. All terminals
have a single antenna. Both CU and CEU use a fluid antenna
to receive signals from the BS while the BS transmits using a
fixed antenna. In this system, the BS transmits packets of Nc
bits with a blocklength of L to the CU and packets of Ne bits
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with the same blocklength to the CEU. The fluid antennas at
the CU and CEU are assumed to always switch their positions
to the optimal position amongst N preset positions within a
linear space of size Wλ, where λ represents the radiation
wavelength. The time delay for port switching is negligible,
when pixel-based switchable antennas are considered [8].

Due to the close proximity of the ports within the FAS, they
exhibit a significant spatial correlation. Relying on the Jake’s
model [13], the spatial correlation between the m-th and n-th
ports can be expressed as

Jm,n = σ2J0

(
2π(m− n)W

N − 1

)
, (1)

where σ2 represents the large-scale fading effect and J0(·)
denotes the zero-order Bessel function of the first kind.

To better investigate the performance of the overall system,
we define the correlation matrix as

J =

J1,1 . . . J1,N

...
. . .

...
JN,1 . . . JN,N

 . (2)

For the elements within J in (2), we assume that Jm,n = Jn,m.
Consequently, leveraging the eigenvalue decomposition, the
matrix J can be decomposed as J = UΛUH , where U is
an N × N matrix with its n-th column, represented as un.
Concurrently, Λ = diag(λ1, . . . , λN ) is an N × N diagonal
matrix, where the n-th diagonal entry corresponds to the
eigenvalue of un. For the sake of analytical convenience,
it is assumed that the eigenvalues in Λ are sequenced in a
descending order, i.e., λ1 ≥ λ2 ≥ · · · ≥ λN .

Concerning the spatial correlation mentioned above, the
complex channel at the n-th port for the CU and CEU, denoted
as g(c)

n and g(e)
n , can be formulated as

g(c)
n =

N∑
m=1

un,m
√
λmωcm, (3)

g(e)
n =

N∑
m=1

un,m
√
λmωem, (4)

where un,m represents the (n,m)-th component of U. Be-
sides, it is assumed that ω(c)

m = a
(c)
m + jb

(c)
m and ω

(e)
m =

a
(e)
m + jb

(e)
m . The terms a

(c)
m , b(c)m , a(e)

m , and b
(e)
m , ∀m are

assumed to be independent and identically distributed (i.i.d.)
Gaussian random variables, each with a mean of zero and a
variance of 1

2 , respectively.
Furthermore, we assume that the employed FAS within both

the CU and the CEU is equipped with a single RF chain.
Consequently, at any given time, only one port of the FAS
can be active for communication with one user. Hence, the
signals received at the n-th port for the CU and the CEU can
be expressed as

y(c)
n =g(c)

n d
− a

2
c

(√
αcPsc +

√
αePse

)
+ z(c)

n , (5)

y(e)
n =g(e)

n d
− a

2
e

(√
αcPsc +

√
αePse

)
+ z(e)

n , (6)

where n ∈ {1, 2, . . . , N}. The terms z(c)
n and z(e)

n denote the
zero-mean complex Gaussian noise at the n-th port with a

variance of δ2. The symbols sc and se represent the infor-
mation symbol transmitted from the BS to the CU and CEU,
respectively. We assume that E[|sc|2] = 1 and E[|se|2] = 1.
The factors αc and αe represent power allocation and satisfy
αc + αe = 1. Also, P denotes the BS transmit power, while
dc and de represent the distances from the BS to the CU and
CEU, respectively, and a is the path loss exponent.

