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Abstract— Performance and closed-loop stability of control
systems can be jeopardised by actuator faults. Actuator re-
dundancy in combination with appropriate control laws can
increase the resiliency of a system to both loss of efficiency
or jamming. Passive Fault-Tolerant Control (FTC) systems aim
at designing a unique control law with guaranteed stability
in both nominal and faulty scenarios. In this work, a novel
machine learning-based method is devised to systematically
synthesise control laws for systems affected by actuator faults,
whilst formally certifying the closed-loop stability. The learning
architecture trains two Artificial Neural Networks, one repre-
senting the control law, and the other resembling a Control
Lyapunov Function (CLF). In parallel, a Satisfiability Modulo
Theory solver is employed to certify that the obtained CLF
formally guarantees the Lyapunov conditions. The method is
showcased for two scenarios, one encompassing the stabilisation
of an inverted pendulum with redundant actuators, whilst the
other covers the control of an Autonomous Underwater Vehicle.
The framework is shown capable of synthesising both linear and
nonlinear control laws with minimal hyperparameter tuning
and within limited computational resources.

I. INTRODUCTION

A fault is usually defined as a change in the characteristics
or in the performances of a component that does not compro-
mise the entire functionality of the parent system [1]. Fault
Tolerant Control (FTC) aims at preserving the plant operation
and guaranteeing the system stability even when unexpected
faults occur [2], [3]. The FTC is classically split between
Active and Passive methods. Active FTC (AFTC) methods
rely on the presence of a Fault Detection and Isolation system
(FDI) and involve either controller redesign or a scheduler
of different pre-computed control laws. These are typically
computationally expensive, rely on precise information about
the model, and suffer from a period of delay due to the FDI
system. On the other hand, Passive FTC (PFTC) architectures
encompass control laws that do not change when a fault
occurs. Within the PFTC framework, the goal is the design of
controllers that preserve stability in case of a pre-determined
set of faults and their anticipated behaviour [3]. With respect
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to AFTC, PFTC is an attractive option due to the lower com-
putational requirements and complexity. However, designing
robust controls results in conservative controllers with low
nominal performances [4].

Underwater vehicles are the reference application of this
work. In every field where the widespread sensoring and
algorithms use cannot be assumed, such as onboard un-
derwater vehicles, PFTC represents the option with the
most significant potential impact. Therefore, this class of
controllers is the focus of this study. PFTC are oftentimes
designed through Robust Control techniques aimed, e.g., at
minimising the H2 or H∞-norms between exogenous inputs
and desired performances [5]. On the other hand, nonlin-
ear control techniques encompassing extending the nominal
control law with an additional Lyapunov function-based term
can be employed to guarantee closed-loop stability upon fault
occurrence [6]. The former are the most widespread solution
in the underwater domain, but they rely on linearisation of
highly nonlinear dynamics [7]. The latter instead, do not
require any linearisation but cannot be applied when a full
loss of actuator occurs, case that will be studied in this work.

In recent times Artificial Neural Network (ANN)-based
controllers trained with the Deep Reinforcement Learning
(DRL) paradigm have been employed to control different
types of Autonomous Underwater Vehicles (AUVs) [8]–[10].
ANN-based controllers are also starting to be employed to
design Passive FTC systems [11]. These works illustrate
the potential of applying neural controllers to the complex
underwater domain, characterised by highly nonlinear and
coupled dynamics and unstructured disturbances.

