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DATA ASSIMILATION FINITE ELEMENT METHOD FOR THE LINEARIZED
NAVIER-STOKES EQUATIONS WITH HIGHER ORDER POLYNOMIAL

APPROXIMATION

Erik Burman , Deepika Garg* and Janosch Preuss

Abstract. In this article, we design and analyze an arbitrary-order stabilized finite element method
to approximate the unique continuation problem for laminar steady flow described by the linearized
incompressible Navier–Stokes equation. We derive quantitative local error estimates for the velocity,
which account for noise level and polynomial degree, using the stability of the continuous problem
in the form of a conditional stability estimate. Numerical examples illustrate the performances of the
method with respect to the polynomial order and perturbations in the data. We observe that the higher
order polynomials may be efficient for ill-posed problems, but are also more sensitive for problems with
poor stability due to the ill-conditioning of the system.
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1. Introduction

The question of how to assimilate measured data into large-scale computations of flow problems is receiving
increasing attention from the computational mathematics community [3, 7, 22, 26, 28, 36]. There are several
different situations where such data assimilation problems as can be seen in the above examples. One situation
is when the data necessary to make the flow problem well-posed is lacking, for instance, when the data on the
boundary of the domain is unknown; instead, measurements are available in some subset of the bulk domain
or boundary to make up for this shortfall. In such a case, the problem is typically ill-posed, and numerical
simulations are significantly more challenging to perform than when handling well-posed flow problems. Ill-posed
problems usually come up in inverse problems and data assimilation. Traditionally, these ill-posed problems have
been solved by regularizing at the continuous level, using e.g. Tikhonov regularization [38] or quasi-reversibility
[34]. The regularized problem is well-posed and may be discretized using any appropriate numerical technique.
Then, the regularization parameter must be tuned to the optimal value for the noise in the data. There is
considerable literature of research on Tikhonov regularization and inverse problems, and we suggest the reader
to [32] and its references for an overview of computational approaches employing this strategy. The quasi-
reversibility methods relevant to the current study may be found in [10–12,21].
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The goal of the current contribution is to develop a finite element approach directly applied to the ill-posed
variational data assimilation form. Regularization is then introduced at the discrete level utilizing stabilized finite
element methods that allow for a comprehensive analysis employing conditional stability estimates. The idea is
presented in [13] for standard 𝐻1-conforming finite element methods. Ill-posed problems are analyzed in [14],
and in [16], the technique is extended to nonconforming approximations. In both cases, low-order approximation
spaces are considered. The error analysis requires the availability of sharp conditional stability estimates for
the continuous problem. The estimates are conditional in the sense that a particular a priori bound must be
assumed to hold for the solution, and the continuity provided in this bound is often merely Hölder [33]. In the
literature, these estimates are referred to as quantitative uniqueness results and employ theoretical methods such
as Carleman estimates or three-ball estimates [1,31]. Error bounds derived using conditional stability estimates
can be optimal because they reflect the approximation order of the finite element space and the stability of
the ill-posed problem. In particular, when applied to a well-posed problem, the finite element method recovers
optimal convergence.

The ill-posed problem that we consider here is the unique continuation problem. The unique continuation
problem for the Stokes equations was initially studied in [25]. The analysis of the stability properties of ill-posed
problems based on the Navier–Stokes equations is a very active field of research, and we refer to the works
[4–6,8, 29,30,35] for recent results.

This study aims to determine whether using high-order methods in the primal-dual stabilized Galerkin
methods is as helpful in the ill-posed case as in the well-posed situation. Inspired by the approach proposed in
[9] for the lowest-order finite element discretization of the unique continuation problem subject to the Navier-
Stokes equations, here we generalize the method to arbitrary polynomial orders and investigate the benefits of
using higher-order polynomials in numerical experiments.

The rest of the paper is organized as follows. In Section 2, we introduce the considered inverse problem and
some related stability estimates. In Section 3, we describe the proposed stabilized finite element approximation of
the data assimilation problem and state the local error estimate. The numerical analysis of the method is carried
out in Section 4. Finally, Section 5 presents a series of numerical examples which illustrate the performance of
the proposed method.

2. The linearized Navier–Stokes problem

Let Ω be an open polygonal (polyhedral) domain in R𝑑, 𝑑 = 2, 3. Let (𝑈, 𝑃 ) be the solution of the stationary
incompressible Navier–Stokes equations and consider some perturbation (𝑢, 𝑝) of this base flow. If the quadratic
term is ignored, the linearized Navier–Stokes equations for (𝑢, 𝑝) can be written

L (𝑢, 𝑝) = 𝑓 ; in Ω, (1)
∇ · 𝑢 = 0 in Ω, (2)

where

L (𝑢, 𝑝) = (𝑈 · ∇)𝑢 + (𝑢 · ∇)𝑈 − 𝜈∆𝑢 +∇𝑝.

Here, 𝜈 is a diffusion coefficient. We assume that 𝑈 belongs to [𝑊 1,∞(Ω)]𝑑 and that (𝑢, 𝑝) satisfies the regularity

(𝑢, 𝑝) ∈ [𝐻2(Ω)]𝑑 ×𝐻1(Ω).

For this problem, we assume that measurements on 𝑢 are available in some subdomain 𝜔𝑀 ⊂ Ω having a
nonempty interior and our purpose is to reconstruct a fluid flow perturbation of 𝑢 for system (1)–(2) based on
the measurements of velocity.

Now, we will present some useful notations. Consider the following spaces:

𝑉 := [𝐻1(Ω)]𝑑, 𝑉0 := [𝐻1
0 (Ω)]𝑑, 𝐿0 := 𝐿2

0(Ω), and 𝐿 := 𝐿2(Ω)
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where 𝐿2
0(Ω) = {𝑝 ∈ 𝐿2(Ω) :

∫︀
Ω

𝑝 = 0}. We also define the norms, for 𝑘 = 1 or 𝑑,

‖·‖𝐿 := ‖·‖[𝐿2(Ω)]𝑘 , ‖·‖𝑉 := ‖·‖[𝐻1(Ω)]𝑘 , ‖·‖𝑉
′
0

:= ‖·‖[𝐻−1(Ω)]𝑘 .

Observe that in the definitions, we employ the same notation for 𝑘 = 1 and 𝑘 = 𝑑. For any subdomain 𝑋 ⊂ Ω,
we set

|𝑣|𝑋 :=
(︂∫︁

𝑋

|𝑣|2
)︂ 1

2

,∀ 𝑣 ∈ [𝐿2(𝑋)]𝑑.

Next, define the bilinear forms as: for all (𝑢, 𝑣) ∈ 𝑉 × 𝑉

𝑎(𝑢, 𝑣) :=
∫︁

Ω

((𝑈 · ∇)𝑢 + (𝑢 · ∇)𝑈) · 𝑣 + 𝜈

∫︁
Ω

∇𝑢 : ∇𝑣, (3)

where 𝐻 : 𝐺 :=
∑︀𝑑

𝑖,𝑗=1 𝐻𝑖,𝑗𝐺𝑖,𝑗 and, for all (𝑝, 𝑣) ∈ 𝐿× 𝑉

𝑏(𝑝, 𝑣) : =
∫︁

Ω

𝑝∇ · 𝑣, (4)

𝑙(𝑣) : =
∫︁

Ω

𝑓 · 𝑣. (5)

The weak form of the inverse problem can be expressed as: 𝑓 ∈ 𝑉
′

0 , 𝑢|𝜔𝑀
being given, find (𝑢, 𝑝) ∈ 𝑉 ×𝐿0 such

that

𝑢 = 𝑞 in 𝜔𝑀 (6)

and

𝑎(𝑢, 𝑣)− 𝑏(𝑝, 𝑣) + 𝑏(𝑟, 𝑢) = ⟨𝑓, 𝑣⟩𝑉 ′0 ,𝑉0
, ∀ (𝑣, 𝑟) ∈ 𝑉0 × 𝐿. (7)

Here, 𝑞 ∈ [𝐻1(𝜔𝑀 )]𝑑 corresponds to the exact fluid velocity on 𝜔𝑀 , i.e. 𝑞 is a solution to the linearized Navier-
Stokes’ equations in 𝜔𝑀 and has an extension 𝑢 to all of Ω. Below in the finite element method we will assume
that we do not have access to 𝑞, but only some measured velocities 𝑢𝑀 = 𝑞 + 𝛿𝑢. So 𝑢𝑀 corresponds to the
exact velocity polluted by a small noise 𝛿𝑢 ∈ [𝐿2(𝜔𝑀 )]𝑑.

Consider the linearized Navier–Stokes problem with a non-zero velocity divergence

L (𝑢, 𝑝) = 𝑓 ; in Ω, (8)
∇ · 𝑢 = 𝑔 in Ω. (9)

We assume that if the boundary conditions of system (8)–(9) are homogeneous Dirichlet boundary conditions,
then it is well-posed. More precisely, we make the following assumption:

Assumption 2.1. For all 𝑓 ∈ 𝑉 ′0 and 𝑔 ∈ 𝐿0 we assume that system (8)–(9) admits a unique weak solution
(𝑢, 𝑝) ∈ 𝑉0 × 𝐿0 and that there exists a constant 𝐶𝑆 > 0 depending only on 𝑈, 𝜈 and Ω such that

‖𝑢‖𝑉 + ‖𝑝‖𝐿 ≤ 𝐶𝑆(‖𝑓‖𝑉
′
0

+ ‖𝑔‖𝐿). (10)

Furthermore, if ‖∇𝑈‖[𝐿∞(Ω)]𝑑×𝑑 is small enough, then the Lax–Milgram lemma implies that Assumption 2.1
holds. The assumption of smallness on ∇𝑈 is a sufficient condition, there are reasons to believe that
Assumption 2.1 holds in more general cases.

