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Singularity in the electron-core potential as a gateway to accurate multielectron ionization spectra
in strongly driven atoms
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We demonstrate a general three-dimensional semiclassical model as a powerful technique for the study of
correlated multielectron escape in atoms driven by infrared laser pulses at intensities where electron-electron
correlation prevails. We do so in the context of triple ionization of strongly driven Ne. Our model fully accounts
for the singularity in the Coulomb potentials of a recolliding electron with the core and a bound electron with the
core as well as for the interaction of a recolliding with a bound electron. To avoid artificial autoionization, our
model employs effective potentials to treat the interaction between bound electrons. We show the accuracy of
our model by obtaining triple ionization distributions of the sum of the final electron momenta which we find to
be in very good agreement with experiments. Also, we explain the main features of these momenta distributions
in terms of the prevalent pathways of correlated three-electron escape in Ne. We also show that the different
ionization pathways prevailing in three-electron escape in strongly driven Ne versus Ar give rise to different
momenta distributions in these two atoms. Our general model may be used to identify novel ultrafast phenomena
and to motivate further experiments in strong field science.
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In atoms driven by intense and infrared laser pulses,
nonsequential multielectron ionization (NSMI) is a funda-
mental process governed by electron-electron correlation [1].
Recollisions govern nonsequential multielectron ionization.
During a recollision an electron tunnels out through the field-
lowered Coulomb barrier, moves into the laser field, and
can then return to the core to recollide and transfer energy
to the other electrons [2]. Besides the tunneling step, the
other steps in the three-step model can be described clas-
sically [2]. While nonsequential double ionization (NSDI)
has been studied extensively both theoretically and experi-
mentally [3,4], three-dimensional (3D) quantum-mechanical
studies still remain quite challenging [5–7]. For nonsequential
triple ionization (NSTI), only few theoretical studies exist,
mostly formulated in the dipole approximation. For NSTI,
most studies employ lower dimensionality classical [8,9] and
quantum-mechanical [10,11] models to reduce the complex-
ity and computational resources required. However, lower
dimensionality results in a nonaccurate description of the
electron-electron interaction during triple ionization. Cur-
rently, only classical or semiclassical 3D models of NSTI
are available [9,12–15]. Here, we argue that the main disad-
vantage of available classical and quantum models of NSTI
is their softening of the interaction of each electron with
the core. This results in ionization spectra that differ from
experimental ones obtained, for instance, for driven Ne and
Ar [16–22].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Concerning NSTI, for quantum-mechanical models, soft-
ening the Coulomb potential of each electron with the core
affords a computationally tractable problem. For classical
and semiclassical models, the reason is fundamental and
concerns unphysical autoionization. Classically there is no
lower-energy bound. Hence, when a bound electron undergoes
a close encounter with the core, the singularity in the Coulomb
potential allows this electron to acquire a very negative en-
ergy. This can lead to the artificial escape of another bound
electron through the Coulomb interaction between bound
electrons. To avoid this, most classical and semiclassical mod-
els of NSTI soften the Coulomb potential [9,12,13] or add
Heisenberg potentials [23] (effective softening) to mimic the
Heisenberg uncertainty principle and prevent each electron
from a close encounter with the core [14,15].

However, softening the Coulomb potential fails to ac-
curately describe electron scattering from the core [24,25].
Indeed, the ratio of the scattering amplitude for the soft-core
potential over the one for the Coulomb potential decreases
exponentially with increasing momentum transfer [24,25].
For recollisions [2], this implies that soft potentials are quite
inaccurate for high-energy recolliding electrons that backscat-
ter. Hence, it is no surprise that classical models that include
the singularity in the Coulomb electron-core potential re-
sult in accurate double ionization spectra. Indeed, with a
classical model for driven two-electron atoms [26], the pre-
decessor of the model of NSMI discussed here, we have
shown that backscattering of the recolliding electron from the
core gives rise to the fingerlike structure in the two electron
correlated momenta of driven He [5,27,28]. We have also
obtained double ionization spectra in very good agreement
with an ab initio quantum-mechanical calculation for driven
He [29] and with an experiment for Ar driven by near-single
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cycle laser pulses [30]. We have also identified the
striking slingshot-NSDI mechanism where the exact treat-
ment of the electron-core interaction is of paramount
importance [31].

