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ABSTRACT: Despite recent advances in computational protein science, the
dynamic behavior of proteins, which directly governs their biological activity,
cannot be gleaned from sequence information alone. To overcome this challenge,
we propose a framework that integrates the peptide sequence, protein structure,
and protein dynamics descriptors into machine learning algorithms to enhance
their predictive capabilities and achieve improved prediction of the protein variant
function. The resulting machine learning pipeline integrates traditional sequence
and structure information with molecular dynamics simulation data to predict the
effects of multiple point mutations on the fold improvement of the activity of
bovine enterokinase variants. This study highlights how the combination of
structural and dynamic data can provide predictive insights into protein
functionality and address protein engineering challenges in industrial contexts.

■ INTRODUCTION
Proteins are essential, powerful machines in biology and
consequently find a wide range of application areas in
biotechnology, including the manufacturing of targeted
therapies. However, their development as a functional product
is expensive, time-consuming, and frequently yields unsuccess-
ful results.1 The estimated average cost of bringing a new
protein-based therapy to market is between $1 and $3 billion,
and the success rate of clinical trials is below 10%. To
overcome these obstacles, researchers are investigating new
methods for expediting the engineering of proteins with
enhanced functionality and manufacturability. Protein engi-
neering entails making precise alterations to the original
sequence of a protein to identify variants with desirable
properties while minimizing interference with its function.
Thus, protein engineering has revolutionized the production
and use of protein-based products.2 However, due to the vast
number of possible amino acid combinations, exhaustive
experimental exploration of the landscape of protein fitness
remains nearly impossible.3−6 Theoretically, the scope of
mutations could be restricted to include only the ostensibly
significant fragments of the protein such as the binding sites.
However, this remains a heuristic solution applicable to a
limited number of cases, as the majority of protein properties
depend on the entire sequence and structural conformation,
not just a few amino acids, due to the presence of epistatic
effects.7,8

Biodescriptors are quantitative characteristics that shed light
on a protein’s chemistry and structure. Algorithms can use the
information contained in biodescriptors to predict the effects
of amino acid substitutions on the properties of proteins.
Recently, machine learning (ML) techniques have been
applied to the classification of proteins and the prediction of
the stability of protein−ligand complexes.9−13 Nevertheless,
biodescriptors, which incorporate function-related properties
associated with the macromolecules, were not employed in the
investigation of the role of mutations introduced into the
protein sequence on protein performance.14−16

Unsupervised ML methods mostly use natural language
processing (NLP) to obtain sequence-level information for
protein prediction. Recently, generative models that are able to
design effective and diverse proteins suitable for various
applications have received substantial attention, owing to their
promise and potential. These models are all based on the
assumption that sequence-based information, i.e., the order of
the amino acids in a given length of peptide sequence,
encompasses both structure and function information in its
entirety. However, a true understanding of the physics and
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biochemical properties that go beyond sequence information
has promise to be very useful for model interpretability and
scientific discovery.
Molecular Dynamics (MD) simulations have emerged as an

efficient method for describing a vast array of biomolecular
processes, such as protein folding and molecular recognition,
and for demonstrating how mutations affect the stability and
function of proteins.17−22 MD simulation techniques allow the
investigation of the conformational landscape of a protein and
obtain direct information about its flexibility.23−27 Several
approaches coupling ML algorithms with MD-derived data
have been developed and successfully implemented over the
past few years. MD-derived features were shown to be capable
of predicting the stability of protein−protein and protein−
ligand complexes28 and designing effective drug candidates for
a known protein target.29 To our knowledge, however, there is
no established or proposed method for predicting the effects of
mutations on protein function by using machine learning
algorithms that incorporate sequence-based information with
MD simulations.
In this work, we present an ML workflow that leverages data

generated via MD simulations with sequence- and structural-
based features to predict the effects of multiple point mutations
on the activity of an enzyme. The model protein employed in
this study is bovine enterokinase, an enzyme used to remove
affinity tags from high-value biopharmaceuticals.30 We applied
a range of ML models to the 312 variants investigated in this
study. The models utilized biodescriptors for sequence,
structure, and dynamics-based features for each variant to
predict its function and assessed the predictive performance of
these models against empirical data available on the functional
properties of each variant of the enzyme. We present here an
effective machine learning-based strategy for incorporating
different levels of information to successfully predict the
functional properties of protein variants to enable faster and
more powerful routes to protein engineering. We demonstrate
the interpretability of these models by identifying the key
biodescriptors contributing to the prediction of function and
validate how the ML-based models can provide us key insight
on the role of specific point mutations introduced to the
protein sequence. We also discuss below the challenges and
opportunities around incorporating simulation-based data as
input for ML algorithms.

■ METHODS
Experimental Data Set. This study used 312 variants of

the engineered template bovine enterokinase (EKB), each
containing one to nine mutations randomly introduced at the
amino acid level in specific regions of the protein as described
previously.30 The activity of the enzyme was determined upon
expressing the protein at 30 °C with and without
preincubation heating. The fold in activity was defined as the
ratio of the activity of a variant to that of the template EKB.
Here we intend to predict the difference between the two
experimental settings measured, defined as the fold change in
activities (FCA) (Table S1). The experimental data set was
constructed by carrying out multiple rounds of error-prone
PCR (epPCR), introducing modifications at the nucleotide
level, resulting in a total of 312 variants containing zero to nine
co-occurring mutations at the amino acid level.
Homology Modeling and Variants Structures Con-

structions and Evaluations. SWISS-MODEL was used to
build a template-based homology model of the engineered