To optimize the system performance, it is assumed that users
can dynamically adjust the fluid antenna to be connected to
the most advantageous port. For the clarity of analysis, the
overall communication performance is assessed based on the
maximum values of g(c)

n and g(e)
n , expressed as∣∣∣g(c)

FAS

∣∣∣ = max
{
|g(c)

1 |, |g
(c)
2 |, . . . , |g

(c)
N |
}
, (7)∣∣∣g(e)

FAS

∣∣∣ = max
{
|g(e)

1 |, |g
(e)
2 |, . . . , |g

(e)
N |
}
. (8)

Upon receiving the signal y(c)
n , the CU prioritizes decoding

the signal se by regarding sc as interference. We can obtain
the signal-to-interference-plus-noise ratio (SINR) for decoding
se at the CU as

γce =
αeρd

−a
c |g

(c)
FAS|2

αcρd
−a
c |g(c)

FAS|2 + 1
, (9)

with ρ = P
δ2 representing the ratio between the transmit power

and noise variance. As given in [6], the BLER for decoding
se at the CU can be approximated as

εce ≈ Ψ(γce, Ne, L) , Q

(
C(γce)−Ne/L√

V (γce)/L

)
, (10)

where Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt, C(γ) = log2(1 + γ), and
V (γ) = (log2 e)

2 · (1 − (1 + γ)−2) denote the Gaussian Q-
function, Shannon capacity formula, and the channel disper-
sion, respectively.

Upon successfully decoding se at the CU, the CU sub-
sequently decodes sc. The instantaneous signal-to-noise ratio
(SNR) for decoding sc can be expressed as

γcc = αcρd
−a
c |g

(c)
FAS|

2. (11)

Consequently, the instantaneous BLER when decoding sc at
the CU can be approximated by

εcc ≈ Ψ(γcc, Nc, L) , Q

(
C(γcc)−Nc/L√

V (γcc)/L

)
. (12)

Therefore, the BLER of decoding sc at the CU is given by

εc = εce + (1− εce)εcc. (13)

For the CEU, after receiving the signal y(e)
n , it decodes se

by treating sc as interference. The instantaneous SINR for
decoding se at the CEU can be represented as

γe =
αeρd

−a
e |g

(e)
FAS|2

αcρd
−a
e |g(e)

FAS|2 + 1
. (14)

According to [6], the BLER for decoding ye at the CEU is
found as

εe ≈ Ψ(γe, Ne, L) , Q

(
C(γe)−Ne/L√

V (γe)/L

)
. (15)



3

III. THEORETICAL ANALYSIS OF AVERAGE BLER

In this section, we will derive the theoretical expression of
the average BLER to decode se at the CEU and that to decode
sc at the CU. The theoretical analysis of the average BLER
to decode sc at the CU is obtained by

E[εc] =E[εcc] + E[εce]− E[εccεce], (16)

where E[εcc] is expressed as

E [εcc] ≈
∫ ∞

0

Ψ(γcc, Nc, L)fγcc(t)dt. (17)

To further derive E [εcc], we first introduce the linear approx-
imation of Ψ(γcc, Nc, L) as [5], [7]

Ψ(γcc, Nc, L)

=


1, γcc ≤ vNc,L,
1
2 − δNc,L

√
L(γcc − βNc,L), vNc,L < γcc < uNc,L,

0, γcc ≥ uNc,L,
(18)

where βNc,L = 2
Nc
L −1, δNc,L = (2π(2

2Nc
L −1))−

1
2 , vNc,L =

βNc,L − 1
2δ
−1
Nc,L

L−
1
2 , and uNc,L = βNc,L + 1

2δ
−1
Nc,L

L−
1
2 .

Substituting (18) into (17), we have

E [εcc] ≈ δNc,L

√
L

∫ uNc,L

vNc,L

Fγcc(τ)dτ, (19)

where Fγcc(τ) is the cumulative distribution function (CDF)
of γcc. However, direct calculation of the integral for Fγcc(τ)
proves to be challenging. To further derive the expression of
E [εcc], we introduce the following lemma.

