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Abstract. Extending an earlier result for real matrices we show
that multiple eigenvalues of a complex matrix lie in a reduced Ger-
shgorin disk. One consequence is a slightly better estimate in the
real case. Another one is a geometric application. Further re-
sults of a similar type are given for normal and almost symmetric
matrices.

1. Introduction

Gershgorin’s classic result [9] (see [12] as well) has been a major tool
to estimate the eigenvalues of an n×n (complex) matrix A = (ai,j)

n
i,j=1

for the last 90 years. It says that if λ is an eigenvalue of A, then there
is i ∈ [n] := {1, . . . , n} such that

|ai,i − λ| ⩽
∑
j ̸=i

|ai,j|.

In other words λ lies in the Gershgorin disk D(ai,i, Ri) in the complex
plane for some i ∈ [n], where ai,i is the centre, and Ri =

∑
j ̸=i |ai,j| is

the radius of the disk. Equivalently, every eigenvalue λ of A satisfies

(1.1) λ ∈
n⋃

i=1

D(ai,i, Ri).

In other words λ /∈
⋃n

i=1D(ai,i, Ri) implies that rank(A − λI) = n,
where I stands for the n× n unit matrix.

In particular, if

(1.2) |ai,i| >
∑
j ̸=i

|ai,j| for every i ∈ [n],

then 0 /∈
⋃n

i=1D(ai,i, Ri) and so the matrix is not singular. Matri-
ces satisfying (1.2) are called diagonally dominant matrices. This is
a classical application of Gershgorin’s theorem: diagonally dominant
matrices have full rank, that is, zero is not an eigenvalue because no
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Gershgorin disk contains the origin. A good source of information on
Gershgorin’s theorem is the excellent book by R.Varga [12]. For more
recent extensions and generalizations of Gershgorin’s theorem see for
instance Alon [2] and Alon and Solymosi [3].

Our main result is an extension or strengthening of Gershgorin’s
theorem for eigenvalues with multiplicity two or more.

Theorem 1.1. Let A be an n× n complex matrix and λ be a complex
number. If there are ci ∈ C satisfying the inequality

(1.3) |ai,i − ci − λ| >
∑
i ̸=j

|ai,j − ci| for all i ∈ [n],

then rank (A− λI) ⩾ n− 1.

The relation to Gershgorin disks can be seen as follows. Fix the
numbers ci satisfying (1.3) (if they exist) and define ρi =

∑
i ̸=j |ai,j−ci|

for i ∈ [n]. Theorem 1.1 states then, in a form analogous to (1.1), that
if λ is an eigenvalue of A with (algebraic) multiplicity at least two, then
λ ∈

⋃n
i=1D(ai,i − ci, ρi).

2. Earlier results

By definition, the usual or algebraic multiplicity of an eigenvalue
λ is k ⩾ 1 if rank (A − λI) = n − k. The geometric multiplicity
of an eigenvalue λ is defined as the dimension of the eigensubspace
corresponding to λ. It is clear that the geometric multiplicity is never
larger than the algebraic one.

Under some special conditions, the Gershgorin bound has recently
been improved for eigenvalues with geometric multiplicity two or more.
This is a result Bárány and Solymosi [4] followed by Hall and Marsli
[10]. Assume A is an n×n real matrix and let ti denote the median of
the numbers ai,1, . . . , ai,i−1, 0, ai,i+1, . . . , ai,n (here ai,i is replaced by 0)
and set ri = |ti|+

∑
j ̸=i |ai,j−ti|. It is easy to see (check Section 3 for an

argument) that both ti and ri can be determined explicitly. We note
that in statistics the quantity |ai,j − ti| is called the deviation of the
sample ai,1, . . . , ai,n at ai,j and so ri would be the sum of the deviations,
cf [11].

The following result is implicit in [4]; see the inequality in the last
lines of page 3 there. A detailed proof appears in Hall and Marsli [10].

Theorem 2.1. Assume λ is an eigenvalue of the real matrix A whose
geometric multiplicity is at least 2. Then λ ∈

⋃n
i=1 D(ai,i, ri).
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A similar result was proved much earlier, in 1954, by Ky Fan and
Hoffman [8]. They again require geometric multiplicity, but allow (geo-
metric) multiplicity higher than 2 and the corresponding radius is given
in different terms. They say that it was Hadamard who discovered the
basic case of Gershgorin’s theorem, namely that condition (1.1) implies
rankA = n.