form of bovine enterokinase and the 312 variants (PDB ID:
1EKB).31−33 BLAST and HHBlits were used to search the
SWISS-MODEL template library for the sequence of the
engineered protein.34,35 Models were constructed with
ProMod3 using the target template 1EKB.36 The final models
were selected to maximize the Qualitative Model Energy
Analysis Distance Constraint (QMEANDisco) and the Global
Model Quality Estimation (GMQE) scores, evaluating both
the stereochemical and energetic features together with
structural similarity to 1EKB.31,37 AlphaFold-2 (AF2) was
performed using one model structure generation with three
recycles using amber and MMseqs2 (UniRef + Environmental)
for Multiple Sequence Alignment (MSA) mode. The structures
thus created were then compared to homology model
structures using Biopython by superimposing and calculating
the root-mean-square deviation per residue (RMSD).
AlphaFold-2. AF2 was utilized by locally executing the

publicly available ColabFold script. AF2 employs the predicted
local distance difference test (pLDDT) to assess the accuracy
of predicted C-alpha locations (on a scale of 0−100) with
experimental structures as well as the predicted Template
Modeling (pTM) to create projected aligned error (PAE)
maps.38−40

Molecular Dynamics Simulations. PROPKA’s41 online
service was used to set the charge of the amino acids at the
experimental pH of 8.0.30 The model was constructed on the
GROMACS 2019.342 molecular dynamics engine, and MD
simulations were run using the OPLS-AA force field.43

TIP3P44 was used as the water model to allow faster
computation. All of the proteins were placed in a cubic box,
allowing for at least a 1.0 nm protein-edge distance in each
dimension. The systems were neutralized using 50 mM Na+
and Cl− ions randomly placed to resemble the experimental
conditions under which the variants were expressed. The
system was then energy minimized over a maximum of 50,000
steps, stopping at 1000 kJ mol−1 nm−1. Isothermal-isochoric
equilibration at 300 K was performed over 100 ps using the
leapfrog integrator with a coordinate update rate of 1.0 ps. The
isothermal−isobaric equilibration was carried out using the
same settings as the isothermal-isochoric step with the addition
of a Parrinello-Rahman pressure coupling and a reference
pressure of 1.0 bar. In all simulation steps, the standard
Particle-Mesh-Ewald (PME) model45 was used to treat long-
range electrostatic interactions in systems with periodic
boundaries. A cutoff distance of 1.0 nm was set for short-
range van der Waals and electrostatic interactions.
Simulation Lengths and Evaluation of Variance

Analysis among MD Repeats. A subset of 15 variants was
randomly selected for the evaluation of the methodology
before scaling the simulation protocol to the remaining
variants. Following preliminary analysis, the 312 variant
molecular structures were simulated five times at the selected
length, leading to 1605 trajectories.

Statistical Analysis. A subset of 15 variants was selected for
evaluating the methodology. These were simulated across 10
ns spaced simulation lengths ranging from 10 to 200 ns in
triplicate. One-way Analysis of Variance (ANOVA)46 of the
root-mean-square deviation (RMSD) values were used to
assess the minimum simulation length and the variance
between replicate trajectories. The simulation length compar-
isons focused on the last 10 ns of each simulation. The analysis
was performed using SciPy 1.0 through the f_oneway
function.47
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Path Similarity Analysis (PSA). PSA was performed using
MDAnalysis.psa built-in function using Hausdorff distances.48

Hausdorff distance is an established metric used to compare
the geometries of trajectories by comparing two paths P and Q
as sequences of conformations. The distance is then calculated
as

= | |P Q P Q Q P( , ) max( ( ), ( ))H H H (1)

where δH(P|Q) is the directed Hausdorff distance from P to Q.

=P Q d p q( , ) max min ( , )
p P q Q

H (2)

Biodescriptors Data Set. A data set of 192 biodescriptors
that provide information on protein sequence, structure, and
dynamics was constructed for the 312 variants (Table S2).

Sequence and Structure Descriptors. The sequence
embeddings were extracted using the R CRAN package
“Peptide”, calculating global protein properties in the form of
66 features.49 These included: Cruciani properties,50 Kidera
factors,51 zScales,52 FASGAI vectors,53 and the BLOSUM
indices. Fourteen global properties of the variants were
calculated using the module ProtParam of the Biophython
package,53 including molecular weight and isoelectric point.

MD Descriptors. Root-Mean-Squared Deviation (RMSD)
and Radius of Gyration (RoG) with respect to the initial
structure were extracted for the following selections using the
GROMACs package:42 whole proteins without non-hydro-
genic atoms, the backbone, and Cα. These three features were
also obtained for the binding site alone, defined as the residues
within 3.5 Å of the ligand in the PDB crystal structure. The
time series points were preprocessed, keeping the average and
standard deviation in the final data set. The Dictionary of
Protein Secondary Structure (DSSP)54 was also extracted as an
indicator of structural characteristics of proteins throughout
the trajectory, including parallel beta-sheets, antiparallel beta-
sheets, alpha helices, 3−10 helices, turns, bent, and random
coils using AMBER tools via Pytraj.55

MDpocket. MDpocket was used to extract additional
features from the binding pocket calculated during the
trajectory. The binding site was defined the same way as for
the MD descriptors, where only residues within 3.5 Å of the
peptide-like ligand in the template model were used for
homology modeling. Features included the size and length of
the binding site, its depth accessibility, hydrophobicity, the
charge of each amino acid, the average number of times an
amino acid was encountered in the binding site during the
simulation, polarity/apolarity, and the total surface area as well
as the normalized B-factor score of the binding site through the
trajectory.56 For practical reasons, we refer to features in the
rest of the text with acronyms, as defined in the Supporting
Information in Table S2.
Machine Learning Algorithms. The features were

standardized using MinMaxScaler from Scikit-Learn.57 The
data set was randomly split such that 80% was used for training
and the remaining 20% was used as a test set. 42 supervised
machine learning algorithms are present in Scikit-Learn (Table
S3)57 and were fitted with their standard parameters to the
data to find the best-performing template model to then carry
forward for hyperparameter tuning according to Table S4.
FCA was used as the response variable in the models. The
models were implemented using the default parameters of
Scikit-Learn and evaluated based on root-mean-square error
(RMSE) (Eq. 3), R2 (Eq. 4), and execution time in seconds.

