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Abstract—Stiffness sensing and palpation are essential for
understanding object properties, including tissue health and fruit
ripeness. Currently, there is limited research on using soft-tipped
sensors for stiffness sensing and dynamic palpation. To address
these challenges, we investigate how the pressure modulated
optical tracking (PMOT) sensor can use compliance control to
quantify tissue stiffness and detect margins in samples through
dynamic palpation. Results show that the PMOT sensor modulus
of elasticity sensing range is from 4.20 kPa up to 177.62 kPa.
Across all untrained samples, elasticity was measured with a root-
mean-square error (RMSE) of 7.72%. Further, it is shown that
the sensor can locate margins between 13.4 kPa and embedded
29.3 kPa materials during palpation. When mounted on a linear
rail, averaged for the direction of travel, the sensor’s signal-to-
noise ratio (SNR) was up to 39.5:1. Participants used the sensor
to locate embedded margins in a teleoperation environment with
visual feedback. This was achieved with an accuracy of 96.5%.

Index Terms—Stiffness Sensing, Elasticity Sensing, Palpation,
Force Sensing, Tactile Sensor, Soft Sensor, Haptic Sensor

I. INTRODUCTION

STIFFNESS sensing is essential for understanding the
objects with which a robot is operating. In grasping and

manipulation tasks, objects with different stiffnesses should
be handled differently, to maintain maximal control. Whilst
in medical robotics, stiffness can convey information about
tissue types and tissue health, because unhealthy tissue often
has a different stiffness than that around it. For example,
breast cancer tissue can be ten times stiffer than normal breast
tissue [1]. To ensure their users can be fully informed, sensors
should be able to measure sample stiffness numerically and
detect changes in stiffness during sensor motion.

In the literature, stiffness is used to refer to two different
measurements. Traditionally, stiffness refers to the spring
constant (k) of an object [2]–[5]. On the other hand,
researchers have used stiffness as a shorthand for tissue
stiffness which is measured as the modulus of elasticity (E)
of a material [1], [6]–[11]. Whilst k describes the property of
a structure and E describes the property of a material, the two
are linked by (1) [10].
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Fig. 1. Pressure modulated optical tracking (PMOT) sensor dimensions
and components. (a) Side view of our sensor sensing tissue stiffness with
dimensions. (b) 3D cross-sectional view of our sensor with component labels.
An endoscopic camera tracks the position of points on the inner surface of
the membrane. Allowing displacement to be measured during pressurisation
and palpation.

k =
EA

L0
(1)

Where A is the area and L0 original length of an object.
Therefore, one is directly proportional to the other when
measuring objects of the same dimensions.

Several techniques can be used to measure stiffness. The
force and displacement of an actuator interacting with the
sample can be tracked [6], [12]. How the sample conforms
as it is indented or aspirated can be measured [7], [9], [13],
[14]. The shift in resonance frequency of a device in contact
with a sample can be analysed [8], [15]. The ratio of forces
acting on two half plates of different compliance under shear
forces [16]. The deformation of two or more indenters of
different compliance can be compared [2], [17]. However,
none of these sensors have been used in dynamic palpation
to find where tissue changes in an object. Other sensors have
been shown to detect changes in stiffness when they are moved
across the tissue during dynamic palpation. In most sensors,
this is done by measuring force as the sensor is moved [18]–
[23]. However, these sensors require additional information
from external sensors to quantify stiffness. For example,
Jenkinson et al. produced a sensor that could detect changes
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in stiffness when repeatedly pressed across the tissue, but
could only characterise stiffness when pushed against a sprung
surface with a known displacement [3]. The need for external
position tracking reduces its stiffness-sensing ability when
mounted on robots with less accurate kinematic tracking. A
sensor with the capability to measure stiffness without external
position sensing and carry out dynamic palpation is studied by
Faragasso et al. [4], [24]. However, this sensor interacts using
stiff-tipped indenters, which may damage tissue [25], [26].
On the other hand, it has been shown in previous work [27]
that the pressure modulated optical tracking (PMOT) sensor
(Fig. 1) can measure force with a variable range through
compliance control of a soft membrane.

In this paper, we explore new sensing modalities for this
sensor and further expand its capabilities. We demonstrate that
this soft-tipped sensor is also capable of i) quantifying sample
elasticity without an external position reference and ii) sensing
changes in stiffness during dynamic palpation. To achieve this,
we present an innovative method that measures elasticity by
changing the compliance of a membrane and measuring its
deformation.

Section II gives a thorough review and comparison of
current stiffness sensing techniques. In Section III, an overview
of our sensing method is given followed by experiments in
Sections IV, V, and VI. These experimental sections discuss
results with regards to stiffness sensing as well as dynamic
palpation (with human participants through teleoperation).
Section VII concludes the findings.

II. STIFFNESS SENSING LITERATURE REVIEW

To better understand the capabilities of stiffness sensors,
a literature review was carried out. Stiffness sensors
measuring the force-displacement relationship were developed
by Hassanbeiglou et al. and Afshari et al. [6], [12]. In
[6], tactile switches were mounted on a trapezoid above a
force sensor, allowing the indentation depth and force to be
measured. This was used by the authors to observe how the
sensor responded to tissue samples of different softness at
different indentation rates. A sensing probe which actuated a
known displacement into a tissue and measured the resulting
forces is investigated in [12]. This showed distinct Force
displacement graphs for samples of different stiffness. Neither
sensor is shown to be able to locate embedded objects in
dynamic palpation and their ability to compensate for shear
forces is unknown. The methodology in [12] describes a
dynamic palpation experiment, however, only data from static
probing into the sample are given in the results. Both of these
sensors interact using stiff components.

Tissue conformation during aspiration or indentation has
been used to calculate stiffness [7], [13]. The probe used
in [7] measured the aspiration pressure and displacement of the
tissue into the sensor. This was shown to be safe performing
in vivo trials. It could estimate modelling coefficients of
a synthetic sample and tissues when inverse finite element
analysis was applied. This sensor uses stiff components to
press against the edge of the aspirated area. Gubenko et al.
demonstrated a tissue stiffness sensor that measures stiffness

by measuring the vertical displacement of a central mirror and
recording the contact area radius using a camera [13]. These
measurements were compared to a finite element model to
measure the tissue stiffness of two samples, around 2300 kPa
and 200 kPa in elasticity. These were calculated with errors
”above 10%” and ”near 5%”. This sensor was soft-tipped.
Nguyen et al. developed a sensing chip which used three
piezoresistive cantilevers to measure tissue stiffness [9]. One
cantilever was placed at the centre of the chip whilst the other
two were positioned at the edge. These were then covered
by an elastic pad. Softer tissues would conform more to the
sensor, putting a higher force on the edge cantilevers relative to
the centre cantilever. This difference could be measured from
the cantilever resistances. The sensor was pressed against six
samples that vary in elasticity from 57 kPa to 3.2 GPa. Each
produced a distinct plot when resistance ratios were plotted.
Neither sensor was tested in dynamic palpation or with shear
forces.