In the homogeneous case (which corresponds to 𝑓 = 0 in (1)–(2) or to 𝑓 = 0 and 𝑔 = 0 in (8)–(9)), a solution
(𝑢, 𝑝) satisfies a three-balls inequality which only involves the 𝐿2 norm of the velocity. This three-balls inequality
result is stated in [35] (with their notations, 𝐴 corresponds to 𝑈 and 𝐵 to ∇𝑈).
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Theorem 2.2. (Conditional stability for the linearized Navier–Stokes problem). Let 𝑓 ∈ 𝑉 ′0 , 𝜔𝑀 ⊂ Ω and
𝑔 ∈ 𝐿 be given. For all 𝐵 ⊂⊂ Ω, there exist 𝐶 > 0 and 0 < 𝜏 < 1 such that

|𝑢|𝐵 ≤ 𝐶(‖𝑓‖𝑉
′
0

+ ‖𝑔‖𝐿 + ‖𝑢‖𝐿)1−𝜏 (‖𝑓‖𝑉
′
0

+ ‖𝑔‖𝐿 + |𝑢|𝜔𝑀
)𝜏 , (11)

for all (𝑢, 𝑝) ∈ [𝐻1(Ω)]𝑑 ×𝐻1(Ω) solution of (8)–(9).

Proof. For the proof we refer the reader to [9, Appendix A].
Theorem 2.2 provides a conditional stability result for ill-posed problems [1] in the sense that, for this

estimate to be helpful, it must be accompanied by an a priori bound on the solution on the global domain
(due to the presence of ‖𝑢‖𝐿 on the right-hand side). Specifically, Theorem 2.2 implies that a solution (𝑢, 𝑝) in
[𝐻1(Ω)]𝑑 ×𝐻1(Ω) of problem (6) and (7), must be unique. For the pressure uniqueness holds up to a constant.
Moreover, in inequality (11), the exponent 𝜏 depends on the dimension 𝑑, the size of the measure domain 𝜔𝑀

and the distance between the target domain 𝐵 and the boundary of the computational domain Ω.
Moreover, let 𝑓 ∈ [𝐿2(Ω)]𝑑 and we introduce the operator 𝐴 defined on (𝑉 × 𝐿0)× (𝑉0 × 𝐿) by

𝐴((𝑢, 𝑝), (𝑣, 𝑟)) := 𝑎(𝑢, 𝑣)− 𝑏(𝑝, 𝑣) + 𝑏(𝑟, 𝑢) (12)

where 𝑎 and 𝑏 are respectively defined by (3) and (4). Thus, we look for (𝑢, 𝑝) ∈ 𝑉 × 𝐿0 such that

𝐴((𝑢, 𝑝), (𝑣, 𝑟)) = 𝑙(𝑣) ∀(𝑣, 𝑟) ∈ 𝑉0 × 𝐿 (13)

and (6) holds. �

3. Stabilized finite element approximation

In this section, we first introduce a discretization of problem (13) using a standard finite element method.
Then, the discrete inverse problem is reformulated as a constrained minimization problem in the discrete space
where the regularization of the cost functional is achieved through stabilization terms. Finally, the estimation of
the error between the exact continuous solution and the discrete solution of our minimization problem is stated
in Theorem 4.12 which corresponds to our main theoretical result.

Let {Tℎ}ℎ be a family of affine, simplicial meshes of Ω. For simplicity, the family {Tℎ}ℎ is supposed to be
quasi-uniform. Mesh faces are collected in the set Fℎ which is split into the set of interior faces, F int

ℎ , and
of boundary faces, F ext

ℎ . For a smooth enough function 𝑣 that is possibly double-valued at 𝐹 ∈ F int
ℎ with

𝐹 = 𝜕𝑇− ∩ 𝜕𝑇+, we define its jump at 𝐹 as [𝑣] =: 𝑣𝑇− − 𝑣𝑇+ , and we fix the unit normal vector to 𝐹 , denoted
by 𝜈𝐹 , as pointing from 𝑇− to 𝑇+. The arbitrariness in the sign of [𝑣] is irrelevant in what follows.

We next define a piecewise polynomial space as

P𝑘(Tℎ) :=
{︀
𝑣 ∈ 𝐿2(Ω) : 𝑣|𝑇 ∈ P𝑘(𝑇 ) ∀𝑇 ∈ Tℎ

}︀
,

where P𝑘(𝑇 ), 𝑘 ≥ 0, is the space of polynomials of degree at most 𝑘 over the element 𝑇 . Further, define a
conforming finite element space as

𝑃 𝑐
𝑘 (Tℎ) :=

{︀
𝑣 ∈ 𝐻1(Ω) : 𝑣|𝑇 ∈ P𝑘(𝑇 ) ∀ 𝑇 ∈ Tℎ

}︀
.

Let 𝑉 𝑘
ℎ := [𝑃 𝑐

𝑘 (Tℎ)]𝑑, 𝑊ℎ := 𝑉0 ∩ 𝑉 𝑘1
ℎ , 𝑄0

ℎ := 𝐿2
0(Ω) ∩ 𝑃 𝑐

𝑘2
(Tℎ) and 𝑄ℎ := 𝑃 𝑐

𝑘3
(Tℎ). For the analysis below the

polynomial degrees of the above spaces may be chosen as 𝑘 ≥ 1, 𝑘1 ≥ 1, 𝑘2 ∈ {max{1, 𝑘 − 1}, 𝑘} and 𝑘3 ≥ 1
and the convergence order will be given in terms of 𝑘. To make the notation more compact we introduce the
composite spaces Vℎ := 𝑉 𝑘

ℎ ×𝑄0
ℎ and Wℎ := 𝑊ℎ ×𝑄ℎ. We may then write the finite element approximation of

(13): Find (𝑢ℎ, 𝑝ℎ) ∈ Vℎ such that

𝐴((𝑢ℎ, 𝑝ℎ), (𝑣ℎ, 𝑞ℎ)) = 𝑙(𝑣ℎ), (14)
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for all (𝑣ℎ, 𝑞ℎ) ∈ Wℎ.
Let us introduce the measurement bilinear form to take into account the measurements on 𝜔𝑀 given by (6).

𝑚(𝑢, 𝑢) := |𝑢|2𝜔𝑀
= 𝛾𝑀𝜉−1

∫︁
𝜔𝑀

𝑢2, (15)

where 𝜉 = max(𝜈, ‖𝑈‖[𝐿∞(Ω)]𝑑×𝑑 ℎ) and 𝛾𝑀 > 0 will correspond to a free parameter representing the relative
confidence in the measurements. The objective is then to minimize the functional

1
2
𝑚(𝑢𝑀 − 𝑢ℎ, 𝑢𝑀 − 𝑢ℎ) (16)

under the constraint that (𝑢ℎ, 𝑝ℎ) satisfies (14).
We now introduce the following discrete Lagrangian for ((𝑢ℎ, 𝑝ℎ), (𝑧ℎ, 𝑦ℎ)) ∈ Vℎ ×Wℎ,

Lℎ((𝑢ℎ, 𝑝ℎ), (𝑧ℎ, 𝑦ℎ)) :=
1
2
𝑚(𝑢ℎ − 𝑢𝑀 , 𝑢ℎ − 𝑢𝑀 ) + 𝐴((𝑢ℎ, 𝑝ℎ), (𝑧ℎ, 𝑦ℎ))− 𝑙(𝑧ℎ). (17)

If we differentiate with respect to (𝑢ℎ, 𝑝ℎ) and (𝑧ℎ, 𝑦ℎ), we get the following optimality system: Find (𝑢ℎ, 𝑝ℎ) ∈ Vℎ

and (𝑧ℎ, 𝑦ℎ) ∈ Wℎ such that

𝐴((𝑢ℎ, 𝑝ℎ), (𝑤ℎ, 𝑥ℎ)) = 𝑙(𝑤ℎ), (18)
𝐴((𝑣ℎ, 𝑞ℎ), (𝑧ℎ, 𝑦ℎ)) + 𝑚(𝑢ℎ, 𝑣ℎ) = 𝑚(𝑢𝑀 , 𝑣ℎ), (19)

for all (𝑣ℎ, 𝑞ℎ) ∈ Vℎ and (𝑤ℎ, 𝑥ℎ) ∈ Wℎ. However, the discrete Lagrangian associated to this problem leads
to an optimality system which is ill-posed. To regularize it, we introduce stabilization operators that will
convexify the problem with respect to the direct variables 𝑢ℎ, 𝑝ℎ and the adjoint variables 𝑧ℎ, 𝑦ℎ. We introduce
𝑆𝑢 : 𝑉ℎ × 𝑉ℎ → R, 𝑆*𝑢 : 𝑊ℎ × 𝑊ℎ → R, 𝑆𝑝 : 𝑄0