Following the removal of those models with negative R2 from
further consideration, the mean absolute error was added as a
performance metric (MAE) (Eq. 5)

=
=N
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1 (5)

where ŷ is the predicted value of y, y is the mean value of y.
The normality tests were conducted by calculating the Fisher-
Pearson correlation and graphically demonstrating the
distribution of FCA with a Q-Q plot.
Model Building. The performance of the selected

algorithm, LightGBM, was evaluated when only specific
categories of features were employed: sequence/structure
descriptors (Seq), MD descriptors, or MDpocket descriptors,
resulting in the following combinations: Seq+MD+MDpocket,
Seq+MD, MD+MDpocket, Seq+MDpocket, Seq, MD, and
MDpocket. All model parameters were tuned using Random-
izedSearchCV from Scikit-Learn over 5 cross-validation folds
through a defined search space with the negative mean
absolute error as a scoring function (Tables S4 and S5). To
evaluate the stability and variability of the model, we
performed a total of 500 bootstrap iterations. During each
iteration, a bootstrap sample was randomly selected with a
replacement from the training set. The model was then trained
using the optimal hyperparameters obtained by Random-
izedSearchCV for each data set, and their performance metrics
were calculated for the predictions made on the test set.
ANOVA was then performed to determine if there are any
statistically significant differences in performance across the
different data sets. Subsequently, the Tukey Honestly
Significant Difference (HSD) test was conducted to perform
pairwise comparisons between the groups, identifying which
specific data sets differ significantly from each other.
Model Performance Evaluation and Analysis. The

models built using the seven different feature combinations
reported above were evaluated based on R2, MAE, and RMSE
as defined in Scikit-Learn.57 The feature importance values
were evaluated by using two methods: Tree SHapley Additive
exPlanations (SHAP)58 and permutation feature importance.59

SHAP is a method based on game theory that assigns a value
to each feature that represents its contribution to the
prediction as well as providing insights on feature interactions.
It computes Shapley values for each feature by averaging over
all possible permutations of the features, resulting in an
accurate measure of the feature importance. Permutation
feature importance is a method that evaluates the impact of
each feature by randomly permuting its values and measuring
the resulting decrease or increase in the model’s performance,
thus providing a direct measure of feature importance.
Together, they can provide a comprehensive understanding
of their features and their importance. Lastly, hypergeometric
distribution testing was performed to identify patterns in the
predictions.
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■ RESULTS AND DISCUSSION

The aim of this work was to establish the role of dynamic
features integrated with sequence and structure information in
predicting protein function through ML. For this purpose, a
case study containing 312 variants of the engineered Chinese
Yellow bovine enterokinase light chain (EKL) was selected.

The structures of all variants were predicted, and MD
simulations were performed for all of the variants following
the statistical evaluation of simulation lengths and the
variability of the replicate simulations for each sample. The
final data set was then constructed by extracting distinct
categories of features, including sequence/structure and
dynamics-based features, which were then used to predict

Figure 1. Proposed pipeline comprises MD simulation generated data with sequence and structure features for protein engineering on previously
reported enterokinase bovine variants.

Figure 2. Construction of protein structures and data set descriptions. (A) A graph representing the enzyme’s mutation sites. The spheres are the
normalized occurrences of mutations at specific sites throughout the data set. (B) Enterokinase bovine and engineered template enterokinase
bovine superimposed with the mutation sites shown as licorice (PDB: 1EKB). (C) Heatmap of the identity matrix of the variants across the data
set. (D) Histogram representing the RMSD between the mutations of the PDB constructed via AlphaFold-2 and the homology models.
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FCA using various ML-based algorithms. The best-performing
template model was then carried forward to assess the
importance of features from different categories and those
that contributed the most to the model’s performance (Figure
1). Each step of this newly proposed pipeline will be
highlighted in the following sections.
Due to the nature of the epPCR protocol implemented, the

data set comprised of mutations introduced only at specific
sites across the protein structure, as depicted in Figure 2A.
This methodology reflects the natural evolutionary pathway of
the protein, resulting in a data set with similar amino acid
content with an identity index above 90% and 29.7% of
positions being at least mutated once through the data set
(Figure 2B,C).30 Activities of the enzyme variants were
measured with and without a heat-shock, and the performance
of the variants was evaluated by a parameter that we call FCA
here, which quantifies the difference in activities between the
two experimental settings, with a high FCA indicating a
measure of the extent to which the introduced mutations
improved the protein’s activity.
Building the Protein Structures. The enzyme for which

variant enzyme activities were measured does not have a crystal
structure available. This limitation was overcome by using the
protein structure for the Yellow Bovine Enterokinase (PDB:
1EKB, resolution: 2.30 Å),32,33 the closest structure to the
engineered enterokinase bovine with variants available. This
structure and, consequently, the structures of the variants were
required for the MD simulations and subsequent modeling
steps. The difference between the two proteins is in the four
mutation sites: V15Q/R82P/C112S/D176E (Figure 2B). To
construct the mutations, we relied on homology modeling, as
described earlier. The homology modeling offered quantitative
and qualitative measurements for model assessment, resulting
in an average GMQE and QMEANDisco of 0.88 and 0.86,

