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Union-find quantum decoding without union-find
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The union-find decoder is a leading algorithmic approach to the correction of quantum errors on the surface
code, achieving code thresholds comparable to minimum-weight perfect matching (MWPM) with amortized
computational time scaling near-linearly in the number of physical qubits. This complexity is achieved via opti-
mizations provided by the disjoint-set data structure. We demonstrate, however, that the behavior of the decoder
at scale underutilizes this data structure for twofold analytic and algorithmic reasons, and that improvements and
simplifications can be made to architectural designs to reduce resource overhead in practice. To reinforce this,
we model the behavior of erasure clusters formed by the decoder and show that there does not exist a percolation
threshold within the data structure for any mode of operation. This yields a linear-time worst-case complexity
for the decoder at scale, even with a naive implementation omitting popular optimizations.
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I. INTRODUCTION

Quantum error correction (QEC) is considered essential for
the development of scalable, fault-tolerant quantum comput-
ers in the medium to long term [1]. One of the most dominant
approaches in the field of QEC is topological error correction,
commonly referred to as surface codes [2,3]. In such codes,
qubits are arranged on the surface of some topology, trans-
forming the problem of QEC into one of (largely classical)
graph theory and algorithm design. By taking parity checks,
a syndrome can be obtained, giving information on stochastic
errors without decohering the computational states.

An optimal decoder, inferring a correction operator from
a syndrome with maximum success likelihood, is computa-
tionally hard, scaling exponentially in the number of physical
qubits. Minimum-weight perfect matching (MWPM) instead
returns the single most likely error configuration in polyno-
mial time [2], although recent work has improved this to
near-linear time in sparse regimes [4].

Another leading approach is the union-find decoder [5,6],
which instead uses a cluster-growing method to find results
very similar to MWPM in effectively linear time. Proposals
for the architectural implementation of the decoder, complete
with analysis of resource consumption, have been made, such
as the AFS (accurate, fast, and scalable) architecture [7]. The
union-find decoder is so named after reliance on the disjoint-
set data structure providing its enviable time complexity via
some key algorithmic optimizations [8].

In this work, the behavior of the union-find decoder and its
usage of the disjoint-set data structure is studied. In particular,
we reason that the data structure is underutilized and that
the implementation can thus be simplified, potentially saving

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

both time and memory in what is widely considered a critical
bottleneck for fault-tolerant quantum computing. We present
results and analysis regarding the behavior of the union-find
decoder at scale in Sec. III by first studying the complexity
of the disjoint-set data structure, then gathering data about the
performance of the decoder, then finally linking these topics
analytically with a percolation model.

We use the AFS architecture as a framework for simulating
the union-find decoder; discussion of our implementation and
improvements can be found in the Appendix.

II. BACKGROUND

A. Topological QEC

Classical error correction is generally based upon introduc-
ing redundancy to protect information, by encoding logical
bits into a subspace of a greater number of physical bits [9].
A repetition code is the most basic example of this type of
scheme. For example, n = 3 physical bits can be used to
encode one logical bit with the mapping

0L = 000, 1L = 111, (1)

where 000 and 111 are known as the code words. If the mea-
sured state is outside of the code space (i.e., it is neither 000
nor 111), then at least one bit-flip error must have occurred.
Error correction can be implemented by simply taking a ma-
jority vote. If each physical bit is subject to an independent
error rate p, then the logical error rate of this scheme (that
is, the probability of the majority vote being incorrect, which
happens if over half of the bits were flipped) becomes

pL = p3 + 2p2(1 − p). (2)

pL < p if p < 0.5, which means that the scheme successfully
reduces the error rate as long as p < 0.5, which is known as
the code threshold pc. Subthreshold, increasing n suppresses
pL arbitrarily close to zero. Therefore, the code threshold is a
measure of the fault tolerance of a given scheme at scale.
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In quantum information, bit flips (Pauli X noise) can be
corrected using an equivalent encoding for logical qubits, e.g.,

|0L〉 = |0〉 ⊗ |0〉 ⊗ |0〉 = |000〉 , (3)

|1L〉 = |1〉 ⊗ |1〉 ⊗ |1〉 = |111〉 . (4)

The computational basis cannot be measured without deco-
herence, so parity checks can instead be taken [1]. In this
example, the observables ZZI and IZZ would reveal where
neighboring qubits differ in parity. These parity measurements
are known as the error syndrome. In effect, this implements
the majority vote scheme without decoherence.