Generally however, machine-learning-based controllers are
generated over a finite training set and they offer no guar-
antees of validity over a continuous domain. Hence recently,
several works focus on neural controllers equipped with
a formal proof of stability, based on Satisfiability Modulo
Theories (SMT)-solving. This class of architectures, namely
the Augmented Neural Lyapunov Control (ANLC), relies on
two ANNs, one representing the control law, and the second a
Control Lyapunov Function (CLF) [12], [13]. This approach
relies on a loop between two modules, a Learner and a
Falsifier. The first is tasked with training the ANNs starting
from a small set of initial samples, growing in size based on a
Counter Example-Guided Inductive Synthesis (CEGIS) [14],
[15]. The latter formally verifies that the ANN represents
a CLF for the considered dynamics: the verification step is
carried out with SMT solvers, that are designed to evaluate
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the validity of a symbolic expression over a domain of real
numbers. One typical choice is represented by dReal, for its
capability to handle nonlinear expressions [16]. The ANLC
was shown capable to synthesise controllers for unstable dy-
namics within minimal computational requirements, showing
attractive potential to design control laws for complex dy-
namics such as the ones characterising autonomous vehicles.

Contributions. This work represents, to the best of our
knowledge, the first attempt at designing passive fault-
tolerant control laws, in an automated way, whilst formally
guaranteeing the closed-loop stability. We show how the flex-
ibility of neural networks can be integrated and exploited in
safety-critical control scenarios, as underwater autonomous
vehicles. Our method requires solely the definition of the
dynamic system of interest and the expected set of faults.
The proposed approach is based on the ANLC method to
compute a control function and a CLF, without needing
expert knowledge input to initialise the weights of the
networks. The method formally guarantees the (ϵ-) stability
of the equilibrium of interest, via SMT-solving.

II. CLF SYNTHESIS VIA CEGIS

In this work, we aim at designing passive fault-tolerant
control laws for a dynamical system

ẋ = f(x,u, ϕi), (1)

where x ∈ D ⊆ Rn is the system’s state, u ∈ Rp is the
control input, and ϕi denotes possible system faults. Let us
assume each of the p actuators can be affected by complete
faults (collected in a set Φ). For brevity, we use the shorthand
fn(x,u) for the nominal system, i.e. in the absence of faults,
whilst fϕj (x,u) denotes the dynamics characterised by the
fault of the j-th actuator (with ϕj ∈ Φ). Along with the
design of a control law, we provide a certificate of the closed-
loop stability via a CLF.

The synthesis of a CLF is built upon [13] and it employs
a neural CEGIS framework, depicted in Fig. 1, in which
two NN represent the Lyapunov function and the control
law, respectively. Notice that the control network is equipped
with a linear and a nonlinear branch. Either one can be
trained during the learning process, based on the required
complexity specified by the user (defined by a Boolean
parameter β denoted control-branch training selector, see
Fig.1). Clearly, the use of nonlinear control laws improves
the learning capability of the framework, at the expense of
the computational complexity, as it increases both the burden
of the training algorithms, e.g. Stochastic Gradient Descent
(SGD), and of the verification step (carried out by the SMT).

Method overview. The CEGIS paradigm evolves based on
the information flow between two modules, the Learner and
the Falsifier, as outlined in Fig.2 (see [13] for further details).
The former trains the CLF and the control gains by iteratively
minimising a loss function, expression of the three theoretical
Lyapunov conditions, namely the CLF being positive-definite
with its Lie derivative negative-definite over a specified
domain, and being zero at the equilibrium. Given an initial
finite sample of points, the learning endures until the loss

function reaches zero, guaranteeing that, on the sample set,
all points respect the theoretical stability conditions. At
this stage, the CLF is passed to the Falsifier, where the
Lyapunov stability conditions are formally evaluated over a
bounded domain of real numbers. Following, either the CLF
is verified to be valid and the procedure is terminated, or
new counterexamples (CEs) are generated. In the latter case,
the CEs are added to the dataset, which is fed back to the
Learner, which restarts the training procedure.

a) Learner: Given a dynamical system ẋ = f(x,u)
and a target equilibrium x⋆, the training procedure starts
from a (small) initial sample set S composed of randomly
selected states (si) generated within a domain D (containing
x⋆). At each learning iteration, a cost function is evaluated
and the ANN weight is updated according to the SGD
algorithm. At the end of the training, this procedure returns
a control law and a valid CLF over the finite sample set, i.e.
V (si) > 0, V̇ (si,ui) < 0, ∀ si ∈ S and ui the sample
control set.