respectively, and a standard deviation less than 0.01 in both
cases.37 The process was repeated for the experimental
variants, resulting in similar metrics across the 312 variants,
which indicated the acquisition of rigorously proposed
structures as indicated by these metrics.37,60 Since the initial
protein structures are key elements of the proposed pipeline, it
was essential to ensure that high-quality modeled PDB
structures were made available before they were carried
through the pipeline. For this purpose, an additional quality
check was carried out to compare the structures generated via
homology modeling to those proposed by AF2.
The pLDDT and pTM of the models obtained via AF2 were

found to have an overall score above 90 and 0.90, respectively
(Figure S1), in the variant sequence positions except for the N-
termini, where the scores dropped below 80 and 0.80 in all of
the models. Upon obtaining the AF2 models, the point
mutations of the homology structures were compared with
those of the AF2 generated ones, with 79% of the mutations
displaying close similarity with an RMSD of 0.50 Å and 99%
presenting an RMSD below 1.00 Å. The differences in residues
were discarded if the distance was determined to be 1.00 Å, as
these relate to conformational differences between the amino
acids, also indicating possible manifestations of variations
during the energy minimization step of the MD simulations.
The presence of residues with more than a 1.00 Å difference
was recognized as an indication of the fact that both the
backbone and the rotamers of the amino acids have been
modeled differently. These include mutations in the data set at
the sequence positions 47, 49, 83, and 95 with RMSDs of
4.75−4.79, 1.45, 1.00−1.06, and 1.12−1.15 Å, respectively. A
closer look at the secondary structure of these sites showed
that positions 47 and 49 are part of a loop, whereas positions
83 and 85 belong to a random coil conformation. This finding
is in accordance with previously reported findings highlighting

Figure 3. Statistical evaluation of the MD simulations. (A) ANOVA heatmap showing statistical differences across the variants up to 200 ns for 10
ns chunks against the first 10 ns (keys: purple = non statistical difference, yellow = statistically different). (B) Heatmap of Hausdorff distances with
ward dendrogram showing clusters and distances between 10 ns simulation chunks across a trajectory. (C) Violin plot of the RMSD values of the
simulations for a randomly selected variant from the 15-variant subset. (D) Individual dots plot for each element of the 20-cross fold averages of the
same randomly selected simulation shown in (C), confirming the preservation of the differences between repeats of the simulation of the same
protein structure after averaging. (E) Through statistical evaluations, the dimension of the final data set was reduced to 112 × 312 (MDpocket
features × number of variants) from the initial set of 80 × 5 × 32(1001) × 312 (number MDpocket × replicate trajectories × MD-based
biodescriptor entries per trajectory × number of variants). These were then concatenated with 80 sequence and structure biodescriptors, resulting
in a data set of 192 features by 312 variants.
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AF2’s inability to model intrinsically disordered regions, which
led to the decision to select the homology model structures for
the simulations.61−63

Understanding the Role of Simulation Length and
Robustness in MD Analysis. The pipeline development
sought (i) to determine the minimum informative MD
simulation length ranging from 10 to 200 ns and (ii) to
evaluate the extent of variability between repeat simulations of
the same case. Prior to running 312 computationally costly 200
ns simulations for all variants with replicates, we randomly
selected a subset of fifteen variants with an FCA that was
statistically representative of the whole data set (two-tailed
Welch-corrected test, p-value = 0.78).

Minimum Informative MD Simulation Length. Conduct-
ing the MD simulations at the scale proposed here, which
comprises more than 1600 trajectories, when considered in
conjunction with the possibility of employing the pipeline in
studies of even larger scale, necessitates a careful evaluation of
the simulation times for the MD simulations. Therefore, the
tradeoff between the information gained with extended
timeframes and the computational cost of the extended
simulation times needed to be carefully evaluated. For this
purpose, the effect of simulation lengths on model success
parameters was investigated by running three replicates of the
simulations for a randomly selected subset of fifteen variants,
which were simulated for extended times of up to 200 ns, and
the trajectories were investigated in 10 ns increments starting
from the shortest trajectory of 10 ns. As RMSD had the highest
variance among the MD-based features extracted in this study,
it was selected as the main feature for the statistical evaluation
of the trajectories.64

A number of different approaches were selected to carry out
this evaluation, as the findings emerging from the analysis
would lead to decisions that would impact the success of the
predictions made by the machine-learning models. A method
that uses Principal Component Analysis (PCA) was previously
proposed to assist decision-making around the similarity
between trajectories; however, PCA of this data set did not
yield any comparative insight as to the differences observed
between trajectories run at different lengths, and therefore,
more suitable alternative methods were employed to make
conclusive decisions.65 ANOVA was previously shown to work
satisfactorily in comparing MD trajectories.66 In our analysis,
there was no statistically significant difference in the RMSD
values obtained from a 10 or a 50 ns trajectory for 80% of the
randomly selected variants investigated here. However,
statistical differences were observed when the RMSD of the
first 10 ns sets were compared with that for trajectories longer
than 50 ns. On the other hand, above 50 ns, the simulations
were observed not to be significantly different from one
another (Figures 3A and S2). While longer simulation times
would be essential to capture the dynamic behaviors during
large conformational changes, in the case of a compact globular
protein, such as that of enterokinase, it was a reasonable
assumption that the nature of the dynamics of the protein
could be captured by small conformational changes captured at
shorter simulation timeframes.67

As an alternative to the statistical evaluation of the RMSD
values, PSA was employed to compare the 10 ns simulation
chunks to 200 ns. PSA enables a quantifiable similarity metric,
Hausdorff distance (δH) of the different paths identified during
an MD simulation. The distance can be used to measure the
similarity between the paths and thus provide a metric of

comparison between different simulation lengths. We parti-
tioned the trajectories into separate trajectory files of 10 ns
each and determined the PSA Hausdorff distances on the data.
The simulation subtrajectories had relatively small Hausdorff
values, with a maximum δH of 2.16 across the triplicates of the
15 simulation sets (totaling 45 sets) (Figure 3B). This small
difference between the simulation segments implies a high
similarity between the simulation trajectories based on
previous reports where trajectories with path lengths of δH <
0.5 Å were denoted as identical and δH > 3.0 Å as highly
different.68 The similarity of the time segments for each
trajectory indicates the similarity in the features to be extracted
from these trajectories. This analysis, in conjunction with the
statistical evaluation and the globular and compact nature of
the bovine enterokinase enzyme used in this study, provided
convincing evidence for us to select the first 10 ns of the
simulation trajectory to perform further analysis. Conse-
quently, this would allow a reasonable computational time
frame within which the MD data set would be generated.

