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Gray matter networks are altered with amyloid accumulation in the earliest stage of AD,
and are associated with decline throughout the AD spectrum. It remains unclear to what
extent gray matter network abnormalities are associated with hyperphosphorylated-tau
(p-tau). We studied the relationship of cerebrospinal fluid (CSF) p-tau181 with gray matter
networks in non-demented participants from the European Prevention of Alzheimer’s
Dementia (EPAD) cohort, and studied dependencies on amyloid and cognitive status.
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Gray matter networks were extracted from baseline structural 3D T1w MRI. P-tau181 and
abeta were measured with the Roche cobas Elecsys System. We studied the associations of
CSF biomarkers levels with several network’s graph properties. We further studied
whether the relationships of p-tau 181 and network measures were dependent on amyloid
status and cognitive stage (CDR). We repeated these analyses for network properties at a
regional level, where we averaged local network values across cubes within each of 116
areas as defined by the automated anatomical labeling (AAL) atlas. Amyloid positivity
was associated with higher network size and betweenness centrality, and lower gamma,
clustering and small-world coefficients. Higher CSF p-tau 181 levels were related to lower
betweenness centrality, path length and lambda coefficients (all p < 0.01). Three-way inter-
actions between p-tau181, amyloid status and CDR were found for path length, lambda and
clustering (all p < 0.05): Cognitively unimpaired amyloid-negative participants showed
lower path length and lambda values with higher CSF p-tau181 levels. Amyloid-positive
participants with impaired cognition demonstrated lower clustering coefficients in associ-
ation to higher CSF p-tau181 levels.
Our results suggest that alterations in gray matter network clustering coefficient is an

early and specific event in AD.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Alzheimer’s Disease (AD) is a progressive and disabling
neurodegenerative disease, and is estimated to be respon-
sible for 60 % to 80 % of dementia cases [45]. Amyloid
pathology is hypothesized to initiate the AD pathological
cascade [59,20] followed by the aggregation of intraneu-
ronal hyperphosphorylated tau (p-tau) [30,24]. Both amy-
loid and tau can provoke disruptions of neuronal
connectivity and synaptic loss, even in early disease stages,
when cognition is still normal [3,40]. Progressive synaptic
loss as the disease progresses shows a close correspon-
dence with cognitive decline [49]. As such, imaging mea-
sures that can capture consequences of connectivity loss
may help identify individuals at risk for cognitive decline
for secondary prevention interventions.

One approach captures brain connectivity from patterns
of covariation of gray matter volume between brain areas
on structural magnetic resonance image (MRI) T1-
weighted sequences [32,56]. Such patterns of cortical sim-
ilarity have been associated with coordinated growth dur-
ing development [1], functional co-activation [2] and
axonal connectivity [18]. Gray matter networks have been
reported as being disrupted in AD [39,55,22], correlate
with disease severity [57,64,39] and predict imminent cog-
nitive decline [57]. In preclinical stages, they are associated
with early amyloid accumulation [26,54]. Another patho-
logical hallmark of AD is tau neurofibrillary tangles. Tau
is promoter of axonal stabilization, suggesting that individ-
uals with higher tau levels will show greater gray matter
network disruptions and that this would relate to amyloi-
dosis. CSF p-tau 181is a sensitive marker for tau tangles
[51] and so it can be hypothesized that this measure may
show stronger associations with GM networks.

Here, we studied whether higher CSF p-tau 181 levels
are associated with worse gray matter network disruptions
in people without dementia from the European Prevention
of Alzheimer’s Dementia (EPAD) cohort. We further tested
whether relationships between p-tau 181 levels and gray
matter network connectivity were dependent on amyloid
and/or CDR status.
2

Methods

Study population

Data were drawn from the v1500.0 baseline data
release from the European Prevention of Alzheimer’s
Dementia (EPAD) multicenter study [42]. EPAD general
inclusion criteria were age above 50 years and no diagnosis
of dementia. Demographic, cognitive, neuroimaging, fluid
biomarkers and genetic outcomes were collected [50].
For this study, we selected individuals who had cere-
brospinal fluid (CSF), neuropsychological and structural
MRI data available. Neuropsychological examination
included the Mini-Mental State Evaluation (MMSE, [14]),
and Clinical Dementia Rating (CDR) scale [33].