ℎ × 𝑄0
ℎ → R and 𝑆*𝑝 : 𝑄ℎ × 𝑄ℎ → R. The choice of

stabilization terms will be discussed later. For compactness, we introduce the primal and dual stabilizers: for
all (𝑢ℎ, 𝑝ℎ), (𝑣ℎ, 𝑞ℎ) ∈ Vℎ

𝑆ℎ((𝑢ℎ, 𝑝ℎ), (𝑣ℎ, 𝑞ℎ)) = 𝑆𝑔((𝑢ℎ, 𝑝ℎ), (𝑣ℎ, 𝑞ℎ)) + 𝑆ℎ((𝑢ℎ, 𝑝ℎ), (𝑣ℎ, 𝑞ℎ)),

𝑆𝑔((𝑢ℎ, 𝑝ℎ), (𝑣ℎ, 𝑞ℎ)) = 𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝑢ℎ, 𝑝ℎ)L (𝑣ℎ, 𝑞ℎ) 𝑑x, (20)

𝑆ℎ((𝑢ℎ, 𝑝ℎ), (𝑣ℎ, 𝑞ℎ)) = 𝛼(ℎ2𝑘∇𝑢ℎ,∇𝑣ℎ) + 𝛾𝑢

∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 𝜉𝐹 [∇𝑢ℎ · 𝑛][∇𝑣ℎ · 𝑛] 𝑑s

+ 𝛾÷

∫︁
Ω

𝜉𝑇 (∇ · 𝑢ℎ)(∇ · 𝑣ℎ) 𝑑x, (21)

where 𝜉𝑇 = max(𝜈, ‖𝑈‖[𝐿∞(Ω)]𝑑×𝑑 ℎ𝑇 ), 𝜉𝐹 = max(𝜈, ‖𝑈‖[𝐿∞(Ω)]𝑑×𝑑 ℎ𝐹 ) and 𝛾𝐺𝐿𝑆 , 𝛼, 𝛾𝑢, and 𝛾div are positive
user-defined parameters. And for all (𝑧ℎ, 𝑦ℎ), (𝑤ℎ, 𝑥ℎ) ∈ Wℎ

𝑆*ℎ((𝑧ℎ, 𝑦ℎ), (𝑤ℎ, 𝑥ℎ)) = 𝑆*𝑢(𝑧ℎ, 𝑤ℎ) + 𝑆*𝑝(𝑦ℎ, 𝑥ℎ),

𝑆*𝑢(𝑧ℎ, 𝑤ℎ) = 𝛾*𝑢

∫︁
Ω

∇𝑧ℎ : ∇𝑤ℎ 𝑑x, (22)

𝑆*𝑝(𝑦ℎ, 𝑥ℎ) = 𝛾*𝑝

∫︁
Ω

𝑦ℎ𝑥ℎ 𝑑x, (23)

where 𝛾*𝑢 and 𝛾*𝑝 are positive user-defined parameters. Let us make some comments on these stabilization terms.
The stabilization of the direct velocity acts on fluctuations of the discrete solution through a penalty on the
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jump of the solution gradient over element faces and has no equivalent on the continuous level. The form
𝑆𝑔(·, ·) is a Galerkin least squares stabilization. Let us mention that there is some freedom in the choice of dual
stabilization, e.g. set 𝑆*𝑝(𝑦ℎ, 𝑥ℎ) = 𝛾*𝑝

∫︀
Ω
∇𝑦ℎ∇𝑥ℎ 𝑑x. We will only detail the analysis for the first choice (23)

below. We refer the reader to [13,15] for a more general discussion of the possible stabilization operators.
We may then write the discrete Lagrangian Lℎ : Vℎ ×Wℎ → R, for all (𝑢ℎ, 𝑝ℎ) ∈ Vℎ and (𝑧ℎ, 𝑦ℎ) ∈ Wℎ.

Lℎ((𝑢ℎ, 𝑝ℎ), (𝑧ℎ, 𝑦ℎ)) :=
1
2
𝑚(𝑢ℎ − 𝑢𝑀 , 𝑢ℎ − 𝑢𝑀 ) + 𝐴((𝑢ℎ, 𝑝ℎ), (𝑧ℎ, 𝑦ℎ))− 𝑙(𝑧ℎ)

+
1
2
𝑆𝑔((𝑢ℎ − 𝑢, 𝑝ℎ − 𝑝), (𝑢ℎ − 𝑢, 𝑝ℎ − 𝑝)) + 𝑆ℎ((𝑢ℎ, 𝑝ℎ), (𝑢ℎ, 𝑝ℎ))− 1

2
𝑆*ℎ((𝑧ℎ, 𝑦ℎ), (𝑧ℎ, 𝑦ℎ)). (24)

If we differentiate with respect to (𝑢ℎ, 𝑝ℎ) and (𝑧ℎ, 𝑦ℎ), we get the following optimality system: Find (𝑢ℎ, 𝑝ℎ) ∈ Vℎ

and (𝑧ℎ, 𝑦ℎ) ∈ Wℎ such that

𝐴((𝑢ℎ, 𝑝ℎ), (𝑤ℎ, 𝑥ℎ))− 𝑆*ℎ((𝑧ℎ, 𝑦ℎ), (𝑤ℎ, 𝑥ℎ)) = 𝑙(𝑤ℎ), (25)
𝐴((𝑣ℎ, 𝑞ℎ), (𝑧ℎ, 𝑦ℎ)) + 𝑆ℎ((𝑢ℎ, 𝑝ℎ), (𝑣ℎ, 𝑞ℎ)) + 𝑚(𝑢ℎ, 𝑣ℎ) = 𝑚(𝑢𝑀 , 𝑣ℎ)

+ 𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

𝑓ℎ2
𝑇 𝜉−1

𝑇 L (𝑣ℎ, 𝑞ℎ) 𝑑x, (26)

for all (𝑣ℎ, 𝑞ℎ) ∈ Vℎ and (𝑤ℎ, 𝑥ℎ) ∈ Wℎ.

4. Stability and Error Analysis

To prove the stability of our formulations, we need the following result.

Lemma 4.1. There exists 𝐶𝑝 such that for all 𝑣ℎ ∈ 𝑉ℎ there holds

‖𝑣ℎ‖𝐻1(Ω) ≤ 𝐶𝑝(‖𝑣ℎ‖𝜔𝑀
+ ‖∇𝑣ℎ‖𝐿). (27)

Proof. The following Poincaré inequality is well known Lemma B.63 of [24]. If 𝑓 : 𝐻1(Ω) → R is a linear
functional that is non-zero for constant functions then

‖𝑣‖𝐻1(Ω) ≤ 𝐶𝑝(|𝑓(𝑣)|+ ‖∇𝑣‖𝐿), ∀𝑣 ∈ 𝐻1(Ω).

For instance, we may take

𝑓(𝑣) =
∫︁

𝜔𝑀

𝑣 𝑑x ≤ 𝐶|𝑣|𝜔𝑀
.

As an immediate consequence we have the bound (27). �

Let us prove that the discrete problem is well-posed. We can write the discrete formulation in a more compact
form. Let (𝑢ℎ, 𝑝ℎ) = 𝑈ℎ, (𝑧ℎ, 𝑦ℎ) = 𝑍ℎ, (𝑣ℎ, 𝑞ℎ) = 𝑋ℎ and (𝑤ℎ, 𝑥ℎ) = 𝑌ℎ.

G ((𝑈ℎ, 𝑍ℎ), (𝑋ℎ, 𝑌ℎ)) = 𝐴ℎ(𝑈ℎ, 𝑌ℎ)− 𝑆*ℎ(𝑍ℎ, 𝑌ℎ) + 𝐴ℎ(𝑋ℎ, 𝑍ℎ) + 𝑆ℎ(𝑈ℎ, 𝑋ℎ) + 𝛾𝑀 (𝑢ℎ, 𝑣ℎ)𝜔𝑀
. (28)

We define the norm on ([𝐻2(Ω)]𝑑 + 𝑉ℎ)× (𝐻1(Ω) + 𝑄ℎ)

|||(𝑈ℎ, 𝑍ℎ)|||2 := 𝑆ℎ(𝑈ℎ, 𝑈ℎ) + 𝛾𝑀 |𝑢ℎ|2𝜔𝑀
+ 𝑆*ℎ(𝑍ℎ, 𝑍ℎ). (29)

|||(𝑈ℎ, 𝑍ℎ)||| defines a norm, since 𝛾𝑀 > 0, 𝛼 > 0 and thanks to the Poincaré inequality (27). The following result
demonstrates the stability of the system (25)–(26).
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Theorem 4.2. The discrete bilinear form (28) satisfies the following inf-sup condition for some positive con-
stant 𝛾, independent of ℎ:

inf
(𝑈ℎ,𝑍ℎ)∈Vℎ×Wℎ

sup
(𝑋ℎ,𝑌ℎ)∈Vℎ×Wℎ

G ((𝑈ℎ, 𝑍ℎ), (𝑋ℎ, 𝑌ℎ))
|||(𝑈ℎ, 𝑍ℎ)||| |||(𝑋ℎ, 𝑌ℎ)|||

≥ 𝛾.