Degree of Variability between Simulation Repetitions. For
the ANOVA study, the RMSDs of the MD trajectories were
observed to vary significantly between replicates, which is in
accordance with previous reports where low p-values were
reported.69,70 For MD simulations run over the course of a
fixed time frame, correlations in biodescriptors presented
within a given time segment were previously shown not to
cause statistically significant differences, leading to vanishing p-
values.71 In line with this observation, the averaging of the MD
biodescriptors over a given time segment was proposed.29,72

Such an approach was implemented in other studies when
working with MD simulation data.29 However, it should be
considered that averaging may possibly offset the inherent
variation in the data. In order to assess this further, we
performed a 20-fold validation to evaluate if the variation
embedded in the simulations was retained upon averaging.
80% of the trajectory data points were randomly shuffled, and
the RMSD values were thus calculated. These average values
remained statistically significant between trajectories (Figure
3C,D) and thus retained the variability of the trajectories
within a protein variant. After the significant variation across
different trajectories was maintained upon averaging to retain
crucial information that can be utilized by ML algorithms, a
decision was made to move forward with the averaged values
for the MD features.
Since a significant variation between repeated simulations of

the same protein model was shown to persist even after
averaging the trajectories, a decision was made to increase the
number of repeat simulations from three to five with the aim of
capturing the inherent variability of the simulation space
adequately and effectively, in line with former practice
reported.70 All models were constructed using the average
and standard deviation of the averages of the biodescriptors for
five trajectories from this point forward (Figure 3E). This
ingestion of MD features was shown to be capable of capturing
key features linked to protein function and was shown to be a
suitable decision for the purposes of the model-based analysis
discussed below.29

Selection of a Suitable Machine Learning Model. The
final data set of 192 observed variables denoted as
biodescriptors was used to evaluate the predictive power of
41 machine-learning models for the 312 variants under
investigation (Table S5). We applied an extensive range of
learning algorithms, including Ensemble models (Decision
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Trees), Single-Tree-based models, Gaussian Processes, Linear
Regression, Clustering Regression, Neural Networks, and
Kernel-based approaches. A comprehensive list and description
of the models are available in Table S3. We opted to conduct a
preliminary screening for model selection using the default
model parameters available in scikit-learn or their packages
(e.g., XGBoost). This decision to use default parameters to
identify the algorithms to be carried forward is in accordance
with the consensus that there is no preferable model a priori.73

The models were first ranked and screened according to three
metrics: R2, Root Mean Square Error (RMSE), and time taken
in seconds for the execution of the algorithm, as calculated
using scikit-learn functions.
Seven of the models tested; RANASCRegressor, Linear

Regression, TransformedTargetRegressor, ExtraTreeRegressor,
GaussianProcessRegressor, KernelRidge, and PassiveAggressi-
veRegressor, produced negative values for the coefficient of
regression, indicating that these models fit the data worse than
a horizontal line would do; in other words, those models were
only predicting the average value of the input variables.
Consequently, these models were excluded from further
consideration. The FCA probability density function man-
ifested a normal-like skewness (0.16) and kurtosis (0.45) in its
distribution (Figure S3). The Poisson and Gamma Regression
algorithms did not fit the distribution of the response variable,
a prerequisite for the models’ training, and they were thus
excluded from further consideration.
The predictive power of the remaining 32 models was

assessed by comparing the predicted and empirical values of

the response variable, FCA, for variants of the engineered
template form of the bovine enterokinase light chain in the test
set. Despite their generally longer runtime compared to other
algorithm types, decision trees provide substantially improved
model fit with an average unadjusted R2 score of 0.48. This was
0.10 higher than the R2 score of the second-best performing
class of algorithms, as indicated in Figure 4A. We further
performed an analysis for the decomposed data sets that
contained features drawn exclusively from the following
biodescriptor categories in order to evaluate whether any of
the model classes would perform superior for data originating
from specific biodescriptor categories: Seq+MD+MDpocket,
Seq+MD, MD+MDpocket, Seq+MDpocket, and Seq, MD, and
MDpocket. The decision tree-based models yielded the lowest
RMSE across all seven data sets as well as ranking high for
performance as indicated by R2 (Figure 4B). This evaluation
conclusively showed that the decision tree-based algorithms
did not exhibit any bias for modeling a particular group of
features while maintaining high algorithm performance.
Among the decision trees tested, the Gradient Boosting

Regressor (GBR) generated the resulting models with the
lowest RMSE on the Seq+MD+MDpocket data set (Figure
S4). Although GBR was praised as a regressor that allowed for
a high degree of generalizability and interpretability,74 GBR’s
trees are constructed based on the surrogate loss function for
minimizing the error of the overall model. As such, this
function can only be considered a proxy for the true loss.75

However, the Light Gradient Boosting Machine (LightGBM)
algorithm calculates the second-order derivative of the loss