Tissue conformation properties were also used by Yuan
et al. to allow the Gelsight sensor to sense hardness [14].
The sensor was pushed into samples of different hardness
whilst recording the motion of the sensor’s surface. The
deformation was input to a neural network over several frames
to find the sample hardness. Whilst stiffness is often perceived
alongside hardness, it is important to note that in soft materials
these two properties do not always correlate [28], [29]. The
samples used ranged in hardness 00-8 to 00-87. These were
made from elastomers which range in elasticity from around
55 kPa to around 827 kPa. Samples of trained shapes but
untrained hardness were measured with a root-mean-square
error (RMSE) of 00-5.18, 5.95% of range. The Gelsight sensor
has also been shown to be able to measure forces when
interacting with stiff objects and detect embedded nodules
when statically held against a sample [30], [31]. However,
it has not been shown if this sensor can be used in dynamic
palpation to locate changes in stiffness and locate embedded
objects in soft materials.

Shifts in resonant frequency have also been used to measure
tissue stiffness. Omata et al. showed that the shift in resonant
frequency of the sensor at a set indentation pressure correlated
with Young’s modulus and spring constant [15]. Samples
between 10 kPa and 100 GPa in elasticity were tested. Zhang
et al. tested a resonance sensor which could work at angles up
to 45◦ to categorise samples of different stiffness [8]. Samples
with hardnesses increasing in steps from 9.3% to 87.5% were
correctly categorised at a rate of 92%. It should again be noted
that hardness and stiffness may not correlate. Both of these
sensors are hard-tipped and have not been tested in dynamic
palpation.

Comparing the deformation of indenters of different
compliance has been used to sense stiffness. Faragasso et
al. measured the displacement of two pairs of indenters on
springs of different compliance using a camera [2]. This was
tested on four silicon samples, 1 time each. These samples had
spring stiffnesses between 0.0856 N/m and 2.2373 N/m and
were calculated with errors between 1% and 5% of sample
spring stiffness. The mean error was 3.5% of sample spring
stiffness. This sensor was adapted to fit on an endoscope in
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TABLE I
LIST OF AVAILABLE STIFFNESS SENSORS

Paper Measurement Sample Range Sensor accuracy Tip material Dynamic palpation
[6] Sensor response Not assessed Not assessed Stiff Not tested

[12] Sensor response Not assessed Not assessed Stiff Not tested
[7] Model Parameters Not assessed Not assessed Stiff Not tested

[13] Elasticity 200 kPa & 2300 kPa ≈5% & >10% of sample stiffness Soft Not tested
[9] Sensor response 57 kPa - 3.2 Gpa Not assessed Hybrid Not tested

[14] Hardness 00-8 - 00-87 (≈55 kPa - 827 kPa) RMSE of 00-5.18, 5.95% of range Soft Not tested
[15] Sensor response 10 kPa - 100 Gpa Not assessed Stiff Not tested
[8] Hardness categorisation 00-24 - 00-75 92% correctly categorised Stiff Not tested
[2] Spring stiffness 0.0856 N/m - 2.2373 N/m Errors of 1%-5% of sample stiffness. Mean error of 3.5% Stiff Not tested

[17] Spring stiffness 0.0856 N/m Error of 5.386% of sample stiffness Stiff Not tested
[4] Spring stiffness 0.29 N/m & 0.62 N/m Max error of 6.4% of sample stiffness Stiff Mapped stiffness

[16] Elasticity 40 GPa Not assessed Hybrid Not tested

[17]. It used four beams, three of a high compliance and one
of a low compliance, the ends of which were tracked using
the endoscope. This was tested on a single phantom with an
error of 5.386%. Both of these sensors interacted using stiff
components and were not tested in dynamic palpation.

Faragasso et al. adapted their stiffness sensors and force
sensor from [32] to be usable for dynamic palpation [4]. This
sensor used three high-compliance sprung indenters arranged
around a low-compliance sprung indenter. Results showed the
spring stiffness of 0.29 N/mm and 0.62 N/mm samples could
be measured at angles up to 20◦ with maximum errors of
6.4% of sample stiffness. This device could create a map of
tissue stiffness in handheld and robotic dynamic palpation. The
sensor used stiff indenters to interact with the sample.

Nagatom and Miki created a sensor that measured the
sample stiffness by comparing the stress on materials of
different compliance during shear forces [16]. Four strain
gauges were arranged around a contact pin, two embedded
in a lower compliance PDMS and two embedded in a higher
compliance PDMS. When loaded under shear loads the sensor
measured the probes stiffness as around 40 GPa. The sensor
was not tested with samples in the magnitude of human soft
tissues or with lubricants representing fluids found in in vivo
palpation. The sensor used a hybrid tip made of both stiff and
soft materials. The sensor was not tested in dynamic palpation
tasks where the stiffness changes and could likely not detect
embedded objects due to only measuring the elasticity from
horizontal interactions with the tissue surface.

The aforementioned stiffness sensors are summarised in
Table I, alongside the measured stimulus, the range of samples
tested, sensor accuracy performance metrics, the stiffness of
the tip components interacting with the tissue, and whether
any dynamic palpation tasks were carried out with each sensor.
This reinforces that no soft-tipped sensor has been shown to
be able to quantify sample stiffness and carry out dynamic
palpation. We remark that many papers only reported the
sensor’s response to samples of different stiffness and did not
attempt to measure the sample stiffness with the sensor. When
sample stiffness was measured, authors used different metrics
to characterise sensor performance. To allow the stiffness
measurement results from this paper to be compared across
the literature, results will be reported as the root-mean-square
error (RMSE) and mean absolute error (MAE) compared to
each sample and across the sensor’s range, additionally, the

non-repeatability will be given.