We remark here that higher multiplicity might not guarantee a smaller
radius in Theorem 2.1. This is shown by Jn, the n× n all one matrix,
because the zero eigenvalue of Jn has (algebraic and geometric) multi-
plicity n − 1 and still, it lies on the boundary of the disk with radius
ri = 1 with center ai,i = 1.

Our main result, Theorem 1.1, extends Theorem 2.1 to complex ma-
trices and, simultaneously, gets rid of the condition on geometric mul-
tiplicity. The proof uses Gershgorin’s original theorem and is fairly
simple. It also gives a stronger result (Corollary 3.1 below) in the real
case. Another target is the extension of Theorem 2.1 in the real case by
replacing the smaller Gershgorin disks with slightly larger disks when
the underlying matrix is normal, and when it is almost symmetric, see
Sections 7 and 8. For instance for normal matrices (the definition is
given in Sections 7) we have the following result where ri is the same
as in Theorem 2.1.

Theorem 2.2. Assume λ and µ are distinct eigenvalues of a real and
normal n × n matrix A, n ⩾ 3. Then both λ and µ lie in the disk
D(ai,i, ρi) for some i ∈ [n] where ρi = ri +

√
n|λ− µ|.

Checking whether condition (1.3) holds is fairly easy in the real case
as we shall see in Section 5. The complex case is more involved and we
give some comments on it at the end of that section.

3. The real case

Assume now that A is a real n × n matrix. For all i ∈ [n] let t∗i
denote the median of the numbers ai,1, . . . , ai,i−1, ai,i+1, . . . , ai,n and set
r∗i =

∑
j ̸=i |ai,j − t∗i |. Theorem 1.1 when applied to the real matrix A

gives the following result.

Corollary 3.1. Assume A is a real n×n matrix. If λ /∈
⋃n

i=1D(ai,i, r
∗
i ),

then rank (A− λI) ⩾ n− 1. In other words, if λ is an eigenvalue of A
with algebraic multiplicity two or more, then λ ∈

⋃n
i=1D(ai,i, r

∗
i ).

This is a stronger version of Theorem 2.1 for two reasons. The first
is that λ is a usual (algebraic) eigenvalue of A. The second is that
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D(ai,i, r
∗
i ) ⊂ D(ai,i, ri) because these two disks have the same centre

and

(3.1) r∗i ⩽ ri.

The simple proof is in Section 5.

In general, bounding the rank is important in linear algebra, such
bounds have various applications in different parts of mathematics.
There are nice examples of applications to combinatorics in Alon’s clas-
sical papers [1, 2] that provide rank bounds for real matrices where the
diagonal elements are larger than other entries in their row, but not
large enough for a direct application of Gershgorin’s theorem. In Sec-
tion 6 we give a geometric application of Theorem 1.1 or rather of its
special case formulated as Lemma 4.1 in the next section.

4. Proof of Theorem 1.1

We begin with a simple reduction. When λ = 0 Theorem 1.1 takes
the following form.

Lemma 4.1. Let A be an n × n complex matrix. Assume there are
numbers ci ∈ C satisfying the inequality

(4.1) |ai,i − ci| >
∑
i ̸=j

|ai,j − ci|,

for all i ∈ [n]. Then rankA ⩾ n− 1. □

The lemma implies the general case by applying it to the matrix
A− λI. Indeed, the diagonal entries of this matrix are ai,i − λ and the
off-diagonal ones are simply ai,j so condition (1.3) for A is the same as
condition (4.1) for A− λI.

The proof of the lemma is simple and uses diagonally dominant ma-
trices. Let C be the matrix whose every entry in row i is ci for i ∈ [n].
Then rankC ⩽ 1 clearly. Setting D = A − C, condition (4.1) says
exactly that D is a diagonally dominant matrix. The original Gersh-
gorin theorem shows then that rankD = n. As the rank is subadditive,
rankD = rank (A−C) ⩽ rankA+ rankC ⩽ rankA+ 1 implying that
rankA ⩾ rankD − 1 = n− 1. □

We note that when condition (1.3) holds for ci = 0 we get back
Gershgorin’s circle theorem because then C is the zero matrix that has
rank zero.