Lemma 1: Let D = det(J), Pt =
(−Km,n)s

∗
t

s∗t !D , and Pn =

1
2

(
Kn,n

D

)− s̄n
2 −

1
2
[
Γ
(

1+s̄n
2

)
− Γ

(
1+s̄n

2 ,
Kn,nd

a
c τ

αcρD

)]
, the CDF

of γcc is given by

Fγcc(τ) =

s0∑
s1=0

· · ·
sT−1∑
sT =0

g(s∗)

πND

T∏
t=1

Pt

N∏
n=1

Pn, (20)

where T = N(N−1)
2 , and

g(s∗) =
1

2

∑T
t=1 s

∗
t ∑
v∈V

[
T∏
t=1

(
s∗t
vt

)]
(2π)

N
N∏
i=1

1{∆i=0}, (21)

and s̄n =
∑N
i=1 S

∗
n,i+

∑n−1
i=1 S

∗
i,n+1, S∗i,n denotes the (i, n)-

th entry of S∗. Besides, S∗ is given by

S∗ =

0 s∗1 . . . s∗N−1
...

. . .
...

0 . . . s∗T

 , (22)

where s∗t = st − st+1 with sT+1 = 0. Additionally, s0

is a finite constant which must be sufficiently large for the
approximation to be accurate. The index t is defined as
t = n + (m − 1)N − m(m+1)

2 , where m < n. The indices
m and n can be derived from t, such that m is the minimal
integer m′ satisfying the condition

∑m′

i=1(N − i) > t, and
n = t− (m− 1)N + m(m+1)

2 .
Furthermore, v = [v1, . . . , vT ]T and V represents the set of

all possible permutations. The variable ∆i is given by ∆i =

∑N
n=1Gi,n−

∑N
n=1Gn,i−Gi,i. The entry Km,n is the (m,n)-

th element of K, where K is the co-factor of J. Similarly,
Gm,n is the (m,n)-th element of G, which is defined as

G =

0 γ1 . . . γN−1

...
. . .

...
0 . . . γT

 , (23)

where γt = 2vt − s∗t and γt ∈ Z. Here, Γ(·) stands
for the Gamma function, while Γ(a, b) represents the upper
incomplete gamma function.

Proof: See Appendix A.
Following Lemma 1, we can substitute (20) into (19) and

utilize the Gauss-Chebyshev quadrature [16], which yields

E [εcc] ≈
π

2Up

Up∑
p=1

√
1− η2

pR, (24)

where R =
∑s0
s1=0 · · ·

∑sT−1

sT =0
g(s∗)
πND

∏T
t=1 Pt

∏N
n=1 Pn, and

Up represents the complexity-accuracy tradeoff parameters,
ηp = cos

(
(2p−1)

2Up
π
)

, and ypc =
ηp

2δNc,L

√
L

+ βNc,L.
Drawing a parallel, by invoking Lemma 1, when τ ≤ αe

αc
,

we have the CDF of γce given by

Fγce(τ) =

s0∑
s1=0

· · ·
sT−1∑
sT =0

g(s∗)

πND

T∏
t=1

Pt

N∏
n=1

P ′n, (25)

where

P ′n =
1

2

(
Kn, n

D

)− s̄n
2 −

1
2

×
[
Γ

(
1 + s̄n

2

)
− Γ

(
1 + s̄n

2
,

Kn,nd
a
cτ

(αeρ− αcρτ)D

)]
. (26)

Similarly with E [εcc], we have

E[εce] ≈ δ
√
m

∫ u

v

Fγce(τ)dτ, (27)

where δ = (2π(2
2Ne
L − 1))−

1
2 , v = β − 1

2δ
−1L−

1
2 , and β =

2
Ne
L − 1, respectively. Consequently, by substituting (25) into

(27) and assuming Q = g(s∗)
πND

, we obtain

E [εce] ≈
π

2Up

Up∑
p=1

√
1− η2

p ×
s0∑
s1=0

· · ·
sT−1∑
sT =0

Q

T∏
t=1

Pt

N∏
n=1

P ′n,

(28)

where

ype =
ηp

2δNe,L

√
L

+ βNe,L, (29)

for ype ≤ αe

αc
; otherwise, E [εce] = 1.