Proof. In order to prove the stability result, it is enough to choose some (𝑋ℎ, 𝑌ℎ) ∈ Vℎ ×Wℎ for any arbitrary
(𝑈ℎ, 𝑍ℎ) ∈ Vℎ ×Wℎ, such that

G ((𝑈ℎ, 𝑍ℎ), (𝑋ℎ, 𝑌ℎ))
|||(𝑋ℎ, 𝑌ℎ)|||

≥ 𝛾 |||(𝑈ℎ, 𝑍ℎ)||| > 0.

First, consider the bilinear form in (28) with (𝑋ℎ, 𝑌ℎ) = (𝑈ℎ,−𝑍ℎ):

G ((𝑈ℎ, 𝑍ℎ), (𝑈ℎ,−𝑍ℎ)) = 𝑆*ℎ(𝑍ℎ, 𝑍ℎ) + 𝑆ℎ(𝑈ℎ, 𝑈ℎ) + 𝛾𝑀 (𝑢ℎ, 𝑢ℎ)𝜔𝑀

= 𝑆*ℎ(𝑍ℎ, 𝑍ℎ) + 𝑆ℎ(𝑈ℎ, 𝑈ℎ) + 𝛾𝑀 |𝑢ℎ|2𝜔𝑀
.

G ((𝑈ℎ, 𝑍ℎ), (𝑈ℎ,−𝑍ℎ)) ≥ |||(𝑈ℎ, 𝑍ℎ)|||2 (30)

and

|||(𝑈ℎ,−𝑍ℎ)||| ≤ |||(𝑈ℎ, 𝑍ℎ)||| . (31)

Finally, by dividing (30) by (31), we get the result. �

According to the Babuška–Nečas–Brezzi theorem (see [24]), the square linear system defined by (25)–(26)
admits a unique solution for all ℎ > 0.

4.1. Error Analysis

Now recall the following technical results of finite element analysis.

Lemma 4.3. Trace inequality [23]: Suppose 𝐹 denotes an edge of 𝑇 ∈ Tℎ. For 𝑣ℎ ∈ P𝑘(Tℎ), there holds

‖𝑣ℎ‖𝐿2(𝐹 ) ≤ 𝐶ℎ
−1/2
𝑇 ‖𝑣ℎ‖𝐿2(𝑇 ). (32)

Lemma 4.4. Inverse inequality [23]: Let 𝑣 ∈ P𝑘(Tℎ), for all 𝑘 ≥ 0. Then,

‖∇𝑣‖𝐿2(𝑇 ) ≤ 𝐶ℎ−1
𝑇 ‖𝑣‖𝐿2(𝑇 ) . (33)

Lemma 4.5. Let 𝐼ℎ : 𝐿2(Ω) → 𝑃 𝑐
𝑘 (Tℎ) be the Cl𝑒ment interpolation. The following approximation estimates

hold for the interpolation operator 𝐼ℎ, see [24],

‖𝐼ℎ𝑣‖𝐿 ≤ 𝐶 ‖𝑣‖𝐿 ,∀𝑣 ∈ 𝐿 ‖∇𝐼ℎ𝑣‖𝐿 ≤ 𝐶 ‖∇𝑣‖𝐿 ,∀𝑣 ∈ 𝐻1(Ω), (34)

‖(𝑣 − 𝐼ℎ𝑣)‖𝐿 + ℎ ‖∇(𝑣 − 𝐼ℎ𝑣)‖𝐿 ≤ 𝐶ℎ𝑡 ‖𝑣‖𝐻𝑡(Ω) , for all 𝑣 ∈ 𝐻𝑡(Ω), 1 ≤ 𝑡 ≤ 𝑘 + 1, (35)(︃ ∑︁
𝑇∈Tℎ

‖∆(𝑣 − 𝐼ℎ𝑣)‖2𝐿2(𝑇 )

)︃1/2

≤ 𝐶ℎ𝑡−2 ‖𝑣‖𝐻𝑡(Ω) , for all 𝑣 ∈ 𝐻𝑡(Ω), 2 ≤ 𝑡 ≤ 𝑘 + 1, (36)
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⎛⎝ ∑︁
𝐹∈F int

ℎ

‖𝑣 − 𝐼ℎ𝑣‖2𝐿2(𝐹 )

⎞⎠1/2

≤ 𝐶ℎ𝑡−1/2 ‖𝑣‖𝐻𝑡(Ω) , for all 𝑣 ∈ 𝐻𝑡(Ω), 𝑡 ≤ 𝑘 + 1, (37)

⎛⎝ ∑︁
𝐹∈F int

ℎ

‖∇(𝑣 − 𝐼ℎ𝑣)‖2𝐿2(𝐹 )

⎞⎠1/2

≤ 𝐶ℎ𝑡−3/2 ‖𝑣‖𝐻𝑡(Ω) , for all 1 ≤ 𝑣 ∈ 𝐻𝑡(Ω), 2 ≤ 𝑡 ≤ 𝑘 + 1. (38)

The same bound holds for interpolation of vector-valued functions, 𝐼ℎ : [𝐿2(Ω)]𝑑 → 𝑉 𝑘
ℎ and for interpolation on

Wℎ where homogeneous boundary conditions are imposed.

Using the above bounds to the componentwise extension of 𝐼ℎ to vectorial functions, we deduce the following
approximation bound.

Corollary 4.6. It holds for (𝑢, 𝑝) ∈ [𝐻𝑘+1(Ω)]𝑑 ×𝐻𝑘(Ω),

(︃ ∑︁
𝑇∈Tℎ

‖L (𝐼ℎ𝑢− 𝑢, 𝐼ℎ𝑝− 𝑝)‖2𝐿2(𝑇 )

)︃ 1
2

≤ 𝐶ℎ𝑘−1
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
.

In this section, we will present and prove several technical results. First observe that the formulation
(25)–(26) is weakly consistent in the sense that we have a modified Galerkin orthogonality relation with respect
to the scalar product associated to 𝐴:

Lemma 4.7. (Consistency). Let (𝑢, 𝑝) satisfy (1) and (𝑢ℎ, 𝑝ℎ) be a solution of (25)–(26). Then there holds

𝐴((𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ), (𝑤ℎ, 𝑥ℎ)) = −𝑆*ℎ((𝑧ℎ, 𝑦ℎ), (𝑤ℎ, 𝑥ℎ)), ∀(𝑤ℎ, 𝑥ℎ) ∈ Wℎ. (39)

Proof. The result follows by taking the difference between (13) and (25). �

Lemma 4.8. Let (𝑢, 𝑝) ∈ [𝐻𝑘+1(Ω)]𝑑 × 𝐿2
0

⋂︀
𝐻𝑘(Ω). Then,

|||(𝑢− 𝐼ℎ𝑢, 𝑝− 𝐼ℎ𝑝)||| ≤ 𝐶ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
. (40)

Proof. The approximation bounds can be deduced using the component-wise extension of 𝐼ℎ to vector
functions. �

Lemma 4.9. (Continuity). Let (𝑢, 𝑝) ∈ [𝐻𝑘+1(Ω)]𝑑 × 𝐿2
0

⋂︀
𝐻𝑘(Ω). Then,

𝐴((𝑢− 𝐼ℎ𝑢, 𝑝− 𝐼ℎ𝑝), (𝑧ℎ, 𝑦ℎ)) ≤ 𝐶ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
𝑆*ℎ((𝑧ℎ, 𝑦ℎ), (𝑧ℎ, 𝑦ℎ))

1
2 , (41)

for all (𝑧ℎ, 𝑦ℎ) ∈ Wℎ.

Proof. Let us derive the estimate (41). Using the definition of 𝐴(·, ·) :

𝐴((𝐼ℎ𝑢− 𝑢, 𝐼ℎ𝑝− 𝑝), (𝑧ℎ, 𝑦ℎ)) = 𝑎(𝐼ℎ𝑢− 𝑢, 𝑧ℎ)− 𝑏(𝐼ℎ𝑝− 𝑝, 𝑧ℎ) + 𝑏(𝑦ℎ, 𝐼ℎ𝑢− 𝑢). (42)
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Consider the first term on the right hand side of (42). Using the Cauchy–Schwarz inequality and Poincaré
inequality,

𝑎(𝐼ℎ𝑢− 𝑢, 𝑧ℎ) ≤ 𝐶 ‖𝑈‖[𝑊 1,∞]𝑑 (‖𝑢− 𝐼ℎ𝑢‖𝐿 + ‖∇(𝑢− 𝐼ℎ𝑢)‖𝐿)(‖𝑧ℎ‖𝐿 + ‖∇𝑧ℎ‖𝐿)

≤ 𝐶 ‖𝑈‖[𝑊 1,∞]𝑑 ℎ𝑘 ‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 𝑆*ℎ((𝑧ℎ, 0), (𝑧ℎ, 0))
1
2 .

The second term of (42) can be handled as:

𝑏(𝐼ℎ𝑝− 𝑝, 𝑧ℎ) ≤ ‖𝑝− 𝐼ℎ𝑝‖𝐿 ‖∇ · 𝑧ℎ‖𝐿

≤ 𝐶ℎ𝑘 ‖𝑝‖𝐻𝑘(Ω) 𝑆*ℎ((𝑧ℎ, 0), (𝑧ℎ, 0))
1
2 .