Phase-flip errors (Pauli Z noise) can equivalently be de-
tected with the encoding

|0L〉 = |+ + +〉 = (|000〉 + |111〉)/
√

2, (5)

|1L〉 = |− − −〉 = (|000〉 − |111〉)/
√

2, (6)

and the parity checks XXI and IXX . As any arbitrary error
operator E can be decomposed in the form

E = e0I + e1X + e2Z + e3XZ, (7)

it suffices to correct X and Z noise independently in order to
correct for arbitrary errors. This technique is often assumed
when discussing QEC codes. Nesting the above n = 3 en-
codings using n = 9 thus corrects for any error on a single
physical qubit. Codes with this property of independently
correcting X and Z noise are known as CSS codes [10,11].

In general, more sophisticated codes can encode multiple
logical qubits and protect against more than one physical
error. If the repetition code is viewed as a one-dimensional
string, this generalizes to physical qubits on n-dimensional
topologies. The motivating example of topological QEC is the
toric code [2,12]. Parity checks are arranged as vertices on a
two-dimensional (2D) lattice with periodic boundary condi-
tions, as on the surface of a torus (Fig. 1). The edges between
these vertices are physical qubits. A plaquette operator is
defined as the combination of four Z operators on neighboring
qubits, forming a trivial cycle on the primal lattice. Similarly, a
vertex operator is the combination of four X operators forming
a trivial cycle on the dual lattice.

A lattice of length L has n = 2L2 physical qubits, L2

plaquette operators, and L2 vertex operators, such that the
number of logical qubits is k = 2L2 − 2(L2 − 1) = 2. Logical
Z operators are defined as nontrivial cycles on the primal
lattice and logical X operators as nontrivial cycles on the dual
lattice (Fig. 1).

A parity check yields −1 if it is incident to an odd number
of Pauli errors. Therefore, the error syndrome acts to flag
endpoints of strings of neighboring Pauli errors. The sin-
gle most likely error configuration, assuming an independent
error model, is the subgraph which pairs excited syndrome
vertices with the fewest edges. This problem is known for-
mally as the minimum-weight perfect matching (MWPM).
The MWPM decoder takes this subgraph as the correction
operator, achieving a code threshold of ∼10.3%, not much
below the code threshold of the optimal decoder at ∼11.0%.
The code threshold is the value of the independent error rate p
below which the logical error rate is suppressed to zero with
lattice size L → ∞ [2,10,13].

FIG. 1. Toric code with L = 5. Physical qubits are circles on the
edges of the lattice. The dashed lines show the dual lattice. Logical
operators Z and X for two logical qubits are shown as nontrivial
cycles on the primal and dual lattices, respectively.

Note that whilst the size of the lattice is often given as the
length L, the code distance d is also commonly used, which
can be defined as the minimum weight of an undetectable
error. In the case of the L × L toric code, d = L, but this is not
exactly true in other cases, such as the planar code (with hard
boundary conditions instead of periodic) [2]. In this paper,
we may refer to L and d interchangeably when representing
lattice size, depending on the specific context.

B. Union-find decoder

The best-known algorithms for MWPM are the blossom
algorithm and its derivatives, with runtime scaling polynomi-
ally in the number of qubits n [14,15]. This forms a popular
benchmark against which alternative decoders are developed,
attempting to improve time complexity whilst retaining rel-
atively high code threshold. For example, the union-find
decoder runs in near-linear time whilst still achieving ∼9.9%
code threshold [6]. A full description of the decoder can be
found in Refs. [5] and [6], but to summarize, the decoder
comprises two stages: First, syndrome validation is the act of
converting the Pauli error syndrome into an erasure. Erasure
errors represent processes such as qubit loss or leakage and are
equivalent to random Pauli errors with positional information;
this additional information makes them theoretically easier to
decode than stochastic Pauli errors [5].