III. SENSING PRINCIPLE AND MECHANICAL DESIGN

A. Sensing Principle

The pressure modulated optical tracking (PMOT) stiffness
sensor measures elasticity by varying its internal compliance
and measuring the resulting tissue and membrane deformation.
The compliance of the sensor increases with pressure due to
two main factors: firstly, the increase of the internal pressure
causes the internal air mass to rise in line with the ideal gas
equation in (2), leading to an increase in internal stiffness [33].
Secondly, the membrane increases in strain as the internal
pressure grows, causing the membrane to stiffen. On demand
compliance control has been applied to multiple of soft
robots [34].

n =
PV

RT
(2)

Where n is the number of moles of gas present, P is the
internal pressure, V is the internal volume, R is the ideal gas
constant, and T is the temperature.

The method of measuring the deformation of at least two
springs of different stiffness to find the stiffness of an object
is used by Faragasso et al. [2], [17]. When two springs
of different stiffness, attached to a common base plate, are
placed into normal contact with a flat tissue sample, the spring
constant of the tissue can be calculated using (3) [2]. Assuming
that there is no interaction between the two affected areas of
tissue.

ks =
F1 − F2

∆d
=

k1∆x1 − k2∆x2

∆d
(3)

Where ks, k1, and k2 are the spring constant of the sample and
two springs, F1 and F2 are the forces between the springs and
the tissue, ∆d is the difference in embedded depth between
the two springs and ∆x1 and ∆x2 are the deformations of the
two springs.

As long as the sensor and tissue are held rigid, the PMOT
sensor can measure tissue stiffness through the same principle
with only a single contact point. The PMOT sensor can set its
compliance to more than two values, allowing the deformation
to be related to the tissue stiffness. The compliance of the
membrane tip at each internal pressure is proportional to the
two spring stiffnesses, k, in (3). The difference between the
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position of the membrane tip and its position at the same
internal pressure when not in contact with the membrane
would be proportional to the deformations of the two springs,
∆x, in (3). An approximation of spring stiffness could be
calculated from (3) using the relationship between membrane
tip displacement, force, and tracking point displacements at
each internal pressure. These relationships could be obtained
using a linear rail and force sensor in line with the experiments
in [27]. However, this may not fully capture the interaction
between the tissue and the dome-shaped membrane as forces
would not be applied in the same manner as a flat surface
on the membrane tip. Therefore, a regression neural network
(NN) was used to account for the more complex relationships.
Biomedical literature measures tissue stiffness in the form of
modulus of elasticity [10], [11], [35]. So, we used this variable
rather than the spring constant to allow for cross-referencing.

The PMOT sensor can also perform dynamic palpation
when working as a force sensor. During palpation, the sensor
is moved across the tissue. As the stiffness of the tissue
increases, the force acting on the sensor increases. By varying
the compliance of the sensor, its range can be adapted to the
tissue stiffness.

B. Mechanical Design and Fabrication

The PMOT sensor, depicted in Fig. 1, is built from a stiff
housing with an elastomer membrane on one end. A camera
and pneumatic piping are inserted into the opposite end. The
housing is printed from Formlabs Tough 2000. The membrane
was cast from Ecoflex 00-50, mixed with a ratio of 5 g part
A to 5 g part B, to 0.2 ml of Silc Pig black. This is stiffer
than the membrane used in [27] to reduce the effects of shear
forces during palpation. Hemispherical tracking points, 1.4
mm in diameter, were cast on the membrane’s inner surface
and painted with a mixture of Smooth-On Psycho Paint and
Smooth-On Silc Pig Cyan. These were arranged one in the
centre and eight in a circle with a radius of 4 mm around it
as shown in Fig. 1b. The membrane was glued to the housing
at its edge and wrapped with Polytetrafluoroethylene (PTFE)
tape to ensure an air-tight seal.

The pneumatic pipe and camera were sealed in place using
silicone sealant. The 4 mm diameter pneumatic pipe was
connected to an SMC ITV0010 pressure regulator which
could be used to control the sensor’s internal pressure. The
5.5 mm diameter, 1.3 MP, ROTEK USB Otoscope camera was
connected to a computer. The tracking points’ positions are
extracted from each frame using the OpenCV library. A 7 by
7 blur was applied. A colour mask extracted the tracking points
from the image. Canny edge detection extracted borders from
the greyscale-masked image. Then the find contours algorithm
extracts the borders and their central point.

IV. EXPERIMENT 1: TISSUE STIFFNESS SENSING

A. Tissue Stiffness Sensing Experimental Method

This section’s experiment aims to evaluate the sensor’s
stiffness sensing ability. To achieve this a set of phantoms
of different stiffness were produced. These were then used to
assess how the sensor output changes with pressure when in

Fig. 2. The moduli of elasticity range of tissues and phantoms. The elasticity
of a range of healthy (orange) and unhealthy (grey) tissues [10], [11], [35]
are shown as horizontal bars, along with the moduli of elasticity of phantoms
used in experiments, displayed as vertical dashed blue lines.

contact with samples of different stiffness. Finally, the sensor’s
ability to quickly sense stiffness using a neural network was
investigated.

1) Soft Phantoms: To evaluate the sensor’s ability to
measure tissue stiffness, phantoms were produced in the
stiffness range of human tissues. Many healthy human tissues,
including the liver, prostate, and skin, have moduli of elasticity
of between 3 kPa and 100 kPa [10]. Conditions such as
liver fibrosis, papillary adenocarcinoma and prostate cancer
have been shown to increase the stiffnesses of their respective
healthy tissues by a factor of 1.9 to 9 [10], [35]. Therefore
to demonstrate that our sensor could differentiate between
different tissues and between healthy and unhealthy tissue,
we created a range of phantoms with elasticities between
4 kPa and 180 kPa with an average step factor of 1.38. Fig. 2
illustrates phantom elasticity compared to a range of healthy
and unhealthy tissues.