The last term of (42) can be handled as:

𝑏(𝑦ℎ, 𝐼ℎ𝑢− 𝑢) ≤ ‖∇ · (𝑢− 𝐼ℎ𝑢)‖𝐿 ‖𝑦ℎ‖𝐿

≤ 𝐶ℎ𝑘 ‖𝑢‖𝑘+1 𝑆*ℎ((0, 𝑦ℎ), (0, 𝑦ℎ))
1
2 .

Finally, the result follows by combining all the above estimates. �

Lemma 4.10. We assume that the solution (𝑢, 𝑝) ∈ [𝐻𝑘+1(Ω)]𝑑 × 𝐿2
0 ∩𝐻𝑘(Ω) and we consider (𝑢ℎ, 𝑝ℎ) ∈ Vℎ

and (𝑧ℎ, 𝑞ℎ) ∈ Wℎ the discrete solution of (25)–(26). Then there holds,

|||(𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ), (𝑧ℎ, 𝑞ℎ)||| ≤ 𝐶
(︁
ℎ𝑘(‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)) + 𝛾

1
2
𝑚|𝛿𝑢|𝜔𝑀

)︁
. (43)

Proof. We introduce the discrete errors 𝜁ℎ = 𝐼ℎ𝑢− 𝑢ℎ, 𝜂ℎ = 𝐼ℎ𝑝− 𝑝ℎ. By this way,

|||(𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ), (𝑧ℎ, 𝑞ℎ)||| ≤ |||(𝑢− 𝐼ℎ𝑢, 𝑝− 𝐼ℎ𝑝), (0, 0)|||+ |||(𝜁ℎ, 𝜂ℎ), (𝑧ℎ, 𝑞ℎ)||| . (44)

The first term of (44) can be handled by using the Lemma 4.8. Consider the second term of (44)

|||(𝜁ℎ, 𝜂ℎ), (𝑧ℎ, 𝑞ℎ)|||2 = 𝑆*ℎ((𝑧ℎ, 𝑞ℎ), (𝑧ℎ, 𝑞ℎ)) + 𝑆ℎ((𝜁ℎ, 𝜂ℎ), (𝜁ℎ, 𝜂ℎ)) + 𝛾𝑀 |𝜁ℎ|2𝜔𝑀
.

To estimate the right-hand side, we notice that, using the second equation of (26) with (𝑣ℎ, 𝑞ℎ) = (𝜁ℎ, 𝜂ℎ)

𝑆ℎ((𝜁ℎ,𝜂ℎ), (𝜁ℎ, 𝜂ℎ)) + 𝛾𝑀 |𝜁ℎ|2𝜔𝑀
−𝐴((𝜁ℎ, 𝜂ℎ), (𝑧ℎ, 𝑞ℎ))

= 𝑆ℎ(𝐼ℎ𝑢, 𝐼ℎ𝑝), (𝜁ℎ, 𝜂ℎ)) + 𝑚(𝐼ℎ𝑢− 𝑢, 𝜁ℎ)−𝑚(𝛿𝑢, 𝜁ℎ)− 𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

𝑓ℎ2
𝑇 𝜉−1

𝑇 L (𝜁ℎ, 𝜂ℎ) 𝑑x. (45)

Using Lemma 4.7, we obtained

𝐴((𝑢− 𝐼ℎ𝑢, 𝑝− 𝐼ℎ𝑝), (𝑧ℎ, 𝑞ℎ)) + 𝐴((𝜁ℎ, 𝜂ℎ), (𝑧ℎ, 𝑞ℎ)) = −𝑆*ℎ((𝑧ℎ, 𝑞ℎ), (𝑧ℎ, 𝑞ℎ)). (46)

Adding (45) and (46),

𝑆*ℎ((𝑧ℎ, 𝑞ℎ), (𝑧ℎ, 𝑞ℎ)) + 𝑆ℎ((𝜁ℎ, 𝜂ℎ), (𝜁ℎ, 𝜂ℎ)) + 𝛾𝑀 |𝜁ℎ|2𝜔𝑀

= 𝐴((𝐼ℎ𝑢− 𝑢, 𝐼ℎ𝑝− 𝑝), (𝑧ℎ, 𝑞ℎ))⏟  ⏞  
+ 𝑆ℎ(𝐼ℎ𝑢, 𝐼ℎ𝑝), (𝜁ℎ, 𝜂ℎ))− 𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝑢, 𝑝)L (𝜁ℎ, 𝜂ℎ))⏟  ⏞  𝑑x

+ 𝑚(𝐼ℎ𝑢− 𝑢, 𝜁ℎ)−𝑚(𝛿𝑢, 𝜁ℎ)⏟  ⏞  
= (1) + (2) + (3). (47)
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We bound the terms (1)–(3) term by term. The first term is handled by using Lemma 4.9

𝐴((𝐼ℎ𝑢− 𝑢, 𝐼ℎ𝑝− 𝑝), (𝑧ℎ, 𝑞ℎ)) ≤ 𝐶ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
𝑆*ℎ((𝑧ℎ, 𝑞ℎ), (𝑧ℎ, 𝑞ℎ))

1
2 . (48)

Consider the second term on the right hand side of (47)

𝑆ℎ(𝐼ℎ𝑢, 𝐼ℎ𝑝), (𝜁ℎ, 𝜂ℎ))− 𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝑢, 𝑝)L (𝜁ℎ, 𝜂ℎ) 𝑑x

= (ℎ2𝑘∇𝐼ℎ𝑢ℎ,∇𝜁ℎ) + 𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝐼ℎ𝑢, 𝐼ℎ𝑝)L (𝜁ℎ, 𝜂ℎ) 𝑑x

− 𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝑢, 𝑝)L (𝜁ℎ, 𝜂ℎ) 𝑑x + 𝛾𝑢

∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 𝜉𝐹 [∇𝐼ℎ𝑢ℎ · 𝑛][∇𝜁ℎ · 𝑛] 𝑑s

+ 𝛾div

∫︁
Ω

𝜉𝑇 (∇ · 𝐼ℎ𝑢ℎ)(∇ · 𝜁ℎ) 𝑑x. (49)

We now estimate the terms on the right hand side of (49). Using the 𝐻1-stability of 𝐼ℎ, the first term of (49)
can be handled as:

(ℎ2𝑘∇𝐼ℎ𝑢,∇𝜁ℎ) ≤ 𝐶ℎ𝑘 ‖𝑢‖[𝐻1(Ω)]𝑑 𝑆ℎ((𝜁ℎ, 𝜂ℎ), (𝜁ℎ, 𝜂ℎ))
1
2 .

Consider the next two terms of (49). Using the Cauchy– Schwarz inequality and Corollary 4.6 we obtain

𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝐼ℎ𝑢, 𝐼ℎ𝑝)L (𝜁ℎ, 𝜂ℎ) 𝑑x− 𝛾𝐺𝐿𝑆

∑︁
𝑇∈𝜏ℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝑢, 𝑝)L (𝜁ℎ, 𝜂ℎ) 𝑑x

=𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝐼ℎ𝑢− 𝑢, 𝐼ℎ𝑝− 𝑝)L (𝜁ℎ, 𝜂ℎ) 𝑑x

≤

(︃
𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝐼ℎ𝑢− 𝑢, 𝐼ℎ𝑝− 𝑝)2 𝑑x

)︃ 1
2
(︃

𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝜁ℎ, 𝜂ℎ)2 𝑑x

)︃ 1
2

≤ 𝐶ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
𝑆ℎ((𝜁ℎ, 𝜂ℎ), (𝜁ℎ, 𝜂ℎ))

1
2 .

The next term of (49) can be handled by using the Cauchy–Schwarz inequality and the estimate (38),

𝛾𝑢

∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 𝜉𝐹 [∇𝐼ℎ𝑢ℎ · 𝑛][∇𝜁ℎ · 𝑛] 𝑑s

≤

⎛⎝𝛾𝑢

∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 𝜉𝐹 [∇𝐼ℎ𝑢ℎ · 𝑛]2 𝑑s

⎞⎠ 1
2
⎛⎝𝛾𝑢

∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 𝜉𝐹 [∇𝜁ℎ · 𝑛]2 𝑑s

⎞⎠ 1
2

≤

⎛⎝𝛾𝑢

∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 𝜉𝐹 [∇(𝐼ℎ𝑢− 𝑢) · 𝑛]2 𝑑s

⎞⎠ 1
2

𝑆ℎ((𝜁ℎ, 𝜂ℎ), (𝜁ℎ, 𝜂ℎ))
1
2

≤ 𝐶ℎ𝑘 ‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 𝑆ℎ((𝜁ℎ, 𝜂ℎ), (𝜁ℎ, 𝜂ℎ))
1
2 .
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Put together (49) leads to

𝑆ℎ(𝐼ℎ𝑢, 𝐼ℎ𝑝), (𝜁ℎ, 𝜂ℎ))− 𝛾𝐺𝐿𝑆

∑︁
𝑇∈Tℎ

∫︁
𝑇

ℎ2
𝑇 𝜉−1

𝑇 L (𝑢, 𝑝)L (𝜁ℎ, 𝜂ℎ) 𝑑x

≤ 𝐶ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
𝑆ℎ((𝜁ℎ, 𝜂ℎ), (𝜁ℎ, 𝜂ℎ))

1
2 .