b) Falsifier: Given a candidate CLF V (x) and its
corresponding Lie derivative V̇ (x,u) = ∇V (x) · f(x,u),
our procedure ought to prove its negative definiteness ∀x ∈
D \ {x⋆} via SMT solving. If the SMT verifies that the
candidate CLF is indeed valid, the procedure terminates;
alternatively, it provides a CE point, where either Lyapunov
condition is invalidated. This point is then added to the
training dataset, and the learning restarts. It is worth recalling
that dReal is a sound solver, namely, when no CE is obtained,
the CLF is formally valid over (a domain of) the real
numbers. Nonetheless, dReal is δ-complete, thus spurious
counterexample might be returned in the neighborhood of the
origin (within a precision δ). Therefore, we exclude a small
neighborhood of the origin from the SMT solver domain.
This limits the stability certificate that can be provided with
dReal to the ϵ-stability of x⋆, namely at steady-state the
state-space trajectories contract to ∥x∥ ≤ ϵ [17]. The latter

Fig. 1. Augmented Neural Lyapunov Control architecture with Lyapunov
ANN (blue box), nonlinear and linear control ANN (green and orange boxes,
respectively) and β the control-branch training selector.
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Fig. 2. Learner-Falsifier CEGIS loop: the Learner trains the ANNs, while
the Falsifier verifies the formal validity of the CLF V .

property is of great importance in real world applications, as
even bounding a dynamics to oscillate sufficiently near the
target equilibrium is a desired outcome of a control system
[18]. Additionally, the architecture relies on an Augmented
Falsifier module, that was shown speeding up the CE gen-
eration whilst mitigating issues linked to dataset overfitting
[13].

III. SYNTHESIS OF PASSIVE FTC LAWS

The ANLC CEGIS-based procedure can be extended to
guarantee FTC properties by devising tailored modification
to both the Learner and the Falsifier.

Assumptions. We leverage two assumptions regarding the
system and fault behaviour: i) the actuators exhibit binary
faults, i.e. they are either fully working or fully broken; ii)
at most only one fault is present at each time. Condition i)
can be assumed as, in the case of underwater actuators, a
thruster can become mechanically stuck when solid objects
(such as debris or ice) fall between the blades and the
propeller, or a thruster can be switched off by the onboard
computer when any problem is detected (such as when
anomalous currents are drawn). Finally, a situation where
multiple faults happen at the same time is symptomatic of a
non-recoverable problem on the platform, and more drastic
countermeasures (e.g. abort of the mission and recover the
vehicle) are required.

The ANLC procedure can be extended to FTC by a)
defining a set of dynamics capturing the nominal and faulty
systems and b) rendering all the associated Lie derivatives
negative definite. We assume that each of the p actuators
can be affected by complete faults, hence a total of (p+ 1)
dynamics (i.e. models with a fault on the j-th actuator in
addition to the nominal model) can be used to describe the
nominal and faulty scenarios. To guarantee that x⋆ is stable
for all the (p+ 1) dynamics, the corresponding (p+ 1) Lie
derivatives need to be negative definite; formally

(V̇n(x,u) < 0) ∧ (∀j ∈ Φ : {V̇ϕj
(x,u) < 0}), (2)

where V̇i(x,u) = ∇V (x) · fi(x,u), for i = n (nominal
dynamics) or i ∈ Φ.

Let us now set up the training in order to synthesise a
CLF abiding (2).

a) FTC Learner: Recalling the structure of the loss
function proposed in [13], referred to as Empirical Lyapunov
Risk Loss (LELR), four terms are defined: three are linked
to the theoretical Lyapunov conditions (αi), whilst one reg-
ulates the size of the Region Of Attraction (ROA) (αROA).