Here, we provide a general 3D classical model of NSMI
developed in the nondipole framework. The main premise in
our model is that two interactions are most important during
a recollision and hence are treated exactly. Motivated by the
above-mentioned studies [24–26,30,31], we account for the
singularity in the Coulomb potential between each electron,
bound or quasifree, and the core. Quasifree refers to a rec-
olliding electron or an electron escaping to the continuum.
Also, the Coulomb potential between each pair of a quasifree
and a bound electron and hence the transfer of energy from
a quasifree to a bound electron is treated exactly. Using this
model, for nonsequential triple ionization of strongly driven
Ne, we obtain triple ionization spectra in excellent agreement
with experiment [17].

Accounting for the singularity in electron-core interactions
can lead to unphysical autoionization through energy trans-
fer between bound electrons. To avoid this, we use effective
Coulomb potentials to account for the interaction of a bound-
bound electron pair (referred to as ECBB—effective Coulomb
potential for bound-bound electrons). That is, we approximate
the energy transfer from a bound to a bound electron. Hence,
we expect that the ECBB model will be more accurate for
laser pulse parameters where multielectron ionization due to
the transfer of energy between electrons in excited states after
recollisions plays less of a role. A sophisticated aspect of
the ECBB model involves deciding during time propagation
whether an electron is quasifree or bound. That is, we decide
on the fly if the full or effective Coulomb potential describes
the interaction between a pair of electrons. To do so, we use a
set of simple criteria detailed below.

We demonstrate the accuracy of the ECBB model in the
context of correlated three-electron escape in strongly driven
Ne. We show that the z component of the sum of the final

electron momenta has excellent agreement with experi-
ment [17]. Here, the electric field is linearly polarized along
the z axis. The ECBB model has been previously used to
study triple ionization of strongly driven Ar [32]. However,
the striking agreement with experiment for strongly driven Ne
unveils the ECBB model as a powerful technique for studying
correlated multielectron ionization in driven atoms. Moreover,
we interpret the features of the z component of the sum of the
final electron momenta in terms of the main recollision path-
ways for driven Ne and Ar. The differences in the ionization
spectra of the two atoms are found to be due to direct pathways
prevailing triple ionization of Ne.

We employ the ECBB model [32] to compute triple and
double ionization observables of driven Ne. In what fol-
lows, TI refers to nonsequential triple ionization (NSTI)
and DI to nonsequential double ionization (NSDI). One
electron tunnel ionizes through the field-lowered Coulomb
barrier at time t0. In our previous studies of double ion-
ization [26,31,33,34] tunneling occurs with a rate described
by the quantum-mechanical Ammosov-Delone-Krainov for-
mula [35,36]. Here, using the same formula, hence the term
semiclassical model, we obtain a rate that also accounts for
depletion of the initial ground state (see Supplemental Mate-
rial [37]). We find t0, using importance sampling [38] in the
time interval [−2τ, 2τ ] where the electric field is nonzero;
τ is the full width at half maximum of the pulse duration
in intensity. The exit point of the recolliding electron along
the direction of the electric field is obtained analytically using
parabolic coordinates [39]. The electron momentum along
the electric field is set equal to zero, while the transverse
one is given by a Gaussian distribution [36,40,41]. For the
initially bound electrons, we employ a microcanonical distri-
bution [32].