CSF analysis

CSF biomarkers were obtained using a harmonized pre-
analytical protocol and analyses were performed on the
fully automated Roche cobas Elecsys System at the Clinical
Neurochemistry Laboratory, Mölndal, Sweden [50]. Con-
centrations of amyloid-beta (Ab 1–42) and phosphorylated
tau (p-tau181) were determined according to the manufac-
turer’s instructions. We used CSF Ab1-42 levels < 1000 pg/
mL to define amyloid positive (A+) subjects as validated
previously [23]. Continuous p-tau181 measurements were
used in the present analyses.

MRI acquisition and preprocessing

3D-T1 weighted structural MRI scans were acquired at
baseline with seven different MRI scanners from 19 scan-
ning sites using a harmonized scanning protocol [53].
ExploreASL [34], an SPM-based toolbox [37] designed to
harmonize image processing in multimodal and multicen-
ter studies, was used for segmentation of subject specific
gray matter (GM), white matter (WM) and CSF from T1w
images. Specifically, this step was performed using the
Computational Anatomy Toolbox 12 (CAT12), which esti-
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mates and corrects the bias field inhomogeneity in 3D T1w
images, and iteratively improves the non-linear registra-
tion to MNI standard space and the creation of partial vol-
ume maps of gray matter (GM), white matter (WM) and
CSF [17]. GM segmentations were resliced into
2 � 2 � 2 mm3 voxels to reduce the total number of voxels.
The Automated Anatomical Labeling atlas (AAL3, [58,43]),
including 116 regions of interest (ROI), was warped into
each subject space in order to summarize local network
properties. MRI and CSF biomarkers were acquired on the
same day for each participant.
Gray matter network construction

Single-subject gray matter networks were computed
from gray matter segmentations, using an automated
method previously described and publicly available [56].
Nodes were defined as 3 � 3 � 3 voxel cubes. Using cubes
keeps the 3D structure of the cortex thereby using spatial
information from the MRI scan in addition to GM density
values. Connections are then determined between each
pair of nodes by calculating Pearson’s correlations of gray
matter density values across corresponding voxels
between cube pairs. High correlations between cubes thus
reflect similarity in both the local thickness and the folding
structure of the cortex. This process results in an NxN sim-
ilarity matrix for each participant, where N is the number
of cubes extracted for that participant. Networks are then
binarized using a subject-specific threshold determined
with a random permutation method ensuring a similar
chance for all individuals to include at most 5 % spurious
correlations in the network [35]. From the resulting undi-
rected and unweighted networks, the Brain Connectivity
Fig. 1. Gray Matter Network construction. After preprocessing, each GM segmen
cubes within a scan was computed with Pearson’s correlation coefficient and st
threshold that ensured 5 % chance of spurious connections (corresponding to a si
with similar spatial degree distribution were generated; 4) network properties (s
were calculated and 5) normalized properties (gamma, lambda and small-wor
computed.

3

Toolbox (BCT, [44]) was used to extract graph features
describing local and global network topology. GM network
construction is shown in Fig. 1.
Network metrics

We computed the following network metrics (see
detailed explanation below): size, connectivity density,
degree, betweenness centrality (BC), clustering coefficient
(Cp) and characteristic path length (Lp). In addition, path
length and clustering coefficient of each graph were com-
pared with those extracted from 5 randomized reference
graphs, generated by rearranging the edges while keeping
identical size and degree distribution [31], to obtain nor-
malized clustering (gamma, c), normalized path length
(lambda, k) and small-world coefficient, as the ratio of c
and k.

Connectivity density is computed as the fraction of pre-
sent connections relative to possible connections, and
gives an indication on the sparsity of the network. Degree
is the number of a node’s connections, and the global
degree is the average across all nodes. Networks showing
disconnected nodes, i.e. nodes with degree equal to zero,
were excluded from the analysis [4]. Betweenness centrality
is defined as the number of all shortest paths in the net-
work that pass through a given node [16]. Clustering coeffi-
cient is the fraction of a node’s neighbors which are also
neighbors of each other [61], and characteristic path length
is the length of all paths between all pairs of nodes in the
network [5]. Degree, betweenness centrality, clustering
and path length were first extracted for each GMN cube
in the subject’s network and then averaged to obtain mean
global topological descriptors. Regional values were com-
tation is divided into 3 � 3 � 3 voxel cubes and 1) similarity between all N
ored as an N by N matrix; 2) the similarity matrix was binarized using a
gnificance level of p-value = 0.05 FDR-corrected); 3) five random matrices
ize, density, degree, BC, clustering, path length) from the binarized matrix
ld coefficient) through the comparison with the random networks were



Table 1
Demographic, clinical and network characteristics of amyloid positive and negative individuals.