Remark. One can go one step further. Define C as above (with
parameters ci) and let E be the n×n complex matrix with every entry
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in its jth column equal to ej. We define D = A− C −E, so the entry
i, j of D is ai,j − ci − ej. Again, if the parameters ci, ej can be chosen
so that D is diagonally dominated, then rankA ⩾ d− 2.

5. Choosing ci in the real case

Assume A is a real n × n matrix and let bi,1 ⩽ . . . ⩽ bi,n−1 be the
increasing rearrangement of the n − 1 numbers ai,1, . . . , ai,n where ai,i
is missing. The function f(t) =

∑
i ̸=j |ai,j − t| is piecewise linear and

convex. It attains its minimum at the median of the numbers bi,j. This
median is the single point t∗i := bi,n/2 when n is even and can be taken
for any point of the middle interval J := [bi,(n−1)/2, bi,(n+1)/2] when n is
odd. We remark that in this case, r∗i =

∑
j ̸=i |ai,j − t∗i | is the same no

matter what t ∈ J is chosen for the median. Recall that ti is the median
of the numbers 0, bi,1 ⩽ . . . ⩽ bi,n−1 and ri = |ti|+

∑
j ̸=i |ai,j − ti|.

Proof of the inequality (3.1). Assume first that n is even. Then
t∗i = bi,n/2 and ti, the median of the numbers 0, bi,1 ⩽ . . . ⩽ bi,n−1, is an
arbitrary element of the middle interval J . It is easy to see that one
endpoint of J is equal to t∗i (no matter where 0 is). So ti can be taken
equal to t∗i , and then ri = |ti|+

∑
j ̸=i |ai,j − ti| = |ti|+ r∗i ⩾ r∗i , indeed.

When n is odd, J is an interval and any point of J can be taken for
t∗i . After adding 0 to the sequence bi,1 ⩽ . . . ⩽ bi,n−1, the median, ti,
is going to be an endpoint of J as one can check directly. So ti = t∗i
again and r∗i ⩽ ri follows the same way as before. □

For the application of Theorem 1.1 one has to decide if suitable ci
values exist or not. This is fairly easy for real matrices as explained
below.

Claim 5.1. In the real case condition (1.3) is satisfied by some ci if
and only if it is satisfied by ci = t∗i when n is even and by one of the
endpoints of J when n is odd.

Proof. One direction is easy: there is nothing to check when (1.3)
is satisfied at ci = t∗i or when it is satisfied by one of the endpoints of
J .

For the other direction assume first that n is even and that condition
(1.3) is not satisfied at t∗i , that is |ai,i − t∗i − λ| ⩽ f(t∗i ). The function
g(t) = |t − t∗i | + f(t∗i ) is a translated copy of the function t → |t|
and |ai,i − t − λ| ⩽ g(t) for all t follows from |ai,i − t∗i − λ| ⩽ f(t∗i ).
Moreover g(t) has slope +1 for t > t∗i and slope −1 for t < t∗i , while
the slope of f(t) is at least 1 for t > t∗i and at most −1 for t < t∗i ; see
Figure 1 left. Then g(t) ⩽ f(t) for all t ∈ R because g(t∗i ) = f(t∗i ) and
|ai,i − λ− t| ⩽ f(t) for all t follows.
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f(t)
g(t)

|ai,i − λ− t|

t− t+

t0

f(t)

g(t)

|ai,i − λ− t|

t∗i

Figure 1. The functions f(t), g(t) and |ai,i − λ− t|.

The case of odd n is similar. For simpler notation set J = [t−, t+]
and t0 =

1
2
(t− + t+). Suppose that (1.3) is not satisfied at t = t− and

at t = t+. Observe that f(t−) = f(t+). Setting g(t) = |t− t0|+f(t+)−
1
2
(t+ − t−) we see that g(t−) = f(t−) and g(t+) = f(t+), see Figure 1

right. Then |ai,i − λ − t| ⩽ g(t) for all t because this inequality holds
for t = t+ and t = t−. Next one shows that g(t) ⩽ f(t) for all t ∈ R.
This holds because for t > t+ the slope of g(t) is 1 and the slope of f(t)
is at least one and for t < t− the slope of g(t) is −1 and that of f(t)
is at most −1. Moreover f(t) is the constant f(t+) = f(t−) for t ∈ J ,
and there g(t) is below this constant. □

So in the real case in order to check whether condition (1.3) holds
and to find the suitable cis one has to compare the minimum of f(t)
with the value of |ai,i − λ− t| at one or two well-defined points.