Utilizing (28) and (24) and following [17], we have the
average BLER at the CU formulated as

E[εc] ≥ max {E[εcc],E[εce]} . (30)

For the derivation of E[εe], when τ < αe

αc
, the CDF of γe

can be expressed as

Fγe(τ) =

s0∑
s1=0

· · ·
sT−1∑
sT =0

S

T∏
t=1

Rt

N∏
n=1

TnUn, (31)
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where Rt =
(−Km,n)s

∗
t

s∗t !D , S = g(s∗)
πND

, Tn = 1
2

(
Kn,n

D

)− s̄n
2 −

1
2

,

and Un = Γ
(

1+s̄n
2

)
− Γ

(
1+s̄n

2 ,
Kn,nd

a
eτ

(αeρ−αcρτ)D

)
. Otherwise,

Fγe(τ) = 1. Similar to E [εce], we have

E [εe] ≈ δNe,L

√
m

∫ uNe,L

vNe,L

Fγe(τ)dτ. (32)

Substituting (28) into (29), we obtain

E [εe] ≈
π

2Up

Up∑
p=1

√
1− η2

p

s0∑
s1=0

· · ·
sT−1∑
sT =0

S

T∏
t=1

Rt

N∏
n=1

TnUn,

(33)

for ype < αe

αc
; otherwise, E [εe] = 1.

IV. ASYMPTOTIC ANALYSIS

From [13], the CDF of |g(c)
FAS| and |g(e)

FAS| at high SNR is
given by

F|g(c)
FAS| or |g(e)

FAS |
(x) =

1

D
x2N + o

(
1

ρN

)
. (34)

Consequently, by using the first-order Riemann integral ap-
proximation ∫ b

a

f(τ)dτ =
b− a

2
f

(
b+ a

2

)
, (35)

the asymptotic expression of E [εcc], E [εce] and E [εe] for high
SNR can be approximated as

E [εcc] ≈
1

D

(
dac
αcρ

βNc,L

)N
, (36)

E [εce] ≈
1

D

(
dacβNe,L

αeρ− αcρβNe,L

)N
, (37)

E [εe] ≈
1

D

(
daeβNe,L

αeρ− αcρβNe,L

)N
, (38)

for βNe,L ≤ αe

αc
; otherwise, E [εce] = 1 and E [εe] = 1.

Remark 1: As we can see from the expressions above, we
have the observation that the diversity order for both the CU
and the CEU is directly dictated by N . This insight suggests
that increasing N can play a significant role in enhancing the
overall performance and robustness of the system.

V. BLOCKLENGTH OPTIMIZATION AT HIGH SNR

Given the asymptotic expression of E [εcc], E [εce] and E [εe]
for high SNR, we aim to obtain the minimum common block-
length to improve the communication efficiency in this section.
To this end, by assuming the average reliability constraints of
the CU and the CEU as ε′c and ε′e, respectively, we formulate
the optimization problem as

P : min
αc,αe

L∗ = Ω (αc, αe)

s.t. E [εc]≤ ε′c,
E [εe]≤ ε′e,

0 < αc< 1,
0 < αe< 1,
αc + αe= 1.

(39)

As αe = 1−αc, and Q(x) is a decreasing function of x, (39)
can be transformed as

P : min
αc

L∗ = Ω (αc)

s.t. E [εc]= ε′c,
E [εe]= ε′e,

0 < αc< 1.

(40)

By substituting (38) into (40), i.e., E [εe] = ε′e we can attain
the minimum blocklength Le for the CEU as

Le ≈
Ne

log2

(
1+d−a

e ρ N
√
Dε′e

1+αcd
−a
e ρ N
√
Dε′e

) . (41)

Similarly, by combining (30), (36), (37), and E [εc] = ε′c, E[εc]
can be approximated as

E[εc] = ε′c ≈ max

{
1

D

(
dac
αcρ

βNc,L

)N
,

(
dc
de

)aN
ε′e

}
.