Characteristics Amyloid negative
(n = 814)

Amyloid positive
(n = 384)

p-value

Female, N (%) 475 (58.4) 198 (51.6) 0.032
Age, Mean ± SD 64.8 ± 6.96 66.5 ± 7.37 <0.001
MMSE, mean ± SD 28.7 ± 1.42 28.4 ± 1.92 <0.001
CDR = 0.5, N (%) 115 (14.1) 97 (25.3) <0.001
Total tau, Mean ± SD 218 ± 75.2 226 ± 126 0.182
Phospho tau, Mean ± SD 18.3 ± 7.28 21.0 ± 14.7 <0.001
Network Density, Mean ± SD 0.20 ± 0.01 0.19 ± 0.01 <0.001
Network Size, Mean ± SD 7226.76 ± 624.08 7247.38 ± 666.45 0.602
Network Degree, Mean ± SD 1454.00 ± 135.43 1436.94 ± 144.72 0.047
Network Betweenness Centrality, Mean ± SD 6177.08 ± 550.33 6222.36 ± 585.85 0.193
Network Path Length, Mean ± SD 1.85 ± 0.02 1.86 ± 0.02 <0.001
Network Lambda, Mean ± SD 1.03 ± 0.01 1.03 ± 0.01 0.220
Network Clustering, Mean ± SD 0.49 ± 0.02 0.48 ± 0.02 <0.001
Network Gamma, Mean ± SD 1.35 ± 0.04 1.34 ± 0.05 <0.001
Network Small-World Coefficient, Mean ± SD 1.31 ± 0.04) 1.30 ± 0.05 <0.001

Abbreviations: MMSE = Mini-mental state evaluation; CDR = Clinical dementia rating scale. Statistical differences between amyloid positive and negative
individuals are reported.
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puted as the mean across cubes within each of the 116
regions defined by the AAL atlas [58]. Global and local
GM volume were also extracted in this step to be used as
a covariate in subsequent statistical analyses. All global
and regional GMN properties were z-scored to improve
comparability and interpretability of results.
Statistical analyses

Chi-square test and paired samples t-test were initially
used to compare demographics, clinical and network char-
acteristics between A+ and A� participants.

We first studied associations of amyloid status and p-
tau181 levels with GM network measures across the total
group. For each of the network’s metrics, we ran separate
linear mixed models with amyloid status and p-tau
181as main effects. A random intercept for the scanning
site was included to adjust for potential center-specific
effects. Models were further adjusted for CDR, age, sex,
total GM volume and network size. Covariate selection
was based on previous evidence showing that participant
demographics, network size and disease status show an
effect on gray matter network topology [9,19]. Next, we
tested whether the relationship between p-tau181 and
GM network meaures were dependent on amyloid status
or CDR by testing the effect of the three-way interaction
between p-tau, amyloid status and CDR on network prop-
erties. We repeated these analyses at a regional level for all
ROI included in the AAL atlas across the whole group.
Regional associations were corrected for age, sex, regional
GM volume, site and adjusted for multiple testing using
false discovering rate (FDR) correction [62]. All variables
were Z-scored before being used in linear models. An over-
view of the statistical model used is given in Table S1 of
Supplementary materials.

Statistical significance was set at p-value < 0.05. All sta-
tistical analyses were performed in R, version 4.0.3.1
1 https://cran.r-project.org/.
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Results

Sample characteristics

From all 1500 baseline EPAD participants, a total of
1198 participants fulfilled the inclusion criteria for this
study (Table 1). Mean age was 65.3 ± 7.14 and 673
(56.2 %) were female. All participants were without
dementia at inclusion with an average MMSE of 28.7
(SD = 1.53), and 17 % had a CDR of 0.5. There were 384
(32.1 %) individuals who were CSF A+. Higher p-tau181
concentrations were found in A+ compared to A� partici-
pants, showing mean p-tau181 measurements of 21 pg/
ml and 18.3 pg/ml respectively. No differences in total
tau were observed based on amyloid status. Moreover, A
+ participants showed lower network density, clustering,
gamma and small-world coefficient, and higher path
length values.

