Novel Bioactive Calcium Phosphate based endodontic cements with added Hydroxyapatite nanoparticles and antibacterial agent ε-Polylysine

Walid M Elkateb1, Anne Young2, Linh Tb Nguyen2
1Department of Biomaterials and Tissue engineering, Eastman Dental Institute, UCL, London, UK, Department of Conservative Dentistry, Endodontic division, Faculty of Dentistry, Alexandria University, Egypt
2Department of Biomaterials and Tissue engineering, Eastman Dental Institute, UCL, London, UK

Introduction

Regenerative endodontic procedures (REPs) aim to regenerate the pulp–dentin complex in immature permanent teeth diagnosed with pulp necrosis. They are Divided into:
1. Vital pulp therapy: Aims to maintain the dental pulp’s vitality and stimulate regeneration of the pulp complex
 - Includes indirect and direct pulp capping/pulpotomy
2. Revascularisation: Novel approach for teeth with irreversible pulpitis or necrotic pulp and open apices
 - Involves inducing bleeding to provide a scaffold for stem cells to attach, proliferate, and differentiate into the vital components of the pulp–dentin complex

Calcium phosphate-based materials

<table>
<thead>
<tr>
<th>MTA</th>
<th>Biodentine</th>
<th>Dycal</th>
</tr>
</thead>
</table>
| Biocompatible | - Bioactive | - Bio-interactive (releases biologically relevant ions (Ca, P))
| Two of its Different phases are
| Brushite: Initial fast degradation rate by dissolution and releasing Ca and P
| Can form hydroxyapatite by phase transformation resulting into a slower biodegradation
| Hydroxyapatite: Main constituent of the inorganic matrix of Enamel and Dentine (96% wt and 70% wt respectively)
| -Chemotactic ability: Mediator in cell-to-cell interaction,
| -Encourages pulpal fibroblasts to release alkaline phosphatase
| -Promotes repair by pulpal calcification and osteoid deposition
| -Osteo-conductive: Encourages the differentiation and recruitment of Osteoblasts.

ε-Polylysine

- FDA approved natural homopolymer
- Deemed GRAS antimicrobial agent
- Potent Broad spectrum antibiotic and antifungal including MRSA

Aim

To improve the bioactivity of a Brushite forming novel calcium phosphate cement, by addition of Hydroxyapatite (HA) nanoparticles in the presence of ε polylysine (PLS) as an antibacterial agent and comparing it to Mineral Trioxide Aggregate (MTA), Biodentine and Dycal.

Materials & Methods

I. Preparation of Brushite Formulations

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Powder : Liquid ratio 4:1</th>
<th>Powder</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powder: equimolar Monocalcium phosphate monohydrate (MCPM) and β-Tricalcium Phosphate</td>
<td>TCP</td>
<td>Polylysine</td>
<td></td>
</tr>
<tr>
<td>Modification: β-TCP substitution by HA nanoparticles (25 µg or 50 µg wt%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

⋅ = Liquid: solution of 80 mM citric acid
⋅ Modification: Addition of ε-PLS (20 or 40 wt%)

Formulations were compared to 3 commercial alternatives, MTA, Biodentine and Dycal

II. Setting Kinetics and chemistry

Cement discs were prepared using washer moulds diameter 10mm & thickness 1mm

II-Physical & Mechanical Properties

1. Biaxial flexural strength using a ball on ring jig in dry and wet conditions n=6
2. Dissolution kinetics was analysed gravimetrically after immersion in deionized water for up to 4 weeks n=3

IV- Biocompatibility in vitro

Culture of Human dental pulp stem cells (hDPSCs)

- Different dilutions of eluates were prepared from discs of all experimental and commercial formulations (1:2, 1:4, 1:8, 1:16)
- Cells were cultured and incubated for 1, 3, and 7 days with different dilutions
- Cell proliferation was assessed by MTT assay
- To assess direct adhesion, cells were cultured on the discs in direct contact with the surface of each material then analysed by:
 - Scanning Electron Microscopy (SEM)
 - Live/dead immunofluorescence staining
- Cells were cultured for 14 days in dilution 1:4
 - Calcification assessed by Alizarin red staining
 - Alizarin red staining D14

Results

<table>
<thead>
<tr>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>10</td>
<td>5</td>
</tr>
</tbody>
</table>

Discussion & Conclusion

- CaP based cement formulations have a faster setting time compared to MTA and Biodentine.
- Early Brushite dissolution was accelerated by the increase in ε-PLS concentration, unlike commercial cements that initially increased in mass before dissolution.
- Addition of ε-PLS reduced the flexural strength of the CaP formulations, yet they remain significantly higher than tested commercial cements even after 24hr submersion in deionised water.
- CaP based formulations modified with HA increased the hDPSCs proliferation rate, viability and adhesion to its surface compared to HA free formulations and commercial cements.
- Addition of Hydroxyapatite nanoparticles improved the bioactivity of the Brushite formulations as evident by the earlier calcific deposition by hDPSCs after 14 days.
- Brushite forming CaP based cements modified with hydroxyapatite nanoparticles and ε polylysine may be a useful candidate as an endodontic cement.

References