Finding ci in the complex case is a different task. We have to decide
if the function t → |ai,i− t| is below the function t →

∑
i ̸=j |ai,j − t| for

all complex numbers t or not. One can check if this holds when t = ai,j
for all j ∈ [n]. At every other t ∈ C both functions are differentiable
so one could, in principle, decide if the maximum of the function

|ai,i − t| −
∑
i ̸=j

|ai,j − t|

is positive for any fixed i ∈ [n] or not. As the real case indicates,
a good candidate for ci is where the function f(t) =

∑
j ̸=i |ai,j − t|

attains its minimum on t ∈ C. This point can be determined by convex
programming. We remark without proof that argmin f(t) is a single
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point unless all the points ai,j (j ̸= i) are collinear. The latter case is
covered by Claim 5.1.

6. A geometric application

We show a geometric application of Lemma 4.1 which is similar to an
example of Alon [2] and of Bukh and Cox [5]. The unit ℓ1-ball in Rd is
the convex hull of the 2d points ±ei, i.e., the collection of x ∈ Rd such
that ∥x∥1 ≤ 1. Here ei denotes the vector with a 1 in the ith coordinate
and 0’s elsewhere. The Euclidean distance between ei and −ei is 2
(for all i), and the distance between two other vertices is exactly

√
2.

What happens if we relax the distance constraints a bit? What is the
maximum number of point pairs, (pi, qi) in Rd, to be denoted by k, such
that (pi − qi)

2 = 4 for every i ∈ [k] and for every pair i, j ∈ [k], i ̸= j
we have

|(pi − qj)
2 − 2| ≤ ε, |(pi − pj)

2 − 2| ≤ ε, |(qi − qj)
2 − 2| ≤ ε.

The answer is that there are at most two extra point pairs if ε is small
enough. More precisely

Claim 6.1. If ε < 2/(3d+ 5), then k ≤ d+ 2.

Proof. Assume that k > d + 2 and consider the first d + 3 pairs
(pi, qi). The (d+ 2)× (d+ 2) matrix M is defined by the dot products
mi,j = (pi − p1) · (qj − p1), for all 2 ≤ i, j ≤ d+ 3. The rank of M is at
most d. The identity (pi−p1)

2+(qj−p1)
2−(pi−qj)

2 = 2(pi−p1)·(qj−p1)
(the cosine theorem in trigonometry) and the conditions imply that

(2−ε)+(2−ε)−(2+ε) ⩽ 2(pi−p1)·(qj−p1) ⩽ (2+ε)+(2+ε)−(2−ε).

Consequently

|mi,j − 1| ⩽ 3

2
ε for i ̸= j and |mi,i − 1| ⩾ 1− ε for 2 ⩽ i ⩽ d+ 3.

We check that Lemma 4.1 applies now with ci = 1 for all i = 2, 3, . . . , d+
3. Indeed |mi,i − ci| ⩾ 1 − ε and

∑
j ̸=i |mi,j − ci| ⩽ (d + 1)3

2
ε when

i ̸= j. Thus the inequality |mi,i− ci| >
∑

j ̸=i |mi,j − ci| follows from the

condition ε < 2/(3d + 5) via a simple computation. By Lemma 4.1,
rankM ⩾ d+2−1 = d+1, contradicting the fact that rankM ⩽ d. □

The following construction shows that the result in Claim 6.1 is close
to being sharp. Let us choose a d such that there is a Hadamard matrix,
Hn of order n = d+ 2. The row vectors of Hn and −Hn form a scaled
and rotated ℓ1 ball in Rn. The pointset we are going to consider in
Rd consists of the projection of the 2n row vectors ± 1√

d
Hn by deleting

the last two coordinates of every row. The squared distance between
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non-antipodal points is between 2−4/d and 2+4/d while the distance
between the d+ 2 antipodal points is exactly 2.