CSF biomarkers relationship with global network measures

Amyloid positivity was associated with larger network
size (b = 0.12, p < 0.001), which was used as a covariate
in other models, lower gamma (b = �0.1, p < 0.05), lower
small-world coefficient (b = �0.12, p < 0.05; Fig. S1).
Higher p-tau181 levels were associated with a higher net-
work size (b = 0.088, p < 0.001; Fig. 2), and lower between-
ness centrality (b = �0.024, p = 0.003), lambda (b = �0.106,
p = 0.011) and path length (b = �0.061, p = 0.007). A three
way interaction of p-tauXabetaXCDR was significant for
lambda, path length and clustering. For the participants
in the CDR = 0 group, A� participants had higher path
length and lambda values than A+, and only in A�, higher
p-tau181 was associated with lower values for path length
(for A�: b = �0.007, p = 0.007; for A+: b = 0.001, p = 0.906;
p interaction = 0.04) and lambda (for A�: b = �0.011,
p = 0.012; for A+: b = 0.001, p = 0.870; p interac-
tion = 0.027). In participants with CDR = 0.5, A+ partici-
pants showed lower clustering coefficient compared to
A�, and only in the A+ group higher p-tau181 concentra-

https://cran.r-project.org/


Fig. 2. Association of CSF p-tau181 with global gray matter network properties. Adjusted variable plots showing network metrics relationship with p-tau
181after correcting for age, sex, GM volume, size of the network and scanning site (as random intercept) are shown. * p < 0.05; ** p < 0.01. *** p < 0.001.
Abbreviations: SW = Small world Coefficient; BC = Betweenness Centrality.
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tions were associated with lower clustering coefficient val-
ues (for A�: b = 0.006, p = 0.09; for A+: b = �0.003,
p = 0.05; p interaction = 0.006). Significant three-way
interactions are shown in Fig. 3. All model coefficients
are shown in Tables S2–S4 of Supplementary materials.
Beta values refers to standardized measures.
CSF biomarkers relationship with local network measures

We then studied whether the associations observed in
the global analysis were specific to a particular anatomical
area. Amyloid status did not show significant association
with regional network properties after adjusting for covari-
ates and FDR correction. Across the whole group, we found
that higher p-tau181 levels were related to lower path
length values in the precuneus bilaterally; left paracentral
lobule, left supplementary motor area and left middle cin-
gulate cortex; and right postcentral gyrus (Fig. 4). Associa-
tions of p-tau181 with regional clustering, degree and
betweenness centrality did not survive FDR multiple com-
parison correction (unadjusted relationships are shown in
Fig. S1 of Supplementary materials). There was no signifi-
cant effect of the interaction term on regional properties.
5

Discussion

In this study, we found that CSF p-tau 181levels showed
assocations with GM network measures that depended on
amyloid and CDR status in a non-demented cohort. These
results suggest that alterations in specific gray matter net-
work properties reflect either amyloid and p-tau deposi-
tion in early stages of AD pathology, or are related to p-
tau 181only, suggesting distinct pathological underlying
mechanisms. An overview of our findings for each investi-
gated graph properties, and comparison with previous
studies, is reported in Table S5 of Supplementary materials.

Previous studies have shown that reduced clustering
and decreased gamma in GM networks are associated with
Abdeposition in cognitively normal participants [26,52].
Here, we also observed lower clustering values in partici-
pants with abnormal Abonly. Possibly, a reduced clustering
coefficient may reflect local synaptic dysfunction triggered
by early Abdeposition. This may introduce dissimilarities
in gray matter morphology at a regional level, subse-
quently reducing clustering and gamma values. Similar to
our findings, [54] have shown higher path length values
in relation to lower Ab42 CSF levels in cognitively unim-
paired individuals. However, decreased lambda values



Fig. 3. Interactions between p-tau181, amyloid status, and CDR. To facilitate interpretation, the residuals of the model after correcting for age, sex, GM
volume, size of the network and scanning site (as random intercept) are shown; *Indicates significant three-way interaction after covariates correction with
a p-value < 0.05.