In the ECBB model, we fully account for the magnetic field
of the laser pulse, i.e., the magnetic field component of the
Lorentz force, as well as the motion of the core and the three
electrons. The four-body Hamiltonian is

H =
4∑

i=1

[p̃i − QiA(y, t )]2

2mi
+

4∑
i=2

QiQ1

|r1 − ri| +
3∑

i=2

4∑
j=i+1

[1 − ci, j (t )]
QiQj

|ri − r j | +
3∑

i=2

4∑
j=i+1

ci, j (t )

× {Veff [ζ j (t ), |r1 − ri|] + Veff [ζi(t ), |r1 − r j |]}, (1)

where Qi is the charge, mi is the mass, ri is the position vector,
and p̃i is the canonical momentum vector of particle i. The
mechanical momentum pi is given by

pi = p̃i − QiA(y, t ). (2)

The effective Coulomb potential that an electron i experiences
at a distance |r1 − ri| from the core (particle 1 with Q1 = 3),
due to the charge distribution of electron j is equal to

Veff (ζ j, |r1 − ri|) = 1 − (1 + ζ j |r1 − ri|)e−2ζ j |r1−ri|

|r1 − ri| , (3)

with ζ j the effective charge of particle j [32,42]. When ri →
r1, the effective potential is equal to ζ j . This ensures a fi-
nite transfer of energy between bound electrons i and j and
hence that no artificial autoionization occurs. The functions

ci, j (t ) determine at time t during propagation whether the full
Coulomb or effective Veff (ζi, |r1 − r j |) and Veff (ζ j, |r1 − ri|)
potentials describe the interaction between electrons i and
j [32]. The effective potentials are activated only when both
electrons are bound.

We determine on the fly whether an electron is quasifree
or bound using the following simple criteria. A quasifree
electron can transition to bound following a recollision.
Specifically, once the quasifree electron has its closest en-
counter with the core, this electron transitions to bound if
its position along the z axis is influenced more by the core
than the electric field. Also, a bound electron transitions to
quasifree due to the transfer of energy during a recollision or
from the laser field. In the former case, this transition occurs
if the potential energy of this bound electron with the core
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is constantly decreasing. In the latter case, if the energy of
the bound electron becomes positive and remains positive, it
transitions to quasifree. The criteria are discussed in detail and
illustrated in the Supplemental Material [37].

Details of how we accurately account for the Coulomb
singularity and the leapfrog technique we employ to solve
Hamilton’s equations of motion are given in Ref. [32]. We
stop the propagation when the energy of each particle con-
verges. We label the trajectory as triply or doubly ionized if
three or two electrons have positive energy, and compute the
TI and DI probabilities out of all events.

We use a vector potential of the form

A(y, t ) = −E0

ω
exp

[
−2 ln(2)

(
ct − y

cτ

)2
]

sin(ωt − ky)ẑ,

(4)
where k = ω/c is the wave number of the laser field. The di-
rection of the vector potential and the electric field, E(y, t ) =
− ∂A(y,t )

∂t , is along the z axis, while the direction of light
propagation is along the y axis. The magnetic field, B(y, t ) =
∇ × A(y, t ), points along the x axis. The pulse duration is
τ = 25 fs, while the wavelength is 800 nm. For Ne, we con-
sider intensities 1.0, 1.3, and 1.6 PW/cm2. For Ar, previously
studied in Ref. [32], we consider only 0.4 PW/cm2. The
highest intensities considered here, 1.6 PW/cm2 for Ne and
0.4 PW/cm2 for Ar, are chosen such that the probability for a
second electron to tunnel ionize solely due to the laser field is
very small [37]. Hence, electron-electron correlation prevails
in TI and DI, with the bound electrons ionizing only due to
recollisions. The smaller intensity for Ar is consistent with its
smaller first ionization potential.

Here, we compare the results obtained with the ECBB
model both with experiment and with the semiclassical 3D
model that employs Heisenberg potentials (H model) (see
Supplemental Material [37]). This potential depends on a
parameter α, with a large value restricting more the phase
space an electron can access around the core [32,37]. Hence,
the H model results in an effective softening of the electron-
core potential. We do not compare with classical models that
explicitly soften the Coulomb potential. The reason is that
a previous study of NSDI in Ar [43] has shown that the H
model and the model that includes the Coulomb singular-
ity [26,29,30] better agree with experiment.