Phantoms of different stiffness were produced from Smooth-
On platinum-cured silicone elastomers. Table II summarises
the materials and ratios used to produce these phantoms,
together with the modulus of elasticity obtained through
compression testing. The silicone mixtures were degassed
and cast into cylindrical phantoms of diameter 50 mm and
height 30 mm identical to dimensions used in work by
Omata et al. [15]. Compression testing was carried out on
a Zwick/Roell Z1.0 with a 1 kN load cell. Phantoms were
compressed 20% from a preload of 0.1 N. The modulus
of elasticity was calculated over the first 10% compression.
This was repeated 10 times per phantom, five times on each
side. The first repetition on each side was removed giving a
total of eight analysed repetitions per phantom. This produced
3976 lines of data per phantom which were used to calculate
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TABLE II
SOFT PHANTOM MATERIALS AND ELASTICITIES

Ratio of Components Elasticity Ratio of Components Elasticity
4 Ecoflex 00-10 Part A: 4 Ecoflex 00-10 Part A:
4 Ecoflex 00-10 Part B: 4.20 kPa 4 Ecoflex 00-10 Part B: 7.83 kPa

8 Silicone Thinner 7 Silicone Thinner
4 Ecoflex 00-10 Part A: 4 Ecoflex 00-10 Part A:
4 Ecoflex 00-10 Part B: 9.12 kPa 4 Ecoflex 00-10 Part B: 12.32 kPa

6 Silicone Thinner 5 Silicone Thinner
4 Ecoflex 00-10 Part A: 4 Ecoflex 00-10 Part A:
4 Ecoflex 00-10 Part B: 13.35 kPa 4 Ecoflex 00-10 Part B: 22.36 kPa

4 Silicone Thinner 3 Silicone Thinner
4 Ecoflex 00-10 Part A: 4 Ecoflex 00-10 Part A:
4 Ecoflex 00-10 Part B: 29.27 kPa 4 Ecoflex 00-10 Part B: 42.12 kPa

2 Silicone Thinner 1 Silicone Thinner
4 Ecoflex 00-10 Part A: 4 Ecoflex 00-20 Part A: 85.08 kPa4 Ecoflex 00-10 Part B 63.62 kPa 4 Ecoflex 00-20 Part B
4 Ecoflex 00-30 Part A: 4 Ecoflex 00-35 Part A: 145.72 kPa4 Ecoflex 00-30 Part B 111.41 kPa 4 Ecoflex 00-35 Part B
4 Ecoflex 00-50 Part A:
4 Ecoflex 00-50 Part B 177.62 kPa

Phantoms shaded in grey are used in measuring displacement with internal pressure
(section IV-A2) and for training, validation and testing in section IV-A3. Unshaded
phantoms are used as untrained phantoms for testing in section IV-A3

the modulus of elasticity with a mean standard deviation of
0.431%.

2) Measuring Displacement with Internal Pressure: To
understand how the displacement-internal pressure relationship
varied with phantom elasticity, an experiment was set up to
slowly inflate the membrane whilst continually monitoring
the tracking point displacements. The sensor, secured in the
gripper of a Franka Emika Panda robot, was positioned parallel
to and concentric with, the phantom. Whilst the membrane
was more than 10 mm above the phantom, the positions of the
tracking points were recorded for calibration. After lubricating
the phantom and membrane with a thin layer of oil, the sensor
was lowered into contact with the phantom (Fig. 3a).

Contact, determined by the average displacement of the
eight tracking points in the circle, was checked to be within
a range of 24 pixels to 29 pixels. This range was chosen
as it could be met on all phantoms within 20 calibration

Fig. 3. Tissue stiffness sensing experimental setup. (a) To sense stiffness,
a robot lowered the PMOT sensor onto cylindrical elastomer phantoms and
then the sensor was pressurised. (b) Tracking point locations are converted
into polar coordinates to find the radial displacement (∆r) and angular
displacement (θ) of each point.

attempts and was at the upper limit that could be achieved
on the softest phantom. Every five tests, the movement of
the robot was reprogrammed in guide mode until the average
displacement was within the previously mentioned range,
ensuring a repeatable contact force.

Once in contact, the internal pressure was increased in steps
of 0.061 kPa. After a 1 s pause at each step for membrane
adjustment, tracking point locations were measured five times,
with a 0.2 s gap between measurements, in line with our
previous force-sensing procedure [27]. This was repeated up
to a pressure of 9.77 kPa, then the experiment was reset.
The experiment was repeated with every second phantom,
shaded grey in Table II. Each phantom was tested five times,
producing 805 lines of data per phantom.

Position data for each tracking point at each pressure was
extracted and converted to polar coordinates around the central
point measured as the radial displacement (∆r) in pixels (px)
and angular displacement (θ) in degrees (◦). ∆r measures
the tracking point’s change in distance from the centre point,
whilst θ measures the change in angular displacement around
a circumference with an origin at the central point (Fig. 3b).
This allows tracking points’ movements to be assessed whilst
also allowing the effects of torsion on the membrane to be
removed. The average radial displacement (∆r) was obtained
by averaging the ∆r for all tracking points, except the centre
point, at each measurement.

3) Stiffness Sensing Methodology: To reduce the time taken
to measure tissue stiffness, sensing was carried out using
four internal pressures of the sensor (0 kPa, 2 kPa, 4 kPa &
6 kPa). The experiment was set up in line with the procedure
described in section IV-A2 and shown in Fig. 3. At each of
the four pressures, the membrane was given 0.1 s to adjust;
then, tracking point locations were measured four times with
a 0.1 s gap between measurements. The adjustment time and
measurement count were reduced from IV-A2 to decrease the
sampling time to an average of 4.58 s. Data was extracted and
converted to ∆r using the method described in section IV-A2.

The experiment was repeated 24 times with every second
phantom, shaded grey in Table II, to create training and
validation datasets, 20 times for training and 4 times for
validation. Giving a total of 140 lines of training data and 28
lines of validation data. The experiment was then repeated with
every phantom 16 times to produce a testing dataset. Giving a
total of 208 lines of testing data. Each experiment repetition
produced a smaller amount of data and neural networks require
a greater volume of data to train and test than other models.
Therefore, more repetitions were used for this experiment than
for the others.

4) Stiffness Sensing Neural Network Architecture and
Training: A neural network (NN) was used to identify
sample stiffness from sensor outputs. The architecture of
the network is shown in Fig. 4. The average tracking point
displacement at each pressure is input to the NN. The feed-
forward fully connected regression NN has three hidden layers
of five nodes each. Each node applies a linear activation
function to its inputs based on weights established in training.
The network was trained using the corresponding phantom
elasticity, obtained from compression testing, as the ground
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Fig. 4. Neural Network architecture showing inputs, nodes and outputs.
Average radial displacements of tracking points (∆r) at internal pressures
of 0 kPa, 2 kPa, 4 kPa & 6 kPa were fed into 3 hidden layers of 5 fully
connected nodes, from which the phantom stiffness was output.

truth output.
Before training, all data was standardised between -1 and

1. The network was built using the MATLAB fitrnet function.
This function does not allow a batch size to be set, therefore
all training data was used in each batch resulting in one
iteration being the same as one epoch. The network was trained
using a Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm to carry out supervised learning with
the results being compared to the validation data every five
iterations. Training was repeated until the function loss was
less than 1e-16. The trained NN produced an RMSE of 0.321
kPa on validation data. The neural network was tested using
testing data, the results of which are reported in section IV-B2.