L. Lorenzini, S. Ingala, V. Wottschel et al. Aging Brain 2 (2022) 100054
have been observed in relation with Abdeposition in
patients with AD [63,27,55]. These discrepancies may be
explained by non-monotonic path length changes during
disease progression, with an increase due to the initial loss
of local connections and reflecting asynchronous atrophy
patterns, and an eventual decrease when the networks
become more sparse in later disease phases [8].
6

We further extend on previous findings by showing that
early CSF p-tau 181 measurements are also related to GM
network alterations already from the preclinical and pro-
dromal stages of AD. We found lower network between-
ness centrality in relation to higher p-tau181 CSF
concentrations, possibly reflecting a synchronous wide-
spread disruption of connectivity following tau deposition.



Fig. 4. Associations of regional path length with p-tau181. Surface Plot of standardized beta-values of the relationship between p-tau181 and regional path
length are shown for statistically significant regions after covariates correction (p-value < 0.05 FDR-corrected). Upper one is the lateral view, lower row is
the medial view, for the left hemisphere (left column) and right hemisphere (right column), respectively.
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In a previous study, individuals with prodromal AD were
found to have lower degree centrality values relating to
higher levels of CSF total tau, with faster degree decline
over time [10]. Similar findings have been reported using
different MRI modalities. A fMRI-PET study [48] demon-
strated that regions with high tau levels show lower func-
tional connectivity as measured by clustering and degree
in individuals with atypical AD, namely posterior cortical
atrophy or logopenic progressive aphasia. Together, these
findings suggest an additional effect of tau pathology in
accelerating the synaptic loss initiated with Ab.

In addition to the present literature, we further
observed that the relationship between p-tau181and
specific global network measures depended on both CDR
and amyloid status. Amyloid positive participants with
impaired cognition (CDR = 0.5) demonstrated lower clus-
tering coefficients in association to higher CSF p-tau181
levels. Lower values of path length and lambda were asso-
ciated with higher p-tau181 measurements and this rela-
tionship was stronger in A� CDR = 0 participants, which
suggests potential primary tau-mediated effects on gray
matter networks integration. A similar association of gray
matter networks and tau biomarkers has previously been
reported in Dicks et al. [10], where CSF total tau was
related to a faster longitudinal decline in lambda showing
local early regional disruptions comparable to our results.
Regional alterations of path length in relationship with
tau were found in both early amyloid related areas, such
as precuneus and cingulate cortex, but also in regions
which are only involved in the late stages of the disease,
such as motor areas. These regional associations were
however independent of amyloid or cognitive (CDR) status,
and observed on the whole group. Similar patterns have
been previously found in studies comparing tau and GM
networks spatial distribution and might presumably be
due to large-scale network-wide disruptions and to a lack
of stimulation and/or neurotrophic factors from connecting
7

regions [36]. One explanation might be that some individ-
uals may have primary age-related tauopathy (PART),
which is a neuropathological concept emerged to charac-
terize individuals with altered levels of neurofibrillary tan-
gles in the absence of amyloid pathology [7]. However,
whether this condition represents an AD-independent,
and what are the typical CSF profiles, remains unclear
[28,12].