One can relax the condition (pi − qi)
2 = 4 to |(pi − qi)

2 − 4| ≤ ε. In
this case, the proof goes along the same steps as above and gives that
for ε < 2/(3d + 6) the maximal number of such pi, qi pairs is at most
d+ 2. We omit the details.

7. Proof of Theorem 2.2

Here we show that if two eigenvalues of a real and normal matrix are
close, then both of them lie in a smaller Gershgorin disk. A matrix is
normal if its eigenvectors belonging to distinct eigenvalues are orthog-
onal. For instance, a symmetric and real matrix is always normal. The
proof method of Theorem 1.1 does not seem to work here and we go
back to the original approach (from [4]) that gave Theorem 2.1.

Proof of Theorem 2.2. Recall that here ri is the same as in Theo-
rem 2.1. Let A be a normal, real, n × n matrix. Let v = (v1, . . . , vn)
resp. w = (w1, . . . , wn) be the eigenvectors corresponding to λ and µ
where vi, wj ∈ C. As n ⩾ 3 there are α, β ∈ C, such that

n∑
i=1

αvi + βwi = 0,

and the largest coordinate is one, i.e. |αvj + βwj| ≤ 1 for any j ∈ [n]
and αvi + βwi = 1 for some (from now on fixed) i ∈ [n].

Let u = αv + βw. Then Au = µαv + λβw and

ai,1u1 + ai,2u2 . . .+ ai,i + . . .+ ai,nun = µαvi + λβwi = µ+ (λ− µ)βwi

because ui = 1. Set S = ai,1u1 + ai,2u2 . . . + ai,i + . . . + ai,nun − ai,i.
Then

|µ− ai,i| ⩽ |S|+ |λ− µ||βwi|.
Bounding S comes from Theorem 2 in [4] and, in a slightly more general
form, from Lemma 2.4 of [10].

Lemma 7.1. |S| ⩽ ri.

The proof is the same as in [4] and we present it at the end of this
section.

We bound the error term |βwi| using that A is normal. The two
eigenvectors are orthogonal, so we have

n ≥ |u|2 = |αv|2 + |βw|2,
which implies that |βwi| ≤

√
n. □
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The proof of Lemma 7.1 is simple.

S = ai,1u1 + . . .+ ai,i−1ui−1 + 0ui + ai,i+1ui+1 + . . .+ ai,nun

= (ai,1 − t)u1 + . . .+ (ai,i−1 − t)ui−1 +

+(0− t)ui + (ai,i+1 − t)ui+1 + . . .+ (ai,n − t)un

for every t ∈ R because
∑

ui = 0. As |uj| ⩽ 1 for all j ∈ [n] this
implies that

|S| ⩽ |ai,1 − t|+ . . .+ |ai,i−1 − t|+ |0− t|+ |ai,i+1 − t|+ . . .+ |ai,n − t|.
As we have seen the minimum of the function t → |ai,1−t|+. . .+|ai,n−t|
is reached on the median of the numbers ai,1, . . . , ai,i−1, 0, ai,i+1, . . . , ai,n.
As we have seen, the median is ti and the minimum is ri. □

We only have numerical examples showing that the estimate in The-
orem 2.2 is not too weak. For instance, let M be the 7× 7 symmetric
real matrix

M =



1 1 1 1 −1 1 1
1 1 1 1 1 −1 1
1 1 1 1 1 1 −1
1 1 1 −2 1 1 1
−1 1 1 1 1 1 1
1 −1 1 1 1 1 1
1 1 −1 1 1 1 1


The eigenvalues of M are 1 ±

√
15, each with multiplicity one, −2

with multiplicity two, and 2 with multiplicity three. (All multiplicities
here and in what follows are algebraic.)

• The double eigenvalue, −2, is an example that Corollary 3.1 is
sharp (with r∗ = 0)

• The two eigenvalues, −2 and 1−
√
15 ≈ −2.873 are not too far.

As Theorem 2.2 states, both of them are in the disk around 1
with a radius

3 +
√
7
∣∣∣−2− (1−

√
15)

∣∣∣ ≈ 5.3.