B. Tissue Stiffness Sensing Results

1) Measuring displacement, ∆r, with Internal Pressure:
The ∆r - internal pressure raw data is plotted for each of
the phantoms in Fig. 5. The ∆r-pressure curve changes with
the phantom stiffness. Table III shows the gradient of a linear
fit of the points up to 1 kPa internal pressure for each of
the phantoms. As the phantom stiffness increases, the gradient
increases.

2) Stiffness Sensing: Testing data was input to the NN
and the output was analysed to assess the stiffness sensing
ability of the sensor. To quantify the accuracy of the sensor,
the output was compared to the phantom stiffness to calculate
the root-mean-square error (RMSE) and non-repeatability for
each phantom and across ranges of phantoms. The average
RMSE is 2.47 kPa, whilst the non-repeatability is 16.24%
of the range. Table IV shows the RMSE at each phantom
stiffness. The average RMSE for trained phantoms is 0.25 kPa
and for untrained phantoms is 5.07 kPa (2.85% of range).
For untrained data, a Pearson product-moment correlation
coefficient showed that the accuracy of the sensor decreased as
the phantom stiffness increased, r(95) = 0.65, p < 0.001.
Additionally, we see an improvement in sensor performance
if the range of the sensor is limited to 64 kPa, the average
RMSE reduces to 0.98 kPa, whilst the non-repeatability
becomes 4.68% of the range. To compensate for this non-
linear behaviour, the RMSEs were also calculated as a % of

TABLE III
INITIAL PRESSURE-DISPLACEMENT GRADIENT (UP TO 1 KPA) VS

PHANTOM STIFFNESS

Phantom Stiffness (kPa)
4.20 9.12 13.35 29.27 63.62 111.41 177.62

Gradient
(px/kPa) -19.437 -13.934 -10.031 -3.650 0.486 1.709 2.0833

the phantom stiffness of each reading, this is also shown in
Table IV. The average % RMSE of all untrained phantoms
was 7.72% of sample stiffness. To allow for comparison with
papers that do not calculate the RMSE, the mean absolute
errors (MAE) were calculated for all untrained phantoms. The
MAE was 4.55 kPa, equivalent to 7.07% of sample stiffness
or 2.56% of sensor range.

C. Tissue Stiffness Sensing Discussion

1) Measuring Displacement, ∆r, with Internal Pressure:
Fig. 5 shows that the shape of the ∆r - internal pressure curve
changed with phantom stiffness. It can be seen that as the
phantom stiffness increased, so did the initial gradient of the
curve. This is further shown in Table III. Whilst the stiffness
of the phantoms increases exponentially, the gradient does not,
suggesting a non-linear relationship. These results suggest that
the PMOT sensor will be able to sense phantom stiffness using

Fig. 5. Raw data for stiffness sensing using pressurisation when the sensor
is in contact with the phantom. Tracking point displacement, ∆r, is graphed
against the internal pressure of the sensor for different stiffness. Different
stiffnesses of phantoms are represented by different coloured data points. The
starting gradient of the line changes as the phantom stiffness increases.

TABLE IV
STIFFNESS SENSING ACCURACY

Trained Phantom Stiffness (kPa)
4.20 9.12 13.35 29.27 63.62 111.41 177.62

RMSE (kPa) 0.205 0.059 0.224 0.218 0.778 0.224 0.031
RMSE (%) 4.883 0.651 1.682 0.746 1.224 0.201 0.018

Untrained Phantoms Stiffness (kPa)
7.83 12.32 22.36 42.12 85.08 145.72

RMSE (kPa) 0.244 0.419 2.671 3.991 5.326 17.763
RMSE (%) 3.113 3.397 11.944 9.475 6.260 12.190
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∆r at selected known pressures and that lower stiffnesses will
be sensed more accurately than high stiffnesses.

2) Stiffness Sensing: The results in Table IV demonstrate
that the PMOT sensor can measure phantom stiffness,
especially at low stiffnesses allowing us to identify healthy
and unhealthy soft tissues. The errors were higher for
untrained phantoms than for trained phantoms. This shows
that the model is biased towards data that is similar to its
training set. This discrepancy could be reduced by introducing
more intermediate training samples. As demonstrated by
the Pearson product-moment correlation, increasing phantom
stiffness increased errors. This is likely caused by the non-
linear behaviour discussed in section IV-C1. The RMSE
of each phantom is less than half of the interval to its
neighbouring phantoms allowing the sensor to differentiate
between all phantoms. The results were compared to other
literature from section II. The RMSE for untrained phantoms
was 2.85% of range. This is lower than the RMSE of 5.95%
of range from [14]. The MAE was 7.07% of sample stiffness.
This is comparable with mean errors between 3.5% and >10%
of sample stiffness from other literature [2], [4], [13], [17]

V. EXPERIMENT 2: DYNAMIC PALPATION ON A LINEAR
RAIL

A. Linear Rail Palpation Method

The ability to detect margins, the edges of areas of different
stiffnesses, is key to locating and measuring those areas.
Experiments were carried out to evaluate the sensor’s ability
to sense margins during dynamic palpation on a linear rail.
To do this stadium-shaped phantoms with a margin in the
middle were produced. The sensor, mounted on a linear rail,
was then moved across these phantoms, under different input
parameters. Tracking point displacements converted to ∆r
were extracted throughout the movement.

1) Stadium-shaped Linear Rail Phantom Production: A
range of stadium-shaped phantoms were produced from pairs
of materials. Healthy and cancerous prostate tissues have
average stiffnesses of 15.3 kPa and 28.8 kPa, respectively [35].
Therefore, elastomers of 13.4 kPa, 22.4 kPa and 29.3 kPa in
stiffness, presented in Table II, were used to produce these
phantoms. As shown in Fig. 6, each material filled half of
the phantom. This was then covered in a layer of the softer
material for a flat finish and variable embedded depth (D). The
boundary where the materials meet mimics a surgical margin
and will be referred to as such. Phantoms were created with
different pairs of materials and embedded depths (D).