Figure 4. Performance evaluation of the ML models for predicting FCA employing all features from the three biodescriptor categories Seq, MD,
and MDpocket. (A) Average performance of the algorithm classes. (B) Heatmap of averaged performance (scaled from 0 to 1) of the algorithm
classes when features from specific biodescriptor categories were employed: Seq Seq+MD+MDpocket, Seq+MD, MD+MDpocket, Seq+MDpocket,
Seq, MD, and MDpocket.
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function. This alternative approach was reported to allow for a
quick and accurate minimum search of the loss function.76

LightGBM offers several advantages over other decision trees:
(i) its regularization is more complex, thereby preventing
overfitting; (ii) it admits sparse features and offers interpret-
able tools for model analysis; and (iii) it retains performance in
high-dimensional data sets.75,77−79 Lastly, previous reports
have shown that LightGBM improved the model’s general-
izability.80 In our analysis, the difference between GBR and
LightGBM in RMSE was only 3%, and in the current
investigation, LightGBM ran noticeably faster than GBR
(Figure S4), taking 0.05 compared to 0.38 s. All such
advantages led to the decision to select LightGBM to conduct
the downstream modeling for predicting FCA in this work.
The hyper-parameter tuning of the models was carried out as
detailed in the Methods section.
Evaluation of Model Performance. The performance of

the models was evaluated based on three metrics: R2, RMSE,
and MAE. RMSE and MAE provided measures of the
difference between the observed values and those predicted
by the estimator. The evaluation was performed on hyper-
parameter-tuned LightGBM decompositions of the data sets
iteratively to assess the dependence of the model on specific
features. The hyperparameters for each data set are presented
in Table S6.
Applying the algorithm to MD and MDPocket features only,

we noticed strikingly low R2 values (Table 1) implying that

there was not a strong correlation between these features alone
and the predictions made on the performance of the enzyme
variant. Since the MD features extracted here are not
meaningful unless associated with structural and sequential
information, the poor predictive performance would be
unsurprising. Furthermore, the limited number of MD features
(32 as opposed to 80 sequence-based and structure-based
biodescriptors) rendered building models with high predictive
capability difficult given the unbalanced number of feature
classes in the data set. This hypothesis was further supported
and confirmed by the observation that the inclusion of the
other two subsets of features together with MD-based
biodescriptors remarkably improved prediction accuracy.
The models that were trained solely on sequence-based

features had the second-best RMSE and MAE values. The

predictive accuracy of the models improved when sequence
features were used in conjunction with MD features across all
metrics assessed here assessed: R2 (ca. 6.4%), RMSE (ca.
2.5%), and MAE (ca. 3.5%) representing higher predictive
capabilities (Table 1). However, such performance differences
are small and might be influenced by factors such as the choice
of random seed or the limited data set size (312 variants in this
study). To address these concerns and assess the model
robustness, we performed 500 bootstrap iterations with
replacement. There were no significant statistical differences
between the Seq and Seq+MD data set across all metrics
(Tukey HSD results between Seq and Seq+MD with a
threshold of 0.05: R2 p-value = 0.941, RMSE p-value = 0.9081,
MAE p-value = 0.9844) (Figure S5). However, both data sets
showed statistical superiority over the remaining four data sets.
Given this finding, the Seq+MD model, which integrates
sequence- and structure-based features with MD-based
features, was selected for subsequent analyses. This decision
was driven by the potential for richer insights from the added
features that capture the system’s dynamics and thus improve
the explainability or the interpretability of the models.
Feature Analysis and Feature Importance. Machine

learning algorithms were shown to be highly effective in
depicting the data landscape they are exposed to.6,81 This
ability to translate a data landscape description into an
understanding of the relationships between observable and
response variables is of utmost importance in protein
engineering, where the connection between protein function
and product creation is crucial.6 Therefore, it is imperative to
develop an interpretable system that can use the information
gathered by these models. The literature offers various ways to
measure the value of a feature, and for this work, we employed
two methodologies, permutation feature importance and
SHAP analysis.82

Permutation feature importance is a highly effective method
that plays a pivotal role in identifying the tangible
contributions of individual features to the overall performance
of a model.83 This algorithm is designed to break down the
complex relationship between various characteristics and their
impact on outcomes. By doing so, it provides an accurate and
realistic landscape of how each feature contributes to the
overall performance of the model. The final model was
identified to be heavily dependent upon a specific set of
features, including DSSP-derived features such as h-alpha as
well as a range of other MD dynamic and sequence-based
features from BLOSSUM, VHSE, and zScales (Figure 5A−F).
These features were found to be instrumental in predicting
FCA. The analysis identified unique connections between
features such as the helix composition, the protein’s hydro-
phobicity, and FCA. This discovery can be used as a guiding
point for protein engineering research in the future, providing
invaluable insights into the development of more effective
models. The machine learning modeling of the enzyme variant
data showed that the selected model was able to learn from
both sequence-based and molecular dynamics-based features.
When the model relied solely on MD-based features, it
detected a subset of MD features that were different from
those used in models that integrated MD descriptors with
sequence-based descriptors (Table S7). In the latter scenario,
additional features were identified as important, such as the
fraction of protein with random coil patterns throughout all of
the simulated trajectories. This phenomenon, known as feature
domain alteration, illustrated how a single MD-based feature

Table 1. Key Performance Indicators Evaluating the
Predictive Capability of the Models That Used Features
from Specific Sets of Bio-Descriptor Categoriesa