The last term can be handled as:

|𝑚(𝐼ℎ𝑢− 𝑢, 𝜁ℎ)−𝑚(𝛿𝑢, 𝜁ℎ)| ≤ 𝐶(|𝐼ℎ𝑢− 𝑢|𝜔𝑀
+ |𝛿𝑢|𝜔𝑀

)𝛾𝑚|𝜁ℎ|𝜔𝑀

≤ 𝐶(ℎ𝑘+1 ‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + 𝛾
1
2
𝑚|𝛿𝑢|𝜔𝑀

)𝛾
1
2
𝑚|𝜁ℎ|𝜔𝑀

.

Put together (47) leads to

|||(𝜁ℎ, 𝜂ℎ), (𝑧ℎ, 𝑞ℎ)|||2 ≤ 𝐶
(︁
ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
+ 𝛾

1
2
𝑚|𝛿𝑢|𝜔𝑀

)︁
|||(𝜁ℎ, 𝜂ℎ), (𝑧ℎ, 𝑞ℎ)|||

⇒ |||(𝜁ℎ, 𝜂ℎ), (𝑧ℎ, 𝑞ℎ)||| ≤ 𝐶(ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
+ 𝛾

1
2
𝑚|𝛿𝑢|𝜔𝑀

).

The combination of the above estimates concludes the claim. �

Corollary 4.11. Under the same assumptions as for Lemma 4.10, there holds

‖𝑢− 𝑢ℎ‖𝑉 ≤ 𝐶
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + ℎ−𝑘𝛾

1
2
𝑚|𝛿𝑢|𝜔𝑀

)︁
, (50)

and

‖𝑢ℎ‖𝑉 ≤ 𝐶
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + 𝛾

1
2
𝑚ℎ−𝑘|𝛿𝑢|𝜔𝑀

)︁
. (51)

Proof. Using Lemma 4.10, we see that

‖𝑢− 𝑢ℎ‖𝑉 = ℎ−𝑘
⃦⃦
ℎ𝑘(𝑢− 𝑢ℎ)

⃦⃦
𝑉
≤ 𝐶ℎ−𝑘(𝑆ℎ(𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) + |𝑢− 𝑢ℎ|2𝜔𝑀

)

≤ 𝐶ℎ−𝑘
(︁
ℎ𝑘(‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)) + 𝛾

1
2
𝑚|𝛿𝑢|𝜔𝑀

)︁
≤ 𝐶

(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + ℎ−𝑘𝛾

1
2
𝑚|𝛿𝑢|𝜔𝑀

)︁
.

The estimate (51) is immediate by using the triangle inequality and the estimate (50). �

The following theorem is the main theoretical result of the paper and states an error estimate for this method.

Theorem 4.12. Let 𝑓 ∈ [𝐿2(Ω)]𝑑 and 𝑢𝑀 = 𝑢|𝜔𝑀
+ 𝛿𝑢 be given. We assume that (𝑢, 𝑝) ∈ [𝐻𝑘+1(Ω)]2 × 𝐿2

0 ∩
𝐻𝑘(Ω) is the solution of (13), and consider (𝑢ℎ, 𝑝ℎ) ∈ Vℎ and (𝑧ℎ, 𝑦ℎ) ∈ Wℎ the discrete solution of (25)–(26).
Then for all 𝐵 ⊂⊂ Ω there exists 𝜏 ∈ (0, 1) such that

|𝑢− 𝑢ℎ|𝐵 ≤ 𝐶ℎ𝑘𝜏
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + ℎ−𝑘|𝛿𝑢|𝜔𝑀

)︁
. (52)

Proof. Let us first consider the weak formulation of the problem satisfied by (𝜁, 𝜂) = (𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ).

𝐴((𝜁, 𝜂), (𝑤, 𝑟)) = (𝑓, 𝑤)𝐿 −𝐴((𝑢ℎ, 𝑝ℎ), (𝑤, 𝑟)).
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We introduce 𝑢ℎ and 𝑝ℎ being fixed. The linear forms 𝑟𝑓 and 𝑟𝑔 on 𝑉0 and 𝐿 respectively defined by: For all
𝑤 ∈ 𝑉0 and 𝑟 ∈ 𝐿

⟨𝑟𝑓 , 𝑤⟩𝑉 ′0 ,𝑉 + (𝑟𝑔, 𝑟)𝐿 := (𝑓, 𝑤)𝐿 −𝐴((𝑢ℎ, 𝑝ℎ), (𝑤, 𝑟)). (53)

It follows that (𝜁, 𝜂) is the solution of (8)–(9) with 𝑓 and 𝑔 in the right hand sides replaced respectively by 𝑟𝑓

and 𝑟𝑔. Applying now Corollary 2.2, we directly get

|𝜁|𝐵 ≤ 𝐶(‖𝑟𝑓‖𝑉 ′0
+ ‖𝑟𝑔‖𝐿 + ‖𝜁‖𝐿)1−𝜏 (‖𝑟𝑓‖𝑉 ′0

+ ‖𝑟𝑔‖𝐿 + |𝜁|𝜔𝑀
)𝜏 . (54)

Using (25), we can write the residuals: for all (𝑤ℎ, 𝑞ℎ) ∈ Wℎ

< 𝑟𝑓 , 𝑤 >𝑉 ′0 ,𝑉 +(𝑟𝑔, 𝑟)𝐿 := (𝑓, 𝑤 − 𝑤ℎ)𝐿 −𝐴((𝑢ℎ, 𝑝ℎ), (𝑤 − 𝑤ℎ, 𝑟 − 𝑞ℎ))− 𝑆*ℎ((𝑧ℎ, 𝑦ℎ), (𝑤ℎ, 𝑞ℎ)). (55)

We take 𝑤ℎ = 𝐼ℎ𝑤 and 𝑞ℎ = 𝐼ℎ𝑟 in (55). Now, let us estimate the terms on the right hand side of (55).
Consider the first two terms of (55)

(𝑓, 𝑤 − 𝑤ℎ)𝐿−𝐴((𝑢ℎ, 𝑝ℎ), (𝑤 − 𝑤ℎ, 𝑟 − 𝑞ℎ))
= (𝑓, 𝑤 − 𝑤ℎ)𝐿 − (𝑎(𝑢ℎ, 𝑤 − 𝑤ℎ)− 𝑏(𝑝ℎ, 𝑤 − 𝑤ℎ)) + 𝑏(𝑟 − 𝑞ℎ, 𝑢ℎ)). (56)

Applying an integration by parts to the first two terms of (56) and using Lemma 4.10,

(𝑓, 𝑤 − 𝑤ℎ)𝐿−(𝑎(𝑢ℎ, 𝑤 − 𝑤ℎ)− 𝑏(𝑝ℎ, 𝑤 − 𝑤ℎ))

= |
∑︁

𝑇∈Tℎ

∫︁
𝑇

L (𝑢, 𝑝)(𝑤 − 𝑤ℎ) 𝑑x−
∑︁

𝑇∈Tℎ

∫︁
𝑇

L (𝑢ℎ, 𝑝ℎ)(𝑤 − 𝑤ℎ) 𝑑x|

+
∑︁

𝐹∈F int
ℎ

∫︁
𝐹

|[∇(𝑢− 𝑢ℎ) · 𝑛]||(𝑤 − 𝑤ℎ)| 𝑑s

= |
∑︁

𝑇∈Tℎ

∫︁
𝑇

L (𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ)(𝑤 − 𝑤ℎ) 𝑑x|+
∑︁

𝐹∈F int
ℎ

∫︁
𝐹

|[∇(𝑢− 𝑢ℎ) · 𝑛]||(𝑤 − 𝑤ℎ)| 𝑑s

≤ 𝐶

(︃ ∑︁
𝑇∈Tℎ

ℎ2
𝑇 𝜉−1

𝑇 ‖L (𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ)‖2𝐿2(𝑇 )

)︃ 1
2

ℎ−1 ‖𝑤 − 𝑤ℎ‖𝐿

+ 𝐶

⎛⎝ ∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 𝜉𝐹 [∇(𝑢− 𝑢ℎ) · 𝑛]2 𝑑s

⎞⎠ 1
2
⎛⎝ ∑︁

𝐹∈F int
ℎ

∫︁
𝐹

ℎ−1
𝐹 𝜉−1

𝐹 (𝑤 − 𝑤ℎ)2 𝑑s

⎞⎠ 1
2

≤ 𝐶 |||(𝑢− 𝑢ℎ, 𝑝− 𝑝ℎ), (𝑧ℎ, 𝑞ℎ)|||ℎ−1 ‖𝑤 − 𝑤ℎ‖𝐿

+ 𝐶

⎛⎝ ∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 𝜉𝐹 [∇(𝑢− 𝑢ℎ) · 𝑛]2 𝑑s

⎞⎠ 1
2
⎛⎝ ∑︁

𝐹∈F int
ℎ

∫︁
𝐹

ℎ−1
𝐹 𝜉−1

𝐹 (𝑤 − 𝑤ℎ)2 𝑑s

⎞⎠ 1
2

≤ 𝐶(ℎ𝑘 ‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ℎ𝑘 ‖𝑝‖𝐻𝑘(Ω)) ‖𝑤‖[𝐻1(Ω)]𝑑 + ℎ𝑘 ‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 ‖𝑤‖[𝐻1(Ω)]𝑑

≤ 𝐶ℎ𝑘(‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)) ‖𝑤‖[𝐻1(Ω)]𝑑 . (57)

The last term is handled using the Cauchy–Schwarz inequality and Lemma 4.10,

𝑏(𝑟 − 𝑞ℎ, 𝑢ℎ) ≤ ‖𝑟 − 𝑞ℎ‖𝐿 ‖∇ · 𝑢ℎ‖𝐿

≤ ‖𝑟‖𝐿 ‖∇ · 𝑢ℎ‖𝐿

≤ 𝐶(ℎ𝑘(‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)) + 𝛾1/2
𝑚 |𝛿𝑢|𝜔𝑀

) ‖𝑟‖𝐿 . (58)
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Applying the above bounds in (56) leads to

(𝑓, 𝑤 − 𝑤ℎ)𝐿−𝐴((𝑢ℎ, 𝑝ℎ), (𝑤 − 𝑤ℎ, 𝑟 − 𝑞ℎ)) (59)

≤ 𝐶(ℎ𝑘(‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)) + 𝛾1/2
𝑚 |𝛿𝑢|𝜔𝑀

)(‖𝑤‖[𝐻1(Ω)]𝑑 + ‖𝑟‖𝐿).