Syndrome validation is effectively a clustering algorithm:
clusters are iteratively grown from each syndrome vertex,
merging with each other until they support an even number
of syndrome vertices, at which point they cease growing.
The clusters are disjoint sets of vertices and so can be
tracked using the disjoint set, a.k.a. union-find, data structure
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(see Sec. II D). This provides a time complexity of O[nα(n)],
where α(n) is the extremely slow-growing inverse Ackermann
function, such that the complexity is effectively linear in n for
all realistic inputs [8].

The second stage of the decoder is the use of the peel-
ing decoder to decode the erasure. First, cycles are removed
[trivially, in O(n), via depth-first search or similar] to obtain
a spanning forest on the erasure, which guarantees the time
complexity hereinafter. Then, leaf edges are iteratively pruned
until the only edges remaining form a maximum-likelihood
cover of the original syndrome, using simple decision rules
[5]. This peeling algorithm takes O(n) time, giving an overall
complexity of O[nα(n)] for the union-find decoder.

The rigorous theoretical justification for the decoder is the
efficient conversion of Pauli errors (plus any naturally occur-
ring erasure errors) to exclusively an erasure, which can be
decoded with maximum likelihood in linear time. Practically
speaking, however, the decoder can instead be understood
as a method to approximate MWPM graphically by growing
and then pruning clusters. Its main benefit over MWPM is
that it is far more straightforward to implement in a limited
hardware regime than heavily optimized blossom algorithms,
whilst also achieving superior time complexity.

Variants of the union-find decoder for weighted graphs,
which can incorporate more information of noise biases, have
been proposed [16,17], as have generalizations to quantum
low-density parity check (LDPC) codes [18]. Preprocessing
decoding problems with machine learning techniques has also
shown promise [19]. A distributed version of the decoder
has also been recently proposed and demonstrated on field-
programmable gate array (FPGA) hardware [20] and extended
with a strictly local version [21].

Finally, note that the above code thresholds have assumed
the use of 2D lattices with an independent qubit error rate
p. This approach remains susceptible to errors in the mea-
surement of syndrome checks. A popular solution is to take
repeated rounds of measurements, which can be stacked
graphically as a three-dimensional (3D) problem. Taking the
difference syndrome, wherein each vertex is switched on if its
value differs from the previous round, allows measurement
errors to manifest as vertical timelike errors. The decoder
(MWPM, union-find, or otherwise) can then often merely be
generalized to three dimensions. This is represented by the
phenomenological error model, with measurement error rate
q distinct to p. Code thresholds are generally an order of
magnitude lower in this regime [2,22].

C. AFS decoder

As the decoding layer forms a key bottleneck on the quan-
tum computing stack, decoders with superior time complexity,
such as union-find, are valued highly. Memory is also likely to
be a restricted resource, not just in terms of total overhead but
particularly when considering that the hardware is likely to
be situated in a cryogenic environment, limiting the memory
available. The AFS decoder proposes a design for a computa-
tional architecture implementing the union-find decoder [7].

The architecture comprises three pipelined modules: the
graph generator, depth-first search (DFS) engine, and cor-
rection engine, which implement syndrome validation, cycle
removal, and the peeling decoder, respectively.

The graph generator is the most significant component of
the pipeline in terms of both time and memory requirements.
A spanning tree memory (STM) stores the growth state of the
erasure on the lattice, with one bit per vertex and two bits per
edge (so that clusters can grow by one half-edge per iteration,
such that adjacent clusters merge in one iteration).

The DFS and correction engines are notably simpler in
comparison and account for significantly less workload and
memory. As the remainder of our paper is primarily concerned
with syndrome validation, details of these other modules are
left as further reading. The AFS paper also includes models
of time and memory requirements, considerations of the dis-
tribution of concurrent modules for online error correction at
scale, and methods of compressing syndrome data to work
within limited bandwidth [7].

In this work, simulations of both toric and planar codes
were developed with MWPM and union-find decoders, as
well as a simulation of the AFS architecture on planar codes
specifically. The performance results in Sec. III B are from
simulations of the AFS architecture and thus use planar codes,
whilst the erasure percolation results in Sec. III C use toric
codes simply for ease of definition. Understanding of the AFS
architecture specifically is, therefore, irrelevant to our main
results and conclusions, although a summary of the improve-
ments we made in its implementation can be found in the
Appendix.