The loss function is defined as

LELR = α1

N∑
i=1

max(0,−V (si)) + α2LV̇ +

α3V (0)2 + α4
1

N

N∑
i=1

(∥si∥2 − αROA V (si))
2, (3)

where N is the cardinality of the training dataset and where
the tuning coefficients can be selected as discussed in [13].
The first term of (3) enforces the positiveness of V , the
second one is responsible for the negativeness of the Lie
derivatives V̇i, the third one represents the condition V (0) =
0, whilst the the latter constraint fosters circular level sets
of the CLF. Note however that the shape of the CLF is
accounted for as a side feature, as we do not strictly enforce
the loss LELR to be equal to 0 [13]. The loss term associated
with the Lie derivative (LV̇ ), captures both nominal and
faulty dynamics as

LV̇ =

N∑
i=1

max(0,∇V (si) · fn(si,ui))+

p∑
j=1

N∑
i=1

max(0,∇V (si) · fϕj (si,ui)). (4)

b) FTC Falsifier: Once the training finds a suitable
candidate Lyapunov function, this is checked by the verifi-
cation engine, in order to formally certify that the Lyapunov
conditions are satisfied over the whole continuous domain D

– or, if these are not satisfied, a counterexample is returned
and the training is restarted with an augmented dataset. The
verification check is expressed with the formula

∀x : (x ∈ D⇒
(
V (x⋆) = 0 ∧ V (x) > 0 ∧

V̇n(x,u) < 0 ∧ {V̇ϕj (x,u) < 0}pj=1

)
, (5)

where the latter term denotes the sequence of the p Lie
derivatives associated to the faulty systems. Finally, these
conditions guarantee the system stability even when an
actuator within the set Φ fails. The proposed method is
hereby referred to as passive Fault Tolerant-Augmented Neu-
ral Lyapunov Control (pFT-ANLC).

IV. CONTROL OF AN INVERTED PENDULUM WITH
ACTUATOR REDUNDANCY

Our method is compared against two LQR laws and a
general not fault tolerant ANLC (vanilla ANLC or vANLC)
[13]), in order to show the capabilities of a passive FTC, for
an inverted pendulum with redundant actuators model.

The nominal dynamics fn of an inverted pendulum with
a redundant actuator set can be written as

ẋ1 = x2

ẋ2 =
(mgL sinx1 − bx2 + h1u1 − h2u2)

(mL2)
,

(6)

where x1 and x2 represent the pendulum position and veloc-
ity, respectively; u1 and u2 represent the torque generated



Fig. 3. Inverted pendulum with redundant actuator set.

by two separate motors; m, L the pendulum mass and arm
length; g the gravity constant and b the drag coefficient. Also,
hi denotes the health status of the i-th actuator, namely
hi = 1 when the actuator is functioning nominally, and
hi = 0 when faulty. It follows that in the nominal scenario
h1 = h2 = 1. A schematic depiction is illustrated in Fig. 3.

LQR control: The LQR method is chosen due to its
intrinsic robustness properties. First, we linearize the model
(6) around the target unstable equilibrium point. Two LQR
laws are tuned based on different weights assigned to the
actuators (denoted LQR1 and LQR2). In the first case, we
consider u1 and u2 equally important; in the second case,
u2 is the preferred control source.

Augmented Neural Lyapunov Control: Following, a lin-
ear control law is synthesised with the vANLC. To resemble
the case of actuators with different weights, the loss function
(3) is modified as

LvANLC = LELR + αu1

N∑
i=1

u2
1,i + αu2

N∑
i=1

u2
2,i, (7)

where the extra two terms add, as further objective, the
minimisation of the energy spent by the actuators. By tuning
αu1 and αu2 the effort of the two actuators can be penalised
differently. As we compare against LQR controllers, we
select the linear control architecture (see Section II). We set
αu1

= 0.7, αu2
= 0 for this training scenario.