The last term of (55) is handled using Lemma 4.10

𝑆*ℎ((𝑧ℎ, 𝑦ℎ), (𝑤ℎ, 𝑞ℎ)) ≤ 𝑆*ℎ((𝑧ℎ, 𝑦ℎ), (𝑧ℎ, 𝑦ℎ))
1
2 𝑆*ℎ((𝑤ℎ, 𝑞ℎ), (𝑤ℎ, 𝑞ℎ))

1
2

≤ 𝐶
(︁
ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
+ 𝛾1/2

𝑚 |𝛿𝑢|𝜔𝑀

)︁
(‖𝑤‖[𝐻1(Ω)]𝑑 + ‖𝑟‖𝐿). (60)

As a consequence we can bound the quantity defined in (55) by

⟨𝑟𝑓 ,𝑤⟩𝑉 ′0 ,𝑉 + (𝑟𝑔, 𝑟)𝐿

≤ 𝐶(ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
+ 𝛾1/2

𝑚 |𝛿𝑢|𝜔𝑀
)(‖𝑤‖[𝐻1(Ω)]𝑑 + ‖𝑟‖𝐿). (61)

Since this bound holds for all 𝑤 ∈ 𝑉0 and 𝑟 ∈ 𝐿, we conclude that

‖𝑟𝑓‖𝑉 ′0
+ ‖𝑟𝑔‖𝐿 ≤ 𝐶

(︁
ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
+ 𝛾1/2

𝑚 |𝛿𝑢|𝜔𝑀

)︁
. (62)

Using the Poincaré inequality (27), we have the bound

‖𝜁‖𝐿 ≤ 𝐶(|𝜁|𝜔𝑀
+ ‖∇𝜁‖𝐿) ≤ 𝐶ℎ−𝑘

(︀
|ℎ𝑘𝜁|𝜔𝑀

+
⃦⃦
ℎ𝑘∇𝜁

⃦⃦
𝐿

)︀
≤ 𝐶ℎ−𝑘 |||(𝜁, 0), (0, 0)|||

≤ 𝐶ℎ−𝑘
(︁
ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
+ 𝛾1/2

𝑚 |𝛿𝑢|𝜔𝑀

)︁
≤ 𝐶

(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + 𝛾1/2

𝑚 ℎ−𝑘|𝛿𝑢|𝜔𝑀

)︁
.

Thus, we can bound the terms in the right-hand side of (54) in the following way:

‖𝑟𝑓‖𝑉 ′0
+ ‖𝑟𝑔‖𝐿 + ‖𝜁‖𝐿 ≤ 𝐶

(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + 𝛾1/2

𝑚 ℎ−𝑘|𝛿𝑢|𝜔𝑀

)︁
(63)

and

‖𝑟𝑓‖𝑉 ′0
+ ‖𝑟𝑔‖𝐿 + |𝜁|𝜔𝑀

≤ 𝐶ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + 𝛾1/2

𝑚 |𝛿𝑢|𝜔𝑀

)︁
. (64)

Using these two bounds in (54), we conclude that

|𝜁|𝐵 ≤ (‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + 𝛾1/2
𝑚 ℎ−𝑘|𝛿𝑢|𝜔𝑀

)1−𝜏 (ℎ𝑘
(︁
‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω)

)︁
+ 𝛾1/2

𝑚 |𝛿𝑢|𝜔𝑀
)𝜏

≤ 𝐶ℎ𝜏𝑘(‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + 𝛾1/2
𝑚 ℎ−𝑘|𝛿𝑢|𝜔𝑀

),

which completes the proof of the theorem. �

5. Numerical simulations

In this section, we use several two-dimensional numerical examples to apply the methodology described in
Section 3. All experiments have been implemented using the open-source computing platform FEniCSx [2, 37].
A docker image to reproduce the numerical results is available at https://doi.org/10.5281/zenodo.7442458.
The free parameters in (25)–(26) are set to

𝛼 = 𝛾𝑢 = 𝛾div = 𝛾𝐺𝐿𝑆 = 𝛾*𝑢 = 𝛾*𝑝 = 10−1, 𝛾𝑀 = 1000.

https://doi.org/10.5281/zenodo.7442458
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In all the numerical examples. In the first example we will verify the convergence orders for different polynomial
orders using equal order interpolation 𝑘 for all variables. Then we consider the same test case using the minimal
polynomial order that results in the same error bounds, 𝑘1 = 1, 𝑘2 = max{𝑘 − 1, 1} and 𝑘3 = 1. Finally, we
study the robustness of the error estimate with respect to the viscosity for a configuration where the target
subdomain 𝐵 is strictly downwind the data subdomain 𝜔𝑀 , so that every point 𝐵 is on a streamline intersecting
𝜔𝑀 .

5.1. Convergence study: Stokes example

To demonstrate the convergence behaviour of the method introduced in Section 3, we take the test case for
the Stokes problem from [17]. Let Ω = [0, 1]2 be the unit square. We consider the velocity and pressure fields
given by

u(𝑥, 𝑦) = (20𝑥𝑦3, 5𝑥4 − 5𝑦4)
𝑝(𝑥, 𝑦) = 60𝑥2𝑦 − 20𝑦3 − 5.

It is simple to demonstrate that (𝑢, 𝑝) is a solution to the homogeneous Stokes problem with 𝜈 = 1, corresponding
to the system (1)–(2) with 𝑈 = 0 and 𝑓 = 0. As a result, we consider (25)–(26) with 𝑈 = 0 and 𝑓 = 0. Two
different geometric settings are considered: one in which the data is continued in the convex geometry, inside the
convex hull of 𝜔𝑀 , and one in which the solution is continued in the non-convex geometry, outside the convex
hull of 𝜔𝑀 . The convex geometry represented by Figure 1a is given as:

𝜔𝑀 = Ω ∖ (0.1, 0.9)× (0.25, 1), 𝐵 = Ω ∖ (0.1, 0.9)× (0.95, 1),

and the non-convex geometry represented by Figure 1b is given as:

𝜔𝑀 = {(𝑥, 𝑦) : 0.25 ≤ 𝑥 ≤ 0.75, 0.05 ≤ 𝑦 ≤ 0.5},
𝐵 = {(𝑥, 𝑦) : 0.125 ≤ 𝑥 ≤ 0.875, 0.05 ≤ 𝑦 ≤ 0.95}.

We begin by performing the computation using unperturbed data. The relative 𝐿2- norm errors
‖𝑢− 𝑢ℎ‖[𝐿2(𝐵)]𝑑 / ‖𝑢‖[𝐿2(𝐵)]𝑑 are computed in the subdomain 𝐵. In addition, we present the history of con-
vergence of the residual quantity for velocity stabilization:⎛⎝𝛾𝑢

∑︁
𝐹∈F int

ℎ

∫︁
𝐹

ℎ𝐹 [(∇𝑢ℎ −∇𝐼ℎ𝑢ℎ) · 𝑛]2 𝑑s

⎞⎠ 1
2

.

Figure 2 displays the velocity, pressure errors and residual quantity in the convex and non-convex geometry.
Filled squares, circles and triangles represent the velocity errors; dashed lines represent the pressure error, and
the plain thin lines represent the residual. The expected order of convergence is observed for the residual in
Lemma 4.10. The local velocity error behaves consistently with the convergence rates obtained in Theorem 4.12.
We can also see in Figure 2 that the higher order polynomials are more satisfactory for ill-posed problems. Next,
we proceed with the numerical verification of the above method with data perturbation. Consider the perturbed
data

𝑢𝑀 = 𝑢|𝜔𝑀
+ 𝛿𝑢,

with random perturbations
|𝛿𝑢|𝜔𝑀

= O(ℎ𝑘−𝜃),

for some 𝜃 ∈ N0 available for implementing our method. According to Theorem 4.12, we have the estimate

|𝑢− 𝑢ℎ|𝐵 ≤ 𝐶ℎ𝑘𝜏−𝜃(‖𝑢‖[𝐻𝑘+1(Ω)]𝑑 + ‖𝑝‖𝐻𝑘(Ω) + 1), (65)



DATA ASSIMILATION FINITE ELEMENT METHOD FOR THE LINEARIZED NAVIER-STOKES EQUATIONS 237

Figure 1. Sketch of the domains used for computations in Section 5.1. (a) Convex geometry.
(b) Non-convex geometry.