The observed divergence between amyloid- and tau-
mediated connectivity alterations has been previously
described with other methodologies. In [21], the authors
found a correlation between Ab and cortical thickness that
showed opposite directions in tau positive and negative
participants, in cognitively unimpaired individuals. In
other fMRI functional connectivity (FC) studies [29,47],
tau has often been linked to a clear FC decrease while both
hypo- and hyper-connectivity of default mode networks
nodes are observed with Abdeposition [29,47,46]. Here,
we found this discrepancy in relation to gray matter net-
work integration properties. While clustering was associ-
ated with both amyloid status and tau, suggesting AD
related changes, path length and lamba were specifically
related to only tau. A possible explanation, that could also
elucidate the stronger effect of tau found in unimpaired
(A� CDR = 0) individuals, is that amyloid and tau could
have a different effect on local and distant connectivity,
suggesting two different underlying mechanisms. A recent
study [38], showed distinct associations of Aband tau
pathology on synaptic and axonal connectivity using
presynaptic (synaptosomal-associated protein 25;
growth-associated protein 43), postsynaptic (neurogranin)
and axonal (neurofilament light chain) CSF markers of
synaptic and neuronal integrity. Early amyloid pathology
was found to be associated with synaptic disruptions, i.e.
elevated levels of pre- and postsynaptic markers. In con-
trast, tauopathy correlated with higher levels of neurofila-
ment light chain, proxy of axonal damage. Similarly, other
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studies showed that Abdeposition is associated with both
pre- and post-synaptic changes in cognitively unimplaired
individuals [41].The differential effect that Aband tau exert
on synaptic and axonal connectivity may be a possible
explanation of our distinct GM networks findings and of
the stronger tau effects found in A� CDR = 0 participants.
Recent models have proposed that the Ab-induced synap-
tic damage along the length of the axon might lead to dis-
sociation of tau from microtubules and eventually result in
tau-related axonal degeneration [13]. Our results are in
line with this hypothesis of initial damage to synapses
close to Ab plaques producing local synaptic dysfunction
and GM dissimilarity, thus showing low network segrega-
tion. Subsequent phosphorylation of tau and formation of
tangles would eventually trigger axon loss and distal atro-
phy patterns over the entire brain, impairing network inte-
gration. As proposed in [6], tau would therefore play a
bidirectional role in the process, with increased connectiv-
ity first accelerating tau spreading through trans-neuronal
propagation, but later promoting network disruptions.
However, it is not possible to disentangle to what extent
this could possibly be solely due to the different spatial
distribution of amyloid and tau deposition, resulting in dif-
ferent changes in both magnitude and direction of network
effects. Future studies relating GM networks alteration to
other synaptic CSF biomarkers will be needed to further
explore this hypothesis.

A potential limitation of this study is that EPAD is a
research cohort of healthy participants that were specifi-
cally selected for their elevated risk for AD, which may
not be representative of the general early-phase AD popu-
lation. Moreover, the groups we analyzed differed in size,
and so analyses for smaller groups may have been under-
powered (e.g. small percentage of A� CDR = 0.5 partici-
pants). Future studies should aim to collect more data on
those specific groups. Previous studies have shown higher
sensitivity of the ratio between Ab42 and Ab40 for defining
amyloid positivity [25], however Ab40 was not measured
in EPAD CSF samples. Nonetheless, a strength of the EPAD
cohort is that it is well-phenotyped. The multi-center
aspect of EPAD is both a strength and a potential weakness.
While the pan-European distribution of the EPAD centers
enhances the generalizability of our findings and allows
for high sample-size, between-scanner differences could
have lowered our statistical power compared to a similar
sample size acquired at a single scanner. Our harmonized
scan protocol and centralized MRI processing may have
partially accounted for this effect. Other harmonization
strategies have been recently proposed to remove the
effect of scanning site while keeping the variability of other
biological variables [15], but their implementation on gray
matter networks and derived graph measures has so far
not been tested. Another potential limitation of our study
is that we used CSF p-tau181 to specifically investigate
AD-related changes in tau pathology, but this measuredoes
not carry information about the spatial distribution of tau
deposition across the brain. Moreover, although abnormal
tau levels are often observed in amyloid positive partici-
pants, we did not find a difference in total tau between A
groups. Recent evidence has shown that up to 30 % of indi-
viduals with AD can show normal CSF total tau levels (Dis-
8

ease Neuroimaging [11], even in the presence of tangles,
possibly due to a different subtype of AD pathology [60].
Future studies may attempt to reproduce our findings with
tau PET and non AD-specific markers of tau pathology,
such as CSF total-tau. Finally, these findings were based
on cross-sectional data and future longitudinal studies
may confirm our cross-sectional findings, and further
investigate the association of gray matter network proper-
ties with cognitive decline.
Conclusion

We found early GM networks disruptions in relation-
ship to CSF p-tau181 levels, showing distinct characteris-
tics depending on amyloid and cognitive status. Our
results suggest that amyloid and tau deposition result in
differential patterns of early GM networks alterations.
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