2) Linear Rail Palpation Methodology: The PMOT sensor
was mounted on a linear rail above a phantom to control and
acquire its position (see Fig. 6). The initial positions of the
tracking points were measured. The phantom and membrane
were lubricated with a thin layer of oil. Then, the sensor
was pressurised, lowered to a preloaded force F0, and moved
over the phantom. The sensor was moved from 25 mm left
to 25 mm right of the margin (Fig. 6 B to C) and back
(moved from C to B) five times. At the end of each pass, the
sensor was moved 5.9 mm away from the margin and back to
reverse the direction of the shear (Fig. 6 SRM). The tracking

Fig. 6. Experimental setup for dynamic palpation on a linear rail. The PMOT
sensor is moved over the phantom by a linear rail. B & C are the start and
end points of each pass, whilst SRM represents the shear reversal movements.
The phantom’s dimensions and cross-section view are also illustrated. The
embedded depth (D) is varied between trials.

point positions, linear rail position and internal pressure were
sampled with a frequency of 5 Hz. Every five readings were
averaged to mitigate outliers.

The experiment was repeated with different parameter
combinations, denoted as configurations. The configurations
and corresponding results are summarised in Table V. E1

represents the stiffness of the softer material. E2 indicates
the stiffness of the stiffer embedded material. D stands for
the depth that the stiff material is embedded below the soft
material. P denotes the PMOT sensor’s internal pressure. F0

shows the force the sensor was preloaded to at the start of
the experiment. Speed expresses the velocity of the linear
rail. Sensor Orientation indicates if the sensor was mounted
forward, with the top of the internal camera image towards
the rail, or backwards, with the top of the camera image away
from the rail. This is altered by rotating the PMOT sensor
180◦ inside its holder. Changing the sensor orientation swaps
the leading and trailing edges of the sensor in each direction
of movement.

Baseline parameters were determined through preliminary
tests varying P (2 kPa to 5 kPa, steps of 0.5 kPa), F0 (70 mN to
120 mN, steps of 0.25 mN), and speed (0.25 mm/s to 1 mm/s,
steps of 0.25 mm/s). The parameters highlighted in grey in
Table V were chosen as the baseline parameters due to having
the highest signal-to-noise ratio (SNR) in preliminary testing.

For each configuration, the experiment was repeated 3 times,
discarding the first pass in each direction, resulting in 12
passes per direction per configuration. This yielded an average
of 3245 lines of data per configuration.
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TABLE V
MARGIN SENSING TRIALS

Input Parameters Outputs
Conf. E1 E2 D P F0 Speed Sensor Soft-Stiff Stiff-Soft

# (kPa) (kPa) (mm) (kPa) (mN) (mm/s) Orientation SNR, ∆r SNR, F Offset (mm) SNR, ∆r SNR, F Offset (mm)
1 13.4 29.3 2 3.0 100 0.5 Forward 26.83:1 20.47:1 1.4663 38.85:1 40.04:1 2.9163
2 13.4 29.3 2 3.5 100 0.5 Forward 34.17:1 32.97:1 0.334 44.85:1 43.33:1 2.718
3 13.4 29.3 2 4.0 100 0.5 Forward 26.39:1 25.52:1 0.354 30.84:1 30.00:1 3.648
4 13.4 29.3 2 3.5 90 0.5 Forward 38.67:1 37.50:1 0.226 37.69:1 36.72:1 3.068
5 13.4 29.3 2 3.5 110 0.5 Forward 30.32:1 27.18:1 0.418 49.33:1 49.46:1 3.286
6 13.4 29.3 2 3.5 100 0.25 Forward 31.57:1 30.64:1 0.526 32.32:1 30.53:1 3.556
7 13.4 29.3 2 3.5 100 0.75 Forward 34.15:1 31.89:1 0.241 34.42:1 33.2:1 3.245
8 13.4 29.3 2 3.5 100 0.5 Backward 22.27:1 20.12:1 0.373 27.94:1 26.04:1 2.91
9 13.4 22.4 2 3.5 100 0.5 Forward 26.53:1 26.37:1 0.902 14.89:1 14.83:1 2.624
10 13.4 22.4 2 3.0 100 0.5 Forward 25.27:1 24.69:1 0.625 18.20:1 17.81:1 2.093
11 13.4 22.4 2 3.5 90 0.5 Forward 22.74:1 22.72:1 1.244 11.09:1 11.18:1 1.578
12 22.4 29.3 2 3.5 100 0.5 Forward 10.88:1 10.79:1 0.987 5.37:1 5.39:1 0.761
13 22.4 29.3 2 4.0 100 0.5 Forward 8.55:1 8.41:1 1.019 4.27:1 4.33:1 1.448
14 22.4 29.3 2 3.5 110 0.5 Forward 12.14:1 12.11:1 0.697 6.13:1 6.13:1 0.837
15 13.4 29.3 4 3.5 100 0.5 Forward 42.39:1 41.04:1 0.195 18.69:1 18.05:1 1.763
16 13.4 29.3 6 3.5 100 0.5 Forward 30.86:1 30.59:1 1.171 13.11:1 13.07:1 1.344

1. Configuration 2, highlighted in grey, contains the baseline parameters.
2. The parameter being varied in each test is highlighted in orange.
3. E1 and E2 are the moduli of elasticity of the softer and stiffer material, respectively.
4. Soft-Stiff results are obtained by passing the sensor from the softer to the stiffer material (Fig. 6 0 to 1).
5. Stiff-Soft results are obtained by passing the sensor from the stiffer to the softer material (Fig. 6 1 to 0).
6. Offset is the distance between the margin and the middle of the signal.

3) Linear Rail Palpation Data Processing: The position
of the sensor and internal pressure were extracted for each
reading. Tracking point locations were extracted and converted
into ∆r in line with section IV-A2. Due to the large shear
forces exerted on the membrane during the experiment, ∆r
was adjusted for stability. This was done by adjusting the
tracking points positions relative to the central point and
applying a linear adjustment to ∆r based on the central
tracking point’s displacement. The force on the sensor in
Newtons was calculated from ∆r using a 4th-order polynomial
relationship obtained through the method described in our
previous work [27].

B. Linear Rail Palpation Results

The signal-noise ratio (SNR) was obtained for each pass of
the sensor over the margin, the position of which is known,

Fig. 7. As the sensor is moved over the margin by the linear rail, the force
measured by the sensor changes. (a) The amplitude of the signal and RMSD
of the noise were extracted to find the SNR. (b) The distance from the margin
where the measured force changed by half the signal amplitude was interpreted
as the offset.

in line with the work by McKinley et al. [19]. The signal
segment comprised points within a 20 mm range centred on
the margin. The points on either side of this section were
extracted as the upper and lower noise segments. Fig. 7a
displays these segments on a force graph for a sensor pass over
the margin from the softer material to the stiffer material. The
SNR was determined by dividing the amplitude of the signal
segment by the root-mean-square deviation (RMSD) of the
noise segments. The offset between the centre of the sensor
passing over the margin, and the middle of the signal was
calculated. A linear fit was applied to 16 points centred on
half the signal amplitude. The fit was then used to find the
position where the line intercepted half the signal amplitude.
The difference in mm between this position and the margin
location was defined as the offset. The offset is shown in
Fig. 7b on a force graph for a sensor pass over the margin
from the stiffer material to the softer material.