D. Disjoint-set data structure

Proposals of the union-find decoder have been heavily
motivated by the complexity behavior provided by the under-
lying disjoint-set, a.k.a. union-find, data structure [5,6]. This
data structure is an efficient method for tracking disjoint, i.e.,
nonoverlapping, sets of elements [8]. Elements are stored as a
forest, initialized to singleton nodes with no connecting edges.
The union operation merges two sets into one. For example, if
two singleton elements are merged, an edge is added between
them. The graph is directional, so trees are formed: one of the
elements becomes the parent of the other at random.

The find operation, given any single element, returns the
root of the tree it belongs to. The roots of the trees are taken
as the characteristic elements of the sets. Therefore, querying
whether any two elements belong to the same set is achieved
by checking whether the roots returned by the find operation
on each of them are equal. When performing a union opera-
tion, the find operation is first performed on each in order to
find their respective roots, with one of those roots becoming
the parent of the other.

In this primitive form, the only required component is a
table of parent pointers, hereafter referred to as a root table.
The time taken to scale a tree in the find operation in the
average or worst case is proportional to the height of the tree.
As it stands, the worst-case scenario of arbitrary tree structure
sees the trees degenerate to linked lists, such that the average
or worst-case complexity of the find operation is O(n). Per-
forming m merge operations would therefore have complexity
O(mn), giving the union-find decoder a complexity of O(n2).

Two optimizations are commonly used to improve this
complexity. Firstly, union by size (UBS) records the size of
each set, i.e., the number of elements in each tree. When
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FIG. 2. Monte Carlo simulation showing the amortized complexity of operations on the disjoint-set data structure. Each point is the number
of root table accesses on a forest of size n taken by m random merge operations, divided by m. (a) shows a naive approach, (c) shows UBS, and
(e) shows both UBS and path compression, demonstrating linear, logarithmic, and near-constant scaling, respectively. (b), (d), and (f) extend
these plots to higher n, showing a change of the scaling in the unsaturated regime.

merging two sets, instead of selecting which root becomes
the merged root at random, the root of the larger tree is
always selected, such that the smaller set is always merged
into the larger set. This bounds the heights of trees to O(log n),
so performing m merge operations would have complexity
O(m log n), giving the decoder a complexity of O(n log n).

As a downside, UBS requires storing a size value for each
element in addition to a parent pointer. In this setting, a root
table stores the parent pointers in the disjoint set forest (with
one index or pointer per vertex) and a size stores the set sizes
for UBS (with one integer per vertex). This can be seen, for
example, in the AFS architecture.

Secondly, path compression tracks all of the elements vis-
ited during a find operation and, upon finding the root, sets
the parents of all visited elements to the root. This flattens the
height of each of these elements to 1 for subsequent opera-

tions. Nontrivial analysis shows that m merge operations with
both UBS and path compression has complexity O[mα(n)],
giving an amortized complexity per operation of O[α(n)] and
the decoder its stated complexity of O[nα(n)]. α(n) is the
inverse Ackermann function, which is so slow-growing that
the amortized complexity per operation is effectively constant
time and the decoder is overall effectively linear time.

As a downside, path compression requires storing and per-
forming a second pass over the visited elements. For example,
in the AFS architecture, tree traversal registers are allocated
in order to track visited elements for path compression. To
avoid this, path splitting instead sets the parent pointer for
each element to its grandparent during the single pass, which
achieves the same complexity asymptotically. These complex-
ities can be readily observed from a Monte Carlo simulation
in Figs. 2(a), 2(c), and 2(e).
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E. Motivation and contributions

The performance of a decoder algorithm is crucial in
a QEC pipeline; classical in nature, it can form a critical
bottleneck on the overall performance of an error-corrected
quantum computer. This is a key reason for the popularity of
the union-find decoder, with its near-linear time complexity
offering a significant improvement over MWPM’s polynomial
complexity.