(42)

Hence, the minimum blocklength Lc for the CU is given by

Lc ≈
Nc

log2

(
1 + αcρd

−a
c

N
√
Dε′c

) . (43)

To solve (40), we introduce the following lemma.
Lemma 2: The optimal power allocation coefficient α∗c can

be solved under the condition that Le = Lc.
Proof: The optimal blocklength L∗, meeting user reliability

constraints, is given by L∗ = min(max(Lc, Le)). Since ∂Lc

∂αc
<

0 (implying Lc decreases with αc) and ∂Le

∂αc
> 0 (indicating

Le increases with αc), the optimal α∗c minimizing L∗ is found
where Lc = Le. This has completed the proof.

Accordingly, the optimal power allocation coefficient α∗c at
high SNR can be approximated as

α∗c ≈

(
dac

ρ N
√
ε′cD

) Ne
Ne+Nc

. (44)

By substituting (44) into (41), we can approximate the mini-
mum common blocklength as

L∗ ≈ Nc

log2

(
1 + α∗cρd

−a
c

N
√
Dε′c

) . (45)

To evaluate the transmission gain offered by the proposed
systems, we will give the expressions of the minimum com-
mon blocklength without FAS and the minimum sum block-
length in OMA systems as follows.

In the case without FAS, the optimal power allocation
coefficient ᾱ∗c at high SNR without FAS is approximated as

ᾱ∗c ≈
(
dac
ρε′c

) Ne
Ne+Nc

. (46)

Accordingly, the minimum common blocklength without FAS
is approximated as

L̄∗ ≈ Nc

log2

(
1 + ᾱ∗cρd

−a
c ε′c

) . (47)
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Fig. 1: Average BLER versus ρ, Parameters: L = 100, Nc =
300 bits, Ne = 100 bits, {N = 2,W = 5} or {N = 3,W =
10}, αc = 0.1, αe = 0.9.

In the case of OMA systems, the minimum sum blocklength
L̂∗ is the summation of L̂c and L̂e, where L̂c and L̂e are the
minimum blocklength for CU and CEU in OMA, respectively.
Similarly, at high SNR, L̂c and L̂e is approximated as

L̂e ≈
Ne

log2

(
1 + d−ae ρ N

√
Dε′e

) , (48)

L̂c ≈
Nc

log2

(
1 + d−ac ρ N

√
Dε′c

) . (49)

Thus, the minimum sum blocklength L̂∗ is given by

L̂∗ ≈ Ne

log2

(
1 + d−ae ρ N

√
Dε′e

) +
Nc

log2

(
1 + d−ac ρ N

√
Dε′c

) .
(50)

VI. NUMERICAL RESULTS

Here, we provide numerical results to validate the accuracy
of the analytically derived BLERs. For our simulations, we
adopt the following parameters: dc = 5 m, de = 10 m, a =
3.9, and Up = 10. It is imperative to highlight that as we
increase the value of Up, our results show even better accuracy.
We set the blocklength to L = 100, and the respective number
of data bits allocated for CU and CEU are Nc = 300 bits and
Ne = 100 bits, following the setup suggested by [17]. For
each simulated result, we average over 105 randomly generated
channel realizations to compute the average BLERs.