In Fig. 1, for driven Ne, we compute the ratio of double
to triple ionization probability and compare with experi-
ment [17] and the H model. For all three intensities, we find
the probability ratio PDI/PTI obtained with the ECBB model
(black circles) to be consistently close to experiment (gray
squares). In contrast, the H model for α = 2 and α = 4 does
not agree with experiment for 1.0 and 1.3 PW/cm2. Also, we
find that the DI probability depends on the value of α for
driven Ne [37], similar to our previous findings for driven
Ar [32].

Next, we compute the TI probability distribution of the z
component of the sum of the final electron momenta, sum of
pz (see the black lines in Fig. 2). We compare with measure-
ments (gray lines) [17], smoothed in Fig. 2, and with the H
model for α = 2 (green lines). We find the ECBB distribu-
tions to be doubly peaked at all intensities. With increasing

FIG. 1. For Ne, the ratio of DI to TI probability obtained with
the ECBB model (black circles), the H model, and experiment (gray
squares) [17].

intensity, the peaks become less pronounced with an increas-
ing probability for the sum of pz to be around zero. These
features agree well with experiment. Also, the ECBB distri-
butions peak at roughly the same values of the sum of the
electron momenta as the experiment. This excellent agree-
ment further illustrates the accuracy of the ECBB model.
In contrast, the H model distributions have a significantly
higher probability for the sum of the final electron momenta
to be around zero. Also, they are less wide compared to the
ECBB model and experimental distributions. The difference
is more pronounced at 1.6 PW/cm2 [Fig. 2(c)], with the H
model distribution peaking around zero and the other two
distributions being doubly peaked. This difference shows that
in the H model the effective softening of the interaction of the
recolliding electron with the core results in electrons escaping
with lower energy. This gives rise to less wide distributions
that have a significant probability for the sum of pz to be
around zero.

Next, using the ECBB model, we analyze the TI events
and identify the recollision pathways that prevail in the
three-electron escape of driven Ne. In the Supplemental Ma-
terial [37], we outline the algorithm we use to identify the
recollision pathways. An electron is deemed as ionizing soon
after recollision if the difference between the recollision time
and the ionization time is less than tdiff = T/8, where T is the
period of the laser pulse. During this time interval, the inter-
potential energy between the recolliding and a bound electron

-8 0 8
0

1

2

-8 0 8 -8 0 8

FIG. 2. For Ne, TI probability distributions of the sum of pz ob-
tained with the ECBB model (black lines), with the H model (green
lines), and measured experimentally [17] (gray lines). Distributions
are normalized to one. Up is the ponderomotive energy equal to
E 2

0 /4ω2.
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FIG. 3. For Ne, probability distributions of the sum of pz for TI
obtained with the ECBB model for all (black), direct (dark gray), and
delayed (blue) events.

undergoes a sharp change. The recollision time is identified
from the maxima in the interpotential energies between the
recolliding and each of the bound electrons [37]. The ion-
ization time of electron i is defined as the time when the
compensated energy {[pi − A(y, t )]2 + V (ri)} of this electron
becomes positive and remains positive thereafter [44].

For driven Ne, we find that two are the main recollision
pathways contributing to triple ionization, the direct (e-, 3e- )
and the delayed (e-, 2e- ). For a recollision to take place,
an electron tunnels out through the field-lowered Coulomb
barrier [2]. This electron can then return to the parent ion
to recollide and transfer energy to the remaining electrons.
In the direct pathway, all three electrons ionize soon after
recollision, i.e., there are three highly correlated electron
pairs. In the delayed (e−, 2e−) pathway, the recolliding
electron transfers enough energy for only two electrons to
ionize soon after recollision, while the other electron ionizes
with a delay. Hence, there is only one highly correlated
electron pair. At all three intensities, we find that recollisions
occur around a zero of the electric field and a maximum of the
vector potential, resulting in a large final electron momentum
with magnitude E0/ω = 2

√
Up. In the direct pathway, all three

electrons escape with large momenta pz versus two electrons
in the delayed (e−, 2e−) pathway (see also the correlated
electron momenta in the Supplemental Material [37]).