In this paper, our contributions are in studying the behavior
of the union-find decoding algorithm at scale. In Sec. III A, we
show that the complexities of the disjoint-set data structure
described above can deviate from the theoretical trend; that
is, we demonstrate the existence of an unsaturated regime
within which the structure is underutilized and the complexity
decreases. In Sec. III B, we describe empirical results which
suggest that including the optimizations of UBS and path
compression—commonly assumed to be beneficial—may of-
fer no improvement in runtime and in fact add overhead
overall. In Sec. III C, we define an analytical model of erasure
percolation, describing the workload placed upon the data
structure at scale and showing that a decoder runs strictly
in the unsaturated regime. We conclude that the union-find
decoder has a complexity in practice of O(n) in both 2D
independent and 3D phenomenological models, even with
UBS and path compression omitted from the implementation.

III. RESULTS

A. Saturation regimes

Figure 2 demonstrates the amortized time complexity of
operations on the disjoint-set data structure via a Monte Carlo
simulation under various modes of operation, constituting m
merge operations between two random elements in a forest of
size n. For n � m, a linear growth in the number of root table
accesses is observed with n under naive implementation. This
changes to logarithmic with UBS and near-constant with both
UBS and path compression. Specifically, in the latter case, the
number of accesses converges upon a local (but effectively
global) constant of exactly eight, because asymptotically ef-
fectively all elements become a direct descendant of a root,
yielding exactly four accesses per find operation. Therefore,
we denote this mode of operation the saturated regime.

With n � m, the emergent behavior accurately reflects
the theoretical amortized complexity because the number of
operations m is effectively infinite. However, if n 	� m, the
characteristic trees do not have opportunity to form, such that
the complexity is seen to degenerate—the heights of the trees
are now bounded by m, not n. As the trees of characteristic
depth do not dominate the forest, we denote this mode of
operation the unsaturated regime.

B. Redundancy of optimizations

Initially, basic timing experiments were performed where
the real time taken by the AFS simulation to decode 5000
random instances was measured. The naive approach and
UBS performed identically, whereas adding path compres-
sion caused the time taken to increase, especially prevalent
at greater p and d .

Figure 3 shows the scale factor in the number of root table
accesses when adding UBS and path compression; that is,

FIG. 3. Monte Carlo simulation showing the scale factor in the
number of root table accesses when applying (a) UBS, (b) path
compression, and (c) both UBS and path compression to the graph
generator. Each point is the total number of reads over 105 runs,
divided by the corresponding number from the naive implementation.

the number of accesses divided by the corresponding num-
ber from the naive implementation. The number of accesses
decreases marginally when adding UBS, although this then
requires the maintaining and accessing of a size table in con-
junction. In the worst case, adding path compression (or path
splitting) exactly doubles the number of accesses, decreasing
only marginally below this at scale.

For example, a simulation with d = 49 and p = 0.08 re-
quired 4818.79 root table accesses on average (mean over
106 instances) with a naive implementation. With UBS, this
was reduced to 4489.41, but also required 3722.97 size table
accesses, thus requiring 3393.59 more accesses overall. When
adding path compression, the number of size table accesses
remained the same, but the number of root table accesses
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increased to 7841.13, thus requiring 11 564.1 more accesses
than the naive implementation overall.

It is apparent that both UBS and path compression not
only fail to provide an improvement in decoding time, but in
fact tend to worsen it at scale. In the case of UBS, marginal
reduction in root table accesses is dwarfed by the additional
overhead of maintaining and accessing a size table. In the case
of path compression, root table accesses are strictly increased,
with the additional overhead of tree traversal registers. Even
if path splitting is used in place of compression—saving the
overhead of registers and a second pass—the increase in the
number of root table reads is identical.

The reasoning for this is twofold. First, it is apparent that
the data structure is operating in the unsaturated regime. Re-
call that this means that the complexity degenerates if the
sets are bound by their population rate, not by the size of
the structure. In percolation theory, if the population rate of
clusters is below some threshold, the clusters sizes are bound
solely by population, not by the size of the lattice [23]. We use
this analytical model to prove that the data structure operates
in the unsaturated regime below in Sec. III C.