Passive Fault Tolerant ANLC: The pFT-ANLC encom-
passes, besides the nominal model, both faulty systems,
namely derived from (6) as fϕ1

(h1 = 0, h2 = 1) and
fϕ2

(h1 = 1, h2 = 0).
We run 10 tests with the same hyperparameters (with the

exception of the seed), and we select the same learning
parameters shared with the vANLC, including the choice of
linear control laws. Each of the 7 converged training runs
stems into a controller with slightly different performance,
such as settling time and steady-state error, but all are certi-
fied to stabilise the closed-loop. In real applications, control
engineers may select one of these controllers according to
their preferred performance criteria. The definition of such
an indicator is beyond the scope of this work and will be
object of future investigation.

Control laws comparison: Our analysis includes the
nominal case along with two faulty scenarios, for the four

Fig. 4. Inverted pendulum closed-loop tests. Color code: blue lines (pFT-
ANLC), orange lines (LRQ2), green lines (vANLC). Line style: solid
(nominal dynamics), dashed with square markers (fault 1), dashed with
round markers (fault 2).

control schemes, amounting to 12 different case studies. We
report the closed-loop eigenvalues in Table I.

TABLE I
REDUNDANT INVERTED PENDULUM: CLOSED-LOOP POLES LOCATION.

Dynamics
Controller Nominal (fn) Fault 1 (fϕ1

) Fault 2 (fϕ2
)

LQR1 -1.29, -22.06 -0.37, -12.92 -0.37, -12.92
LQR2 -1.01, -160.39 -0.99, -145.98 0.18, -17.28
vANLC -1.91, -128.18 -1.02, -132.29 0.28± 9.50j
pFT-ANLC -1.68, -208.76 -1.59, -101.87 -1.58, -108.08

Every control scheme guarantees the stability of the nom-
inal and of the first faulty scenario, but not when u2, the
main actuator, is faulty. When the first fault occurs, notice
that the dominant poles shift towards the imaginary axis,
hinting towards a reduced stability margin. When the fault is
injected on the second motor instead, two of the closed-loop
systems become unstable, while both the first LQR and our
pFT methods can retain stability. The first LQR is computed
with much stricter constraints with respect to the second,
and it provides stability margins considerably worse than our
method under all scenarios.

The closed-loop dynamics of the LQR2, vANLC, and pFT-
ANLC are illustrated in Fig. 4 (LQR1 is not shown for
readability, but the dynamics qualitatively resemble the pFT-
ANLC ones). All the three control laws can stabilise the
pendulum in the nominal case (solid lines) and first faulty
model (square markers). When a fault on the second motor
occurs, only the pFT-ANLC can stabilise the system; both the
green and orange lines with round markers do not converge to
the desired equilibrium point. The corresponding graphical
animations of the pendulum motion with the three control
laws are provided1. This analysis illustrates qualitatively how
state-feedback control laws cannot always guarantee stability
when the underlying dynamics undergoes a fault, such as the
loss of one redundant actuator, whereas our method provides
sufficient stability margin under all fault scenarios.

1https://github.com/grande-dev/pFT-ANLC-preview

https://github.com/grande-dev/pFT-ANLC-preview


Fig. 5. AUV vehicle model with three fixed thrusters.

V. CONTROL OF AN AUTONOMOUS UNDERWATER
VEHICLE

In this section, the proposed method is applied to a case
study encompassing the control of an AUV. Differently
from the neural-Lyapunov studies [12], [13], the goal is to
synthesise a control to stabilise the system around a non-zero
equilibrium, that, in this case, coincides with maintaining the
AUV at a desired target speed.

The AUV actuator configuration is inspired to the hover-
capable AUV developed at the National Oceanography Cen-
tre Southampthon2, UK. A two dimensional dynamics ac-
counting for surge speed (x1) and angular velocity around
the vertical axis (x2), is used to describe the planar motion of
the AUV. Thrusters F1 and F2 are oriented at an angle α wrt
the x-body axis (xB) and form an angle γ with the segment
connecting them to the centre of gravity (li). By denoting
with m the mass of the vehicle and with Jz the moment of
inertia around the vertical axis, the AUV dynamics can be
described as

ẋ1 =
−Xux1 + F1 cosα+ F2 cosα

m

ẋ2 =
−Nrx2 + F1l1 sin γ − F2l2 sin γ − F3l3

Jz
,

(8)

where Fi represents the force generated by the i-th thruster,
Xu and Nr denote the surge and yaw drag coefficients,
respectively. For slow moving vehicles, simple linear drag
terms are sufficiently descriptive and no Coriolis-related
effects appear due to the sway dynamics being neglected.