Next, we explain the features of the distribution of the
sum of pz for all TI events, both the experimental and the
ECBB model ones (Fig. 2), in terms of the direct and delayed
(e−, 2e−) pathways. In Fig. 3, for all three intensities, we
show that the distribution of the sum of pz extends up to
roughly ±3 × 2

√
Up for the direct pathway [gray arrows in

Fig. 3(a)] and up to ±2 × 2
√

Up for the delayed (e−, 2e−)
pathway [blue arrows in Fig. 3(a)]. This is due to three elec-
trons in the direct and two electrons in the delayed pathway
escaping with large momentum 2

√
Up. This is consistent with

the distribution of the sum of pz for all TI events extending
up to ±β × 2

√
Up, with 2 < β < 3. Also, for both pathways,

the distributions are doubly peaked, giving rise to the double
peaks of the distribution of the sum of pz for all TI events.
Moreover, in the direct pathway the distribution is roughly
zero around the sum of pz being zero. In contrast, in the
delayed pathway, with increasing intensity, the peaks become
less pronounced with an increasing probability for the sum
of pz to be around zero. Hence, this feature observed in the
distribution of the sum of pz for all TI events (Fig. 2) is due
to the delayed pathway. For the H model, we find the direct

-8 -4 0 4 8
0

1

2

FIG. 4. For Ar, probability distributions of the sum of pz for TI
obtained experimentally [20] (gray) and with the ECBB model for
all (black) and delayed (e−, 2e−) (blue) and delayed (e−, e−) events
(blue dotted).

one to be a minor pathway, while the delayed (e−, 2e−) one
contributes the most to TI. This is consistent with soft poten-
tials not accurately describing the scattering of a recolliding
electron from the core [24].

Finally, for Ar, we find that the delayed (e−, 2e−) and
(e−, e−) pathways prevail at 0.4 PW/cm2. In the latter path-
way, the recolliding electron has enough energy to ionize only
one electron soon after recollision. In the (e−, e−) pathway
electrons escape with very small momenta (see correlated
electron momenta in the Supplemental Material [37]). The
contribution of these pathways to the distribution of the sum
of pz for all TI events is shown in Fig. 4. As for TI of
Ne, for Ar, the distribution of the sum of pz corresponding
to the (e−, 2e−) pathway is doubly peaked with a nonzero
value around the sum of pz being zero (blue line in Fig. 4).
The distribution corresponding to the (e−, e−) pathway (blue
dotted line in Fig. 4) peaks around the sum of pz being zero.
Interestingly, this distribution of the delayed (e−, e−) pathway
is in very good agreement with the experimental distribution
(gray line) at 0.3 PW/cm2, with no measurements available
at 0.4 PW/cm2. The ECBB model distribution is more wide
compared to the experimental one but also has a significant
value around the sum of pz being zero. Hence, for Ar, the
ECBB model overestimates the contribution of the more cor-
related (e−, 2e−) versus the less correlated (e−, e−) delayed
pathway. Given the above, it is clear that three-electron escape
is significantly less correlated in Ar than Ne.

In conclusion, we demonstrate that the ECBB 3D semiclas-
sical model is a powerful tool to study correlated multielectron
escape in driven atoms. To do so, we study three-electron
ionization in Ne driven by infrared pulses. We show that the
triple ionization probability distribution of the sum of the final
electron momenta obtained with the ECBB model is in very
good agreement with experiments. This agreement supports
the premise of the ECBB model. That is, to obtain accurate
multielectron ionization spectra it is important during a rec-
ollision to accurately account for the interaction between the
recolliding and the bound electron and for the interactions of
the bound and recolliding electron with the core. The ECBB
model is developed in a general framework and can thus be
easily extended to address the correlated escape of more than
three electrons in driven atoms. It can also be extended to
address driven molecules. We expect the ECBB model will be
employed to study problems currently out of reach, leading
to identifying novel ultrafast phenomena and to motivating
additional experiments in strong field science.
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