Second, the complexity analysis in Sec. II D assumes the
use of merge operations between two elements in the forest se-
lected randomly and uniformly. In the context of the decoder,
however, merge arguments are not uniformly distributed and
are instead much more likely to be at least one cluster root.
This is due to the fact that the decoder iterates over odd and
unconfined clusters to grow and therefore begins growth with
preexisting knowledge of the root. In the simplest yet ubiqui-
tous case, a cluster merges with an unpopulated vertex—with
both arguments roots of their respective sets, no traversal at
all is required. This nonuniform operation acts to naturally
limit the tree heights formed without requiring explicit path
compression.

C. Erasure percolation

In percolation theory, clusters are formed on a lattice of
size L by population of neighboring sites (or bonds between
sites) with independent rate p. If a cluster spans between two
opposite lattice boundaries, it is said to percolate. A key obser-
vation is that there asymptotically exists a state transition with
a percolation threshold pc, below which is a sparse regime
with no percolating clusters, and above which exists a single,
percolating cluster. In the sparse regime where p � pc, the
average cluster size scales only with p, not L, for L → ∞ [23].

Figure 4 demonstrates the emergence of characteristic sig-
moid curves when plotting percolation rate as a function of p,
which converge to a step function at the threshold pc, which
is exactly 0.5 for bond percolation on a 2D square lattice.

Consider the erasure clusters formed by syndrome valida-
tion. Boundary effects at small d limit cluster sizes, preventing
a truly constant plot with d . The prevalence of clusters inci-
dent to the boundary tends to zero with 1/d . Thus, the mean
cluster size follows a plot of A − B/d , where A is dependent
on the error rate p (Fig. 5). We also define the perimeter of a
cluster, which can be easily defined as the length of the list of
boundary sites—this follows similar scaling to the size. The
number of clusters, however, scales linearly with d2 (d3 in
3D) assuming a uniform error distribution.

FIG. 4. Monte Carlo simulation of bond percolation on a 2D
square lattice, demonstrating logistic fits converging to a step func-
tion at pc = 0.5 for L → ∞. Each point is obtained from 500
samples.

FIG. 5. Subthreshold, the mean cluster size (a) and perimeter
(b) is bound solely by p, when accounting for hyperbolically decay-
ing boundary effects. The mean number of clusters (c) scales linearly
with d2. Each point is obtained from 105 runs.
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The time taken in each find operation depends on the height
of the trees formed in the forest. In the sparse regime, the tree
heights are—as with cluster size—invariant with d barring
hyperbolically decaying boundary effects.

If it is shown that the erasure clusters exist in a sparse
regime (as is implied by the trends in Fig. 5), then it is clear
that the data structure operates in an unsaturated regime, with
average cluster sizes depending only on p and invariant with
d . Clusters are grown from syndrome vertices, which have a
nontrivial population distribution arising from p. Syndrome
percolation occurs when there exists a path of neighboring
syndrome vertices between opposite boundaries of the lattice
[24]. However, we are specifically considering the size of
erasure trees formed at the conclusion of syndrome validation.
We define erasure percolation as the existence of an erasure
tree spanning between opposite boundaries of the lattice. This
is a more relaxed definition than syndrome percolation, as
it can arise, for example, from fewer syndrome vertices po-
sitioned equidistantly across a dimension, requiring multiple
growth iterations.

Therefore, not only is this abstracted from qubit error dis-
tributions to syndrome distributions, but to the distribution
of all vertices included in grown clusters. In order to model
the erasure percolation threshold at higher dimensions without
requiring full implementation of syndrome validation, we find
a MWPM on a syndrome graph and estimate the erasure
trees by including all vertices within distance 
w/2� from
each syndrome in a matching, where w is the weight of the
matching.

If an erasure percolation threshold exists and is greater
than the code threshold, then it follows that the decoder will
always operate the data structure in the unsaturated regime.
Figure 6 shows the results of a Monte Carlo simulation of
syndrome validation on toric codes with both 2D independent
and 3D phenomenological error models. Usually, one would
expect sigmoid plots converging on a step function at p = pc

for L → ∞, as in Fig. 4. Instead, we see that the erasure
percolation rate converges to zero for all p for L → ∞. This
indicates that an erasure percolation threshold does not exist
for any mode of operation of the union-find decoder; that
is, the decoder at scale cannot produce syndromes yielding
erasure percolation. As the average size of erasure clusters
will never be bound by the size of the lattice (ignoring bound-
ary effects on small lattices), the disjoint-set data structure
operates strictly in the unsaturated regime, confirming that
both union by size and path compression are asymptotically
irrelevant.