Feature
Combination R2 RMSE MAE

Approximate time required for
data generation per variant

Seq+MD 0.50 1.18 0.83 45 min
Seq 0.47 1.21 0.86 5 s
Seq+MD

+MDpocket
0.45 1.24 0.86 2 h

Seq
+MDpocket

0.42 1.27 0.86 2 h

MD
+MDpocket

0.21 1.48 1.08 2 h

MD 0.22 1.47 1.08 45 min
MDpocket 0.20 1.49 1.16 2 h
aRank of the models that utilized different feature combinations based
on the different performance metrics is provided in brackets for the 63
cases of the 312 variants in the test set. In bold: the best-performing
feature combination and underlined: the second best.
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can be contextualized when supplemented with sequence-
based features as model descriptors. This is because decision
trees, which are used by the model employed in this work, can
facilitate or disrupt innovative feature interactions as required,
allowing different characteristics to be identified as important
for accurately representing a data set. It should be noted that
the sequence-based descriptors used in this study were not
position-based descriptors based on the alignment of the
mutant sequences such as one-hot descriptors. One-hot
encoding, as a descriptor, could implicitly capture some 3D
structure information and thus lead to predictive capability
comparable to that of the models that included the MD-based
features; they do not universally offer the interpretability we
sought after in this study to get meaningful insights for
subsequent rounds of protein engineering. By using interpret-
able features contributed by the MD-data set, we aimed to
facilitate a deeper understanding of the underlying mechanisms
and guide future engineering efforts through feature
importance.
To delve deeper into the impact of different descriptors on

the algorithm’s decision-making, we modified the ranking
criterion from permutation to performance gain and the
importance of a feature in the algorithm’s decision to split the
data set into branches (Figure 5A−C). This in-depth
investigation showed that the features that contributed to the
formation of decision trees predominantly stemmed from MD
features, specifically those related to the binding site, the
proteins positioning relative to the backbone and radius of
gyration, random coil conformations, and the para- and beta-
sheet conformations. Although it is unlikely that the MD

characteristics were the primary contributors to the model’s
numerical performance, as we deduced from the poor
predictive performance of models that relied solely on MD-
based data (Table 1), they played an important role in the
algorithm’s decision-making process that ultimately led to a
successful prediction of the output response. Consequently,
the predictive capability of the models that incorporated MD-
based features was greatly enhanced.
After completing the analysis of the model’s features using

permutation feature importance, we proceeded to employ the
SHAP methodology to compare and further evaluate the
obtained results. This method was specifically designed to
provide an in-depth explanation of individual predictions, offer
a comprehensive overview of the model’s overall performance,
and feature interactions. Notably, over 70% of the features
identified as the 20 most influential 20 features contributing to
the model’s decision-making by permutation feature impor-
tance were also identified as the most influential features by
SHAP. This discovery confirms the findings through an
independent algorithm-based search, as demonstrated by
permutation feature importance.
Furthermore, the use of SHAP facilitated the establishment

of a sense of concurrence between the response variable and
the features, enabling the identification of how these
biodescriptors were employed for each prediction. Upon
analysis, it was discovered that higher percentages of amino
acids under helices conformation, specifically h-alpha and 3.10
helices (h_3.10) (Figure 5D), were found to be related to
higher FCA values. Conversely, the prevalence of turn
conformations in the protein was demonstrated to have a

Figure 5. Ranking of features according to the Seq+MD data set using Permutation feature importance and SHAP. (A) Permutation feature
importance ranking. (B) Features ranked by the performance gain they provided. (C) Features ranked by the number of times each feature was
used to make splits in the data. (D) Feature importance bee swarm plot ranking features according to their impact on model output measured via
SHAP. Each dot represents the value of a datapoint in the data set and is colored according to the feature value. The SHAP value related to each
datapoint is a measure of how much knowing that datapoint affected the prediction. Negative and positive SHAP values represent, respectively, a
decrease and an increase in the predicted value. (E) Top: the function of the model performance ( f(x) horizontal line being the true FAC and the
oscillating line the predicted value per instance). Bottom: Heatmap of the features according to their SHAP values showing how differently they
altered the predictions across the data set. (F) h-alpha dependence plot showing the distribution of the SHAP values against the actual h-alpha
values. The coloring is based on a second feature, in this case, VHSE2, with the strongest interaction effect.
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negative influence on the FCA of the specific variation. This
finding suggests that features representing both h-alpha helices
and turns conformations were identified as key features,
implying that the number of turns may have worked as a
control system to reduce the number of reversals in the protein
structure. It is worth noting that SHAP enabled the
identification of essential aspects in MD that are frequently
overlooked as well as the explanation of how these features
were related to enzymatic properties, in this case FCA. Overall,
this approach provided an in-depth and comprehensive
understanding of the relationship between specific features
and their impact on the response variable, shedding light on
the underlying mechanisms that govern enzymatic properties.
Further, SHAP analysis identified several variables that have

an impact on increasing or decreasing the predicted FCA
values (Figure 5E). In Figure 5E, it is possible to evaluate each
individual prediction and how the features were aggregated to
construct the predicted values, as shown by the f(x) showing as
a horizontal line the true value and the splines representing the
predicted values. Notably, the variants with the largest amount
of absolute error are found to be between 200 and 275.
Particularly for these sets of variants, VHSE2, BLOSUM8, and
h-alpha present large SHAP values, meaning that they
contribute extensively to increasing the predicted value of
FCA. The magnitude of this impact prompted us to investigate
further to see whether there were any potential synergies for
the output predictions. Specifically, we examined whether there
were any interactions between cognate features with high
SHAP values that could affect the accuracy of our predictions.
After scrutiny, we found that h-alpha was a potential candidate
for such interactions, having strong feature interactions with
VHSE2, the second most informative feature (Figure 5F). This
finding emphasizes the close correlation between sequence-
based and MD-based biodescriptors, highlighting the impor-
tance of considering both types of descriptors in predictive
models.
Hypergeometric Testing. Hypergeometric testing is a

statistical method used to determine the statistical significance
of observing a certain number of successes (k) out of a sample
size (s) within a larger population size (N), given that the
population contains a total number of occurrences (K) with
the specific characteristic being studied.84 In other words, it
determines if a sample is random or whether it over- or under-
represents a specific population. It is commonly employed in
bioinformatics, but it has been applied in other areas of
research and analysis.85