The proposed case study investigates the occurrence of
two possible faults, namely the fault on the first (aft port)
and third (bow) thruster. The aim is to maintain the AUV
at x⋆ = [0.5, 0.0] both in the nominal and faulty scenarios.
For this application we employ a nonlinear control law. The
selected ANN architecture is reported in Table II, where we
outline the input, hidden, and output layers’ sizes, along with
the presence of the bias and the activation functions σ.

2https://noc.ac.uk/technology/technology-development/marine-
autonomous-robotic-systems

TABLE II
AUV CAMPAIGN: ANN ARCHITECTURE.

Parameter Lyapunov NN Control NN
layer size [2, 10, 10, 1] [2, 10, 10, 3]

bias [No, No, No] [Yes, Yes, No]
σ [x2, linear, linear] [softplus, softplus, softplus]

Fig. 6. Synthesised CLF for the AUV system.

The training is carried out on an unassuming office laptop
without GPU (8 CPUs at 1.90GHz). 10 tests (with different
seeds) are run, of which 9 converge within an average time of
about 4 min. One resulting CLF, obtained after 883 training
iterations is reported in Fig. 6.

To conclude, closed-loop results are hereby illustrated and
discussed. Fig. 7 reports the AUV surge dynamics, shown
as per bounds spanned by the 9 controllers with stability
certificate. The dynamics are initialised at 0.4 [m/s], and are
shown converging to the desired ϵ-stability bound (0.5±0.01
[m/s]). When a fault occurs at t=50 [s] on thruster F1, the
surge speeds undergo a drop, that, anyhow, always remain
within the desired ϵ-stability threshold. This behavior is
achieved as the pFT-ANLC learns automatically to set the
steady-state target higher to compensate for the possible
faults. This is in turn accomplished by applying an excess
of force on F2 wrt to F1 and a non-zero F3, as illustrated
in Fig. 8. An analogous behaviour is noticed in the angular
rate dynamics, reported in Fig.9, as the controllers learn to
converge to an offset value wrt x⋆

2 to mitigate the possible
occurrence of a fault.

VI. CONCLUSIONS

In this paper, a novel, automated method to design passive
Fault Tolerant Control laws is presented. The proposed
approach relies on the ANLC architecture to synthesise a
unique control function that guarantees ϵ-stability of the
target equilibrium. Both linear and nonlinear control laws
are synthesised for two benchmark systems of increasing
complexity. The approach is shown capable of maintaining
the system dynamics within the target stability boundaries,
without relying on external information flow from a Fault
Detection and Isolation block. The architecture requires
minimal hyperparameter tuning and can be run on standard

https://noc.ac.uk/technology/technology-development/marine-autonomous-robotic-systems
https://noc.ac.uk/technology/technology-development/marine-autonomous-robotic-systems


Fig. 7. Closed-loop test AUV system: surge dynamics — F1 faulty.

Fig. 8. Closed-loop test AUV system: control effort allocation — F1 faulty.

Fig. 9. Closed-loop test AUV system: angular rate dynamics — F3 faulty.

office laptops. The approach is of relevance for every control
application where extensive sensoring or fault monitoring
algorithms cannot be assumed, such as in the case of
autonomous underwater vehicles. Despite the benefits men-
tioned, limitations encompassing the scalability to higher or-
der systems and the introduction of noisy measurements and
disturbances will require dedicated assessment. A thorough
comparison against additional state-of-the-art fault tolerant
methods, is matter of ongoing work. Future work focusses
both on testing the control method onto real vehicles, on
the definition of a criterion to select one of the synthesised
controllers, and on comparing the performance with diverse
Fault Tolerant Control techniques.
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