The SNR for raw ∆r data and calculated force, as well as
the offset, were averaged for each sample, in each direction.
These results are shown alongside experimental parameters
in Table V, where soft-stiff denotes a pass from the softer
material to the stiffer material and stiff-soft denotes a pass
from the stiffer material to the softer material. The baseline
configuration chosen from preliminary tests is shown in
grey (config. 2).

C. Linear Rail Palpation Discussion

Adjusting the internal pressure (config. 1 & 3) or
speed (config. 6 & 7) decreases the average SNR (both ∆r
and force). This shows that the baseline conditions are close
to a local optimum for this phantom and that adjusting these
parameters affects the sensor’s ability to locate the margin.
Averaging between directions of passes in these conditions
gives an SNR from ∆r of 39.51:1 and an offset of 1.526 mm.
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Fig. 8. Experimental setup for teleoperated dynamic palpation. Participants control the palpation of the sensor using a teleoperation system. The properties
of the margin were identified using a force bar chart from the PMOT sensor. (a) The responder side of the experiment is where the sensor and phantom are
located. (b) The controller side of the experiment is where the participant is positioned.

Reducing the preload force (config. 4) decreases average
SNR. However, when the preload force is increased (config. 5),
the average SNR from ∆r increases by 0.786%. Additionally,
the difference between the SNR with direction is exacerbated
and the average offset becomes 21.4% larger. This shows
that when adjusting the preload there is a trade-off between
increasing in average SNR and increasing the offset and
directional sensitivity. Additionally, the increased offset with a
larger force suggests that the larger force intensifies the friction
and shear forces on the membrane.

Orientating the sensor backwards (config. 8) deteriorates all
results. The stiff-soft SNR to soft-stiff SNR ratio is similar
to the baseline. This suggests the sensor orientation has little
effect on the change in SNR with direction of travel. The
signal amplitude and offset are similar between configurations
8 and the baseline. The reduced SNRs are due to an increase
in the noise, especially at the stiff end of the phantom. When
the sensor orientation was rotated, it changed the forces acting
on the pneumatic piping. This may have caused forces to be
transferred from the pipe to the sensor, especially at the far end
of the movement, moving the sensor and increasing the noise.
This could be reduced by increasing the security of the hold on
the sensor and the pipes. Softer pipes may reduce transmitted
forces but increase the chances of pipes being pinched.

Decreasing the difference in elasticity between the softer
and stiffer materials decreased the SNR. This was done by
decreasing the stiffness of the stiffer material and increasing
the stiffness of the softer material (config. 9 & 12). In both
scenarios, the soft-stiff offset increased and the stiff-soft offset
decreased; this demonstrates that in the soft-stiff offset the
margin counteracts the effect of the shear whilst for the stiff-
soft offset the margin exacerbates the effect of the shear.

When the stiffness of the stiffer material is decreased,
decreasing the pressure of the sensor (config. 10) increases the
average SNR whilst decreasing the force (config. 11) decreases
it. Conversely, when the stiffness of the softer material is
increased, increasing the pressure of the sensor (config. 13)
increases the average SNR whilst decreasing the force (config.
14) increases it. This shows that whilst the internal pressure
and initial force can be adjusted to optimise performances
on different tissues, the relationship is complex and requires

detailed study. The average SNR decreases as the embedding
depth of the stiff material increases (config. 15 & 16).

The effects of the direction of the pass on the SNR
were analysed. For configurations 1-3 and 5-8 the SNR was
higher for the stiff-soft pass than the soft-stiff pass. In these
configurations, during the soft-stiff pass, the noise increases
from the soft side to the stiff side. The noise then decreases
after the shear reversal movement on the stiff side in the stiff-
soft pass. The noise decreases again when on the soft side to
below that observed in the soft-stiff movement. This results in
the soft-stiff noise being higher than the stiff-soft noise. The
signal is slightly lower in the stiff-soft pass than the soft-stiff
pass, but this is offset by the much larger change in noise.

The SNR was higher for the soft-stiff pass than the stiff-soft
pass in configurations 4 and 9-16. In these configurations, the
soft-stiff noise on the stiff side decreased whilst the stiff-soft
noise on the stiff side increased compared to configurations 1-
3 and 5-8. The force between the sensor and the stiff side of
the sample was lower than in configurations 4 and 9-16 than in
configurations 1-3 and 5-8. No clear correlations were found
between noise and force, central tracking point displacement,
or the change in central tracking point displacement.

VI. EXPERIMENT 3: DYNAMIC PALPATION USING
TELEOPERATION

A. Teleoperated Palpation Method

This experiment aims to determine if participants could use
the sensor to locate margins in a teleoperation environment.
To do this stadium-shaped phantoms with offset margins were
created (similar to Fig. 6). A teleoperation setup was also
produced by connecting a haptic device to a robot and relaying
the force from the sensor to a graphical display (Fig. 8a &
b). Participants then used the sensor in the teleoperated setup
to determine the location of the margin and stiffer material
within the phantom. This experiment was carried out under
UCL Ethics ID 23899/001.

1) Phantoms Fabrication for Teleoperated Palpation:
Stadium-shaped phantoms with the same dimensions as those
described in section V-A1 were produced from 13.4 kPa
and 29.3 kPa elastomers. Margins in these phantoms were
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Fig. 9. Results from dynamic palpation using teleoperation. (a) Confusion matrix of true values vs those predicted by participants in teleoperated palpation
experiment. LM and RM signify the margin being on the left or right of the phantom, respectively, while LS and RS signify the stiffer material is on the left
or right of the phantom, respectively. (b) The distribution of false responses across participants. (c) The number of false responses across the 20 trials. (d)
Average (µ) and standard deviation (σ) of the participant’s response time across the 20 trials.

positioned 10 mm to one side of the centre to produce four
different combinations of properties: margin left or right of
the centre, and stiffer material left or right of the margin. The
stiffer material was embedded 2 mm below the softer material.