Figure 2. Relative error for geometrical setup displayed in Figure 1. (a) Errors for convex
geometry in Figure 1a. (b) Errors for non-convex geometry in Figure 1b.

consequently, convergence requires the condition 𝑘𝜏 − 𝜃 > 0. Figures 3–4 present the convergence history of the
velocity, pressure and residual quantities with the data perturbation in the convex and non-convex geometry,
respectively. The effect of different values of 𝜃 for relative 𝐿2-error are studied in Figures 3–4. The relative error
for 𝜃 = 0 is displayed in Figures 3a and 4a. In both cases, the results are in agreement with the Theorem 4.12.
As stated in (65), the 𝑝 = 1 polynomial approximation may diverge for 𝜃 = 1, which is confirmed by Figure 3b.
Next, the method 𝑝 = 2 converges linearly, whereas 𝑝 = 3 still manages to converge, albeit at a slower rate. As
shown in the Figure 3c, this result is consistent with the fact that for 𝜃 = 2, convergence is no longer observed
for any 𝑝 ≤ 3. Similar convergence results are observed in the non-convex domain as shown in Figure 4. The
results of Figures 3–4 indicate that for the convex geometry 𝜏 ≈ 1 and for the non-convex geometry 𝜏 ≈ 2

3 . In
Figures 5–7 the same results are presented for the case where the minimal polynomial order is considered that
is 𝑘1 = 1, 𝑘2 = max{𝑘 − 1, 1}, 𝑘3 = 1. The results are very similar and we conclude that for these numerical
examples there is no disadvantage in taking the smallest possible dual space.
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(a) (b) (c)

Figure 3. Relative error for geometrical setup Figure 1a in terms of the strength of the data
perturbation. (a) 𝜃 = 0. (b) 𝜃 = 1. (c) 𝜃 = 2.

(a) (b) (c)

Figure 4. Relative error for geometrical setup Figure 1b in terms of the strength of the data
perturbation. (a) 𝜃 = 0. (b) 𝜃 = 1. (c) 𝜃 = 2.

Figure 5. Relative error with using the minimal polynomial order for geometrical setup dis-
played in Figure 1. (a) Errors for convex geometry in Figure 1a. (b) Errors for non-convex
geometry in Figure 1b.

5.2. Convergence study with varying viscosity

In this subsection, we consider the flow of a viscous Newtonian fluid between two solid boundaries at 𝑦 =
𝐻,−𝐻 driven by a constant pressure gradient. The source term 𝑓 is chosen such that the solution of the plane
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(a) (b) (c)

Figure 6. Relative error with using the minimal polynomial order for geometrical setup
Figure 1a in terms of the strength of the data perturbation. (a) 𝜃 = 0. (b) 𝜃 = 1. (c) 𝜃 = 2.

(a) (b) (c)

Figure 7. Relative error with using the minimal polynomial order for geometrical setup
Figure 1b in terms of the strength of the data perturbation. (a) 𝜃 = 0. (b) 𝜃 = 1. (c) 𝜃 = 2.

Poiseuille flow

𝑢(𝑥, 𝑦) = 𝑈(𝑥, 𝑦) =
(︂

𝑃

2𝜇
(𝐻2 − 𝑦2), 0

)︂
,

𝑝(𝑥, 𝑦) =
(︂

1
2
− 𝑥

)︂
𝑃,

satisfies the model problem. We demonstrate the performance of the numerical method for varying viscosity in
a domain where the target subdomain is aligned with the flow, shown in Figure 8, and defined by

𝜔𝑀 = (0.0, 0.2)× (0.2, 0.8), 𝐵 = (0.2, 0.8)× (0.45, 0.55). (66)

As in the previous section, we have examined the convergence of the method by performing numerical tests on
both unperturbed and perturbed data. We vary the viscosity between 𝜈 = 1 and 𝜈 = 0. Observe that since no
boundary conditions are imposed nothing needs to be changed in the formulation in the singular limit. Also
note that the choice of 𝜉𝑇 and 𝜉𝐹 in (20)–(21) mimicks the choice for the stabilized method for (the well-posed)
Oseen’s problem used to improve robustness in the high Reynolds limit. Also with reference to high Reynolds
computations for the well-posed case we here consider equal order interpolation for all fields.

We wish to explore if the results on stability for the unique continuation for convection–diffusion equations
in the limit of small diffusivity [19, 20] carry over to the case of incompressible flow. The key observation
there was that for smooth solutions to the convection–diffusion equation the method had Hölder stable error
estimates when diffusion dominates, similar to the analysis above, but in the convection dominated regime the
stability in a subdomain slightly smaller than that spanned by the characteristics intersecting the data zone is
Lipschitz. In that zone the convergence for the ill-posed problem coincides with that of the well-posed problem
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Figure 8. Data set 𝜔𝑀 and error measurement regions (B).

for piecewise affine approximation. As a means to study the effect of incompressibility we compare with the
case where in addition to 𝑢 in 𝜔𝑀 , 𝑝 is also provided as data in Ω. The proposed method can be modified to
accommodate this case by including 1

2 ‖𝑝ℎ − 𝑝‖Ω, as an additional term in the Lagrangian (17). Note that when
the pressure is added the velocity pressure coupling is strongly reduced. The relative 𝐿2-errors for running the
same problem as above are displayed in Figure 9. Left side plots of Figure 9 show the results without adding
any additional pressure term, and right side plots of Figure 9 display the results by including the pressure data.
We observe that the results with pressure information are consistently better than those without. In particular
for high order polynomials and high Reynolds number the information on the pressure appears to provide a
very strong enhancement of the stability. Further, the effect of data perturbations for different values of the
viscosity coefficient is studied with and without the pressure augmentation, see Figures 10–11. We observe that
if a priori information on the pressure is added and viscosity is reduced the convergence order for the relative
𝐿2-error increases. This is consistent with the results of [19,20]. If the pressure is not added however we do not
observe this effect and it appears from these computational examples that we can not expect the result from
[20] to hold for linearized incompressible flow.

In Figure 10–11 we present the results under perturbations of data. These results show that the robustness
under perturbations is also substantially enhanced if the pressure is known, indicating that the pressure velocity
coupling introduces a strong sensitivity to perturbations.

6. Conclusions

We have introduced a finite element data assimilation method for the linearized Navier-Stokes’ equation.
We proved the natural extension of the error estimates of [9] valid for piecewise affine approximation to the
case of arbitrary polynomial orders. The expected increase in convergence rate was obtained, but the estimates
also show that the sensitivity of the system to perturbations in data increase. The theoretical results were
validated on some academic test cases. The main observations are that high order approximation for the ill-
posed linearized Navier-Stokes’ equations pays off, at least for sufficiently clean data. The spaces for the dual
variables on the other hand can be chosen with piecewise affine approximation without loss of accuracy of the
approximation. A study where the viscosity was varied showed that the incompressibility condition and the
associated velocity-pressure coupling severely compromise the convective Lipschitz stability that is known to
hold in the zone in the domain defined by points on the characteristics intersecting the data zone. If additional



DATA ASSIMILATION FINITE ELEMENT METHOD FOR THE LINEARIZED NAVIER-STOKES EQUATIONS 241

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Relative error for geometrical setup Figure 8. (a) Without pressure, 𝜈 = 100. (b)
With pressure, 𝜈 = 100. (c) Without pressure, 𝜈 = 10−2. (d) With pressure, 𝜈 = 10−2. (e)
Without pressure, 𝜈 = 10−4. (f) With pressure, 𝜈 = 10−4. (g) Without pressure, 𝜈 = 0. (h)
With pressure, 𝜈 = 0.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Relative errors in terms of the strength of the data perturbation for geometrical
setup displayed in Figure 8. (a) Without pressure 𝜃 = 0, 𝜈 = 100. (b) With pressure 𝜃 = 0,
𝜈 = 100. (c) Without pressure 𝜃 = 0, 𝜈 = 10−2. (d) With pressure 𝜃 = 0, 𝜈 = 10−2. (e) Without
pressure 𝜃 = 0, 𝜈 = 10−4. (f) With pressure 𝜃 = 0, 𝜈 = 10−4. (g) Without pressure 𝜃 = 0,
𝜈 = 0. (h) With pressure 𝜃 = 0, 𝜈 = 0.
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(a) (b)

(c) (d)

Figure 11. Relative errors in terms of the strength of the data perturbation for geometrical
setup displayed in Figure 8. (a) Without pressure 𝜃 = 1, 𝜈 = 1. (b) With pressure 𝜃 = 1, 𝜈 = 1.
(c) Without pressure 𝜃 = 2, 𝜈 = 1. (d) With pressure 𝜃 = 2, 𝜈 = 1.

data in the form of global pressure measurements were added the results improved and were similar to the those
of the scalar convection–diffusion equation.

Future work will focus on the nonlinear case and the possibility of enhancing stability by adding knowledge
of some other variable than the pressure, such as for example a passive tracer as in scalar image velocimetry
[18].
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