D. Summary

In Sec. II D, we described how the worst-case complexity
of a naive implementation of the union-find decoder (i.e., for-
going union by size and path compression) would be expected
to be O(n2), as opposed to O[nα(n)] when including the opti-
mizations. However, our numerical data does not support this.
The derivation of that scaling assumes that the complexity of
each find operation is O(n) in the naive case, which is true
only if the size of clusters varies with the lattice size. Our
results demonstrate that the nature of the decoder algorithm
leads to a strictly sparse (i.e., never-percolating) regime of
erasure clusters. Therefore, the number of clusters may be

FIG. 6. Erasure percolation with 2D independent (a) and 3D
phenomenological (b) error models (q = p). Instead of sigmoids
showing a threshold value, percolation rates strictly tend to zero for
L → ∞. Each point is obtained from 500 samples using the Wilson
score with two standard deviations (∼95% confidence interval) [25].

linear in n, but their average size depends only on p, instead
yielding an overall complexity of just O(n). This absence
of a percolation threshold has been demonstrated in both
2D independent and 3D phenomenological models. In other
words, the probability of the worst-case complexity scenario
(of erasure clusters percolating) is suppressed to zero for
d → ∞.

Therefore, we suggest that both union by size and path
compression may be comfortably omitted from implementa-
tions of the union-find decoder without paying a penalty, and
indeed memory usage and runtime are actually improved. In
the example of the AFS architecture in Ref. [7], this would
involve omitting the size tables and traversal registers, as well
as their associated logic. The size table is stated to be the
single most memory-consuming component (e.g., 54.9 KB
out of a total 133 KB for d = 25), so forgoing union by size
would yield significant gains in a memory-critical cryogenic
environment.

IV. CONCLUSION

We have explored the asymptotic behavior of the disjoint-
set data structure and shown that it is significantly under-
utilized in a union-find decoder at scale, running with time
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complexity lower than theoretically predicted. Even when
omitting the optimizations of union by size and path compres-
sion, the decoder’s worst-case complexity rapidly converges
to O(n) for d → ∞. We have argued, therefore, that these
optimizations are unnecessary at best and detrimental at
worst.

By showing that no percolation threshold exists for the
formation of erasure clusters, we have shown that the erasure
clusters are strictly sparse in the disjoint-set data structure
for d → ∞. Future work could explore the implications of
this bound on the decoding strategy, such as the distributed
decoding of erasure clusters.

We have also outlined an alternative implementation of
syndrome validation for the AFS architecture, which stores
boundary lists (instead of recalculating them in each iteration)
whilst minimizing overhead via double-buffering with a new
edge stack (NES). Depending on the exact method with which
it is contrasted, we suggest this may save computational time
over the course of decoding at the slight expense of storage
and merging.
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APPENDIX: AFS IMPLEMENTATION
AND IMPROVEMENTS

Whilst Ref. [7] describes the practice of recalculating clus-
ter boundaries in each iteration of growth during syndrome
validation, our simulations store and update lists of boundary
sites, with the benefit of this data being readily available for
analysis (as used in Sec. III C).

In the AFS architecture, a fusion edge stack (FES) is used
to prevent double growth by delaying the writing of edges
between newly connected clusters to the STM. As we are
now storing boundary lists, we also use a NES to store and
delay the writing of all newly grown edges, to prevent a
similar issue. A confinement register (one bit per vertex) is
also used to disable the growth of clusters which meet the
open boundary.

A notable benefit of this approach is that the NES, by
definition, contains exactly the new boundary list for a grown
cluster. Therefore, the boundary list and NES can operate as
a double buffer, wherein the NES becomes the new boundary
list. Swapping the two lists and clearing the new NES (now
containing the old boundary data) ready for reuse can both be
performed in O(1) (constant) time.

The main drawback of this approach is that boundary lists
must be concatenated when clusters are to be merged. Using
arrays, this has time complexity linear in the size of the shorter
list. Using linked lists, this can be improved to constant time,
but this is unlikely to be worthwhile overall due to cache
inefficiency and roughly doubling memory usage.
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