In Fig. 1, the relationship between the average BLER and
SNR ρ is depicted for both CU and CEU under various
parameters. We have set the power allocation coefficients
to αc = 0.1 and αe = 0.9 [17], with either N = 2 or
N = 3. “CU, Simul.”, “CU, Theo.”, and “CU, Asymp.”
represent the simulated, theoretical, and asymptotic average
BLER outcomes for CU. Similarly, “CEU, Simul.”, “CEU,
Theo.”, and “CEU, Asymp.” denote the related results for
CEU. For comparison, we also depict the simulated average
BLER for CU and CEU in a single antenna setup without
FAS, labeled as “CU, SISO, Simul.” and “CEU, SISO, Simul.”.
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Fig. 2: Average BLER versus αc, Parameters: L = 100, Nc =
300 bits, Ne = 100 bits, ρ = 50 dB, {N = 2,W = 5} or
{N = 3,W = 10}.
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Fig. 3: Minimum Blocklength versus αc, Parameters: Nc =
300 bits, Ne = 100 bits, N = 2,W = 5, ρ = 80 dB, ε′c =
10−4 and ε′e = 10−3.

From Fig. 1, it is seen that as SNR ρ increases, there is a
remarkable decline in the average BLER. Also, the theoretical
lines closely match the simulated results. A comparison with
the non-FAS highlights the improved performance of the FAS-
assisted NOMA short-packet system.

In Fig. 2, the average BLER is shown as a function of αc
for a fixed ρ = 50 dB and N = 3. The results in Fig. 2
demonstrate the consistency between the theoretical analysis
and the simulated outcomes for the average BLERs of both CU
and CEU, confirming the robustness of our proposed model.

In Fig. 3, we present the minimum common blocklength
for both the CU and CEU across varying power allocation
coefficients, denoted as αc. It is observed that Lc decreases
with an increase in αc, whereas Le exhibits an opposite trend,
increasing as αc rises. Notably, the optimal power allocation
coefficient α∗c , as derived from equation (45), corresponds to
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Fig. 4: Minimum Blocklength versus ρ, Parameters: Nc =
300 bits, Ne = 100 bits, N = 2,W = 5, ε′c = 10−4 and
ε′e = 10−3.

the point where Lc = Le.
In Fig. 4, we compare the minimum sum blocklength of

NOMA with those of systems without FAS and of OMA. It
is observed that the minimum blocklength L∗ in NOMA is
significantly lower than L̄∗ in the system without FAS and
L̂∗ in OMA. Specifically, the transmission gain attributable to
FAS is substantially greater than that achievable through the
NOMA scheme.

Remark 2: Given the specific modulation scheme and the
channel coding, the simulation results of the average BLER
give the BLER lower bound. Also, the actual coding and
modulation schemes are not included here.

VII. CONCLUSION

This letter derived the average BLER of the FAS-assisted
downlink NOMA short-packet communication system. Nu-
merical results showed that the average BLERs of both the
CU and CEU are nearly identical. Moreover, the FAS-assisted
NOMA short-packet system outperforms its non-FAS counter-
part, demonstrating great performance enhancement.

VIII. APPENDIX A

The joint CDF of |gc1|, |gc2|,. . . ,|gcN | is given by [13]

F |gc1|,|gc2|,...,|gcN |(r1, r2, . . . , rN )

=

s0∑
s1=0

s1∑
s2=0

· · ·
sT−1∑
sT =0

g(s∗)

πN det(J)

T∏
t=1

(−Km,n)s
∗
t

s∗t ! det(J)

×
N∏
n=1

1

2

(
Kn,n

det(J)

)− s̄n
2 −

1
2

×
[
Γ

(
1 + s̄n

2

)
− Γ

(
1 + s̄n

2
,
Kn,nr

2
n

det(J)

)]
. (51)

With the joint cdf of |gc1|, |gc2|,. . . ,|gcN |, we use the following
expression to compute the CDF of γcc as

Fγcc(τ) = Pr (γcc < τ) . (52)

Adding (11) into (52), we have

Fγcc(τ) = Pr

(
|g(c)

FAS| <

√
dacτ

αcρ

)

= Pr

(
|gc1| <

√
dacτ

αcρ
, . . . , |gcN | <

√
dacτ

αcρ

)
. (53)

The CDF expression can be found by substituting r1 = r2 =

· · · = rN =
√

dac τ
αcρ

into the joint CDF (51), which completes
the proof.
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