In the context of model performance analysis, hyper-
geometric testing can be used to assess the significance of
the overlap between the predicted and actual outcomes. It is
particularly useful for testing categorization models to assign
instances to predefined classes or categories. To facilitate a
comprehensive analysis of model performance, we propose a
threshold-based approach to assigning labels to predictions. By
calculating the threshold at 95% and 5% of the distribution of
the difference between the predicted values and the true values,
we were able to identify poor predictions beyond these
thresholds. This label assignment process enables a fine-
grained evaluation of the model performance of a regression
task with classification labels.
We utilized this analysis to investigate whether there was any

underlying bias created by the number of mutations introduced
into the variants that would impact the predictive capability of
this modeling pipeline. By constructing a contingency table

capturing the counts of observed and predicted outcomes, we
calculate the p-value representing the likelihood of observing at
least as much overlap as that observed under the null
hypothesis of random predictions. A significance threshold of
0.05 was set to determine the statistical significance. In the
poor prediction’s thresholds, we identified s = 6 with k = 4
occurrences having the number of co-occurring mutations ≥5.
According to the hypergeometric distribution testing, the
occurrences in the poor thresholds were over-enriched by 3-
fold compared to expectations, with a hypergeometric p-value
of 0.01. This p-value indicates the statistical significance of the
observed overlap between the predicted and actual outcomes.
In this context, having the obtained hypergeometric p-value
below 0.05 is considered statistically significant. This finding
implies that our model has worse performance when predicting
the effects of five or more co-occurring mutations, as these are
over-enriched observations in the poor predictions. While it
was an informative observation, this finding could have been
biased since only 24.7% of the data contains more than five
mutations, rendering this group under-represented within the
data set. On the other hand, the relative scarcity of variants
with a high number of mutations could have been caused by
the enhancement of undesirable modifications leading to
problems in protein folding or function. We further
investigated these variants with a high number of mutations
and identified that three of the six poor-performing predictions
were the sole cases where the predictions were above the 95%
threshold and that these variants shared the same four out of
five mutations: S38T/L74F/M100K/S127T. As these muta-
tions occurred in only 9% of the variants across the data set, we
believe that integrating more data with variants containing
large mutation counts could aid in better model performances
and provide further assistance to guide improved advice for
direct mutagenesis strategies in protein engineering.

■ CONCLUSIONS
In this work, we present a machine learning-based modeling
pipeline that integrates sequence-based and structure-based
protein features with dynamics-based features extracted from
large-scale data generated by MD simulations to predict
protein functionality. The framework addresses some of the
current challenges and limitations in protein engineering,
particularly those around the identification and prediction of
subtle differences between variants of the same protein. We
showed that the approach proposed here performed
successfully with sufficient predictive power to guide the
engineering of novel protein designs and to provide
mechanistic insight into the functionality of the protein. The
pipeline can allow novel hypotheses to be derived from within
a large search space in a feasible time frame to recommend the
design of proteins equipped with desirable properties, which
can then be realized through site-directed mutagenesis with
minimal experimental effort.
Utilizing an information-driven approach to interpret ML-

based models, we demonstrated that the information provided
by MD-derived, highlighted the essential role protein dynamics
plays in predicting function prediction. We highlight the
following key attributes of this pipeline development process to
guide future efforts in this domain. This study is the first of its
kind to integrate replicate MD trajectories into an ML
processing pipeline for predicting mutation effects on protein
functions, and as such, we were able to highlight some
challenges that are inherent in MD data sets. Through
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statistical analysis, MD simulations were shown to be very
noisy, which necessitated dedicated evaluation and preprocess-
ing prior to their integration within the ML pipelines. Model
screening highlighted the superior ability of decision tree
algorithms to exploit high-dimensional data sets for protein
function prediction tasks. Decision trees yielded models that
allowed for an interpretable understanding of the predictions.
The relative dominance of alpha helices in protein

conformation was identified as a key characteristic impacting
the models’ predictive performance for the EKB protein. This
characteristic, represented by the feature h-alpha, is often
overlooked and thus not evaluated during MD analysis. As we
demonstrated here, such findings can allow a preassessment of
protein engineering features, and using this pipeline, we can
identify features from MD that can consequently be used to
propose rational designs for protein engineering, possibly
substituting residues that favor α helix formation.
One of the most important challenges to the successful

implementation of ML-based approaches lies in accessing high-
quality data. In the proposed pipeline, MD simulations were
coupled with sequences to generate the input data set of
protein features. Despite the limited availability of exper-
imental data still being a bottleneck, for MD simulations the
outlook is far from bleak, with the increasing availability of
protein structures reported through crystallography and more
recently in silico methods such as AlphaFold and the
development of AI-based MD force fields.86 Furthermore,
advancements in computing power and resources will allow for
the extension of the applicability of the proposed protocol.87

The improvement in the data sets reinforced through MD will
inevitably increase the predictive power of approaches such as
the pipeline presented here, which will consequently boost
efforts toward protein engineering in healthcare applications
and in sustainable manufacturing.
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Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A.
J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.;
Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.;
Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.;
Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.;
Hassabis, D. Highly Accurate Protein Structure Prediction with
AlphaFold. Nature 2021, 596 (7873), 583−589.
(39) Mariani, V.; Biasini, M.; Barbato, A.; Schwede, T. LDDT: A
Local Superposition-Free Score for Comparing Protein Structures and
Models Using Distance Difference Tests. Bioinformatics 2013, 29
(21), 2722−2728.
(40) Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski,
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