2) Teleoperation Setup: The teleoperation setup consisted
of a Franka Emika Panda seven-degree-of-freedom articulated
arm robot on the responder side (Fig. 8a) and a 3D Systems
Geomagic Touch X haptic device on the controller side
(Fig. 8b). Robot Operating System (ROS) integrated the haptic
device, the robot, and a pedal clutch. When the clutch was
pressed, Cartesian space mapping translated haptic device pen
movements to the robot, which was moved with a torque
impedance controller.

The PMOT sensor was mounted in the gripper of the Panda
robot. Data from the sensor was converted into force data
using the method described in section V-A3. Forces were
displayed to the participant in a colour-changing bar chart
going from 0.07 N to 0.17 N, in line with the range observed in
Experiment 2. The red, green and blue (RGB) colour values
of the graph [0 1 0.1], [1 1 0.1] and [1 0 0.1] were fitted
linearly to the force values 0.07 N, 0.12 N, and 0.17 N,
respectively. This colour change was applied to make the graph
more intuitive to read.

A phantom was secured on the table below the sensor (see
Fig. 8). A camera was positioned to feed a video of the sensor
and the phantom to the participant during palpation. Using
OpenCV, a 10 px by 10 px blur was applied to the camera
video to reduce visual phantom identification. The operator
workstation on the controller side contained a seat for the
participant, the pedal clutch, the Touch X device and a monitor
showing the blurred video and force bar chart. A black fabric
screen divider was placed between the participant and the
responder side of the experiment to prevent extra visual cues.
Before the experiment, a thin layer of oil was applied to the
sensor and the phantoms for lubrication.

3) Dynamic Palpation Using Teleoperation Methodology:
The experiment was conducted with 17 participants, 8 male
and 9 female, ranging from 19 to 40 years in age, with
a mean age of 29 years. Participants had no sensory or
motor impairments. The setup and aim of the experiment

were explained to the participants before they were seated
at the operator workstation. The phantom was secured on
the table, and the PMOT sensor was positioned over its
centre. Participants palpated the phantom, moving the PMOT
sensor vertically and horizontally parallel to the camera (Y
and Z axes in Fig. 8a). Participants were asked to identify
the location and stiffer side of the margin by palpating the
phantom and observing the corresponding forces. Participants
could practice with two phantoms of known properties to
familiarise themselves with the teleoperation system and using
the sensor for palpation. After this, participants were presented
with phantoms in 20 randomised trials. MATLAB code using
the randi function ensured each of the four phantoms was
used five times. For each phantom, the participant’s response
was recorded, as well as the time. Participants were given
a 2 minute limit to palpate each phantom, at which point
the teleoperation system would stop and a response would be
requested. This method was designed to produce the maximum
amount of data whilst ensuring the experiment would not use
over one hour of the participant’s time.

B. Teleoperated Palpation Results

Participant responses during palpation were compared to
true values in a confusion matrix, Fig. 9a. Where the location
of the margin on the left or right of the phantom is signified
by LM and RM, respectively. The location of the stiffer
material, left or right of the margin, is signified by LS and
RS, respectively. The sensor’s accuracy was 96.5%, whilst the
average response time was 42.9 s. Average response time for
each combination, LM-LS, LM-RS, RM-LS, & RM-RS were
36.2 s, 48.5 s, 43.9 s, & 44.6 s respectively.

To analyse how false responses varied with each participant,
Fig. 9b graphs the number of false responses against the
number of corresponding participants. To understand how
participants’ performance changed throughout the experiment,
the number of false responses and average time to give a
response were graphed against the trial number in Fig. 9c
& d, respectively. A Pearson product-moment correlation
coefficient showed that as participants conducted more trials,
response times decreased, r(340) = − 0.147, p = 0.007.
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C. Teleoperated Palpation Discussion

Fig. 9a highlights the sensor’s capability of identifying
margins during teleoperated palpation. False responses were
spread between all values apart from LM-LS, aligning with
the average response time of LM-LS being shorter. The
higher false response rate for phantoms with larger stiff
sections, LM-RS & RM-LS, indicates that starting palpation
on stiffer material or having larger stiffer areas may decrease
margin detection accuracy. Fig. 9b demonstrated that all users
understood the sensor output with nine of the 17 participants
made no false responses and only two making more than
one false response. This underscored that all users could
understand the sensor output.

Fig. 9c indicates a lack of reduction in false responses
over trials, possibly due to the absence of feedback hindering
accuracy improvement. Nevertheless, with increased trials,
participants got used to the teleoperation system and sensor,
decreasing response times. This is shown in Fig. 9d and
through the Pearson product-moment correlation.

VII. CONCLUSION AND FUTURE WORK

This paper presented a soft-tipped sensor for quantifying
phantom elasticity and locating changes in stiffness during
dynamic palpation. Results demonstrate that the PMOT sensor
can measure the tissue stiffness of samples between 4.20 kPa
and 177.62 kPa using a novel method of pneumatically
adjusting its compliance and measuring the corresponding
deformation. On untrained phantoms the sensor achieves an
average RMSE of 7.72% of sample stiffness, demonstrating
that the sensor can differentiate between the silicone elastomer
phantoms, representing healthy and unhealthy tissues with an
average step factor of 1.38.

The PMOT sensor, functioning as a force sensor, could
also detect margins between 13.4 kPa elastomer and 29.3 kPa
embedded elastomer during dynamic palpation. On a linear
rail, the sensor achieved an average SNR of 39.5:1 and
an average offset of 1.53 mm under conditions close to a
local optimum. When carrying out palpation using the sensor
mounted on a teleoperated robot, participants could detect the
margin and stiffer elastomer locations with an accuracy of
96.5%.

In future work, the sensor will be miniaturised. This will
reduce the offset in margin detection caused by shear on
the membrane and allow the sensor to be used in minimally
invasive surgery applications. Alternative machine learning
and mathematical models should be explored to enhance
stiffness sensing. This should be coupled with an analysis
of how the quantity and distribution of training samples
impact the performance of the sensor in stiffness sensing. The
palpation capabilities of the sensor will be investigated further
by altering variables such as the margin shape, the margin
angle, elastomers’ stiffness and phantom shape. This should be
coupled with further studies to create a more detailed image of
the sensor’s palpation performance. Analysing using different
samples and increasing the range of internal pressures and
preload forces used. Usage duration should also be investigated
to determine the effect of drift on the sensor’s performance.

Finally, the sensor should be integrated into a teleoperated
haptic feedback system and user’s palpation accuracy should
be assessed.
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