If we change −2 in M to −1.1, then the two eigenvalues are closer,
and the radius of the disk in Theorem 2.2 becomes smaller. In this
new matrix, only the first two eigenvalues are different, and they are
(29 ±

√
5001)/20. The two eigenvalues (29 −

√
5001)/20 = −2.086 . . .

and −2 are close to each other. The corresponding radius is 3.22 . . . and
the centre of the disk is at 1. So the smaller eigenvalue, −2.086 . . . , is
of course inside the disk but quite close to its boundary; their distance
is less than 0.14.
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8. Almost Symmetric Matrices

This section extends the previous results to almost symmetric real
matrices.

There are different ways to define almost symmetric matrices. They
appear in various contexts in applied linear algebra. For example in [6]
and [13] a nearly symmetric matrix is defined as a matrix in which the
overwhelming majority of entries are symmetric about its diagonal. In
other examples, an almost symmetric matrix M is given as M = S+E
where S is a symmetric matrix and E is a small error or “noise”.
We can’t repeat the arguments on Theorem 2.2 because even small
changes can make the eigenvectors far from being orthogonal, like in
the example below.

M =

[
1 ε
0 1 + ε

]
We will not give a formal definition of what an almost symmetric

matrix is. Instead we introduce a parameter, ∆(A), measuring the
symmetry of a matrix A:

∆(A) = max
i∈[n]

n∑
j=1

|ai,j − aj,i| .

In this definition the pairs ai,j and aj,i may be far from each other, the
parameter ∆(A) measures how much non-symmetric the corresponding
entries in row i and column i are.

With this new matrix parameter, we generalize Theorem 2.2 to ar-
bitrary real matrices. We are going to use the well-known fact that
an eigenvector of a real matrix A which belongs to the eigenvalue λ
is orthogonal to any eigenvector of AT which belongs to a different
eigenvalue µ.

Theorem 8.1. Assume that A = {ai,j}ni,j=1 is a real matrix and n ⩾ 3.
If λ and µ are two distinct eigenvalues of A, then there is i ∈ [n] such
that both λ and µ lie in the disk D(ai,i, ρi) where ρi = ri+

√
n(∆+|λ−µ|)

where ri is the same as before.

Proof. Let v be the eigenvector of λ in A and w be the eigenvector
of µ in AT . The two vectors are orthogonal, so they are linearly inde-
pendent. Then there are α, β ∈ C such that the coordinates of αv+βw
add up to zero:

n∑
i=1

αvi + βwi = 0,



SMALLER GERSHGORIN DISKS FOR MULTIPLE EIGENVALUES OF COMPLEX MATRICES11

and the largest norm coordinate (indexed by i ∈ [n]) is one. We assume
again that αvi+βwi = 1 for some fixed i ∈ [n] and |αvj +βwj| ⩽ 1 for
all j ∈ [n]. With these notations we have the system of equations

Aαv + ATβw = λαv + µβw = λ(αv + βw) + (µ− λ)βw,

Let us consider the ith row

αv1a1,i+βw1ai,1+. . .+ai,i+. . .+αvjaj,i+βwjai,j+. . . = λ+(µ−λ)βwi.

From this we have

|λ− ai,i| ≤

∣∣∣∣∣
n∑

j ̸=i

(αvj + βwj)aj,i − β
n∑

j=1

wj(aj,i − ai,j)− (µ− λ)βwi

∣∣∣∣∣
Using the bound |βwj| ≤

√
n from the previous proof we have

|λ− ai,i| ≤

∣∣∣∣∣∑
j ̸=i

(αvj + βwj)aj,i − β
n∑

j=1

wj(aj,i − ai,j)− (µ− λ)βwi

∣∣∣∣∣ ≤
≤

∣∣∣∣∣∑
j ̸=i

(αvj + βwj)aj,i

∣∣∣∣∣+√
n

n∑
j=1

|aj,i − ai,j|+
√
n|µ− λ| ≤

≤ ri +
√
n (∆(A) + |µ− λ|) .

Here the estimate
∣∣∣∑j ̸=i(αvj + βwj)aj,i

∣∣∣ ⩽ ri is the same as in the

proof of Theorem 2.2. □
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Óbuda University,
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