
PHYSICAL REVIEW A 108, 042413 (2023)

Unified collision model of coherent and measurement-based quantum feedback
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We introduce a general framework, based on collision models and discrete completely positive maps, to
describe on an equal footing coherent and measurement-based feedback control of quantum mechanical systems.
We apply our framework to prominent tasks in quantum control, ranging from cooling to Hamiltonian control.
Unlike other proposed comparisons, where coherent feedback always proves superior, we find that either
measurements or coherent manipulations of the controller can be advantageous depending on the task at hand.
Measurement-based feedback is typically superior in cooling, while coherent feedback is better at assisting
quantum operations. Furthermore, we show that both coherent and measurement-based feedback loops allow
one to simulate arbitrary Hamiltonian evolutions, and discuss their respective effectiveness in this regard.
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I. TWO FLAVORS OF QUANTUM FEEDBACK CONTROL

The designation “coherent feedback” (CF) is used to de-
scribe a broad class of quantum control strategies where
the controller (an auxiliary system that interacts with the
main system for the purpose of steering it toward desired
targets) processes only quantum information. CF can be con-
trasted with “measurement-based feedback” (MF), in which
the controller processes classical information resulting from
measurement outcomes. The theory of MF goes back to the
work of Belavkin [1], while CF has its origins in the “all-
optical feedback” [2,3], based on the input-output formalism
[4]. There, the output from a cavity is used to modulate the
cavity’s dynamics (without measurements being performed)
and the process has a clear, directional “feedback loop” struc-
ture. Later, with the advent of quantum information, the term
“coherent quantum feedback” was used to describe general
interactions between two quantum systems aimed at control
tasks [5,6]. In our work, we focus on the former definition
involving explicit loops, as will be made clear. MF has long
been used for achieving quantum control [7–10] and CF
has recently emerged as a powerful alternative with appli-
cations in quantum optics [11–13], optomechanics [14–20],
nanomechanics [21], NV centers [22], and circuit QED
setups [23–25].

Both strategies have been widely studied theoretically, es-
pecially in the arena of quantum optics [2,3,9,11,16,26–30].
It is often claimed that CF is inherently superior to MF,
and for certain definitions, regimes, and problems, this is
the case [6,11,26,27]. However, other results suggest a less
clear-cut scenario and point at the usefulness of quantum
measurements [29], which can even outperform CF, e.g., in
stabilizing the squeezing of a cavity mode [31]. In particular,
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the alleged superiority of CF often hinges on comparisons
with measurement-based unconditional, averaged dynamics
without considering the corresponding conditional dynam-
ics, whose stochastic jumps cannot be reproduced by unitary
means (a way to express the notorious measurement problem),
or misses the potential of nondestructive quantum measure-
ments, upon which system and controller evolve according
to the von Neumann postulate and then may interact with
each other once again afterwards. A broader approach is then
required to fully take into account the possibilities offered by
quantum measurements.

To this aim, we present a unified framework for de-
scribing coherent and measurement-based feedback loops
as cascaded collision models. Collision models (CMs) are
a class of schemes for modeling open quantum dynamics
where the system repeatedly interacts with an environment,
which is refreshed after each interaction [32–36]. They have
found widespread application in quantum thermodynamics
[37–40], quantum optics [41], non-Markovian quantum sys-
tems [42–45], and have also been applied to a discretized
model for CF, encompassing an exhaustive treatment of delays
[30]. Another treatment of quantum feedback with discrete,
repeated interactions may be found in [46].

We put forward a general framework of quantum feed-
back by treating the environment of the collision model
as a “controller” that undergoes two sequential interactions
with the system before being refreshed. In-between these
two interactions, the controller is processed, either through
measurements (in MF), or coherently (in CF). Note that, at
variance with some previous treatments, such as [47], we as-
sume the system cannot be manipulated or measured directly,
but only indirectly through the controller whose coupling to
the system is fixed, unlike, e.g., in [48]. If the system is subject
to additional noise, we assume that the controller does not
have access to its source (as would be the case in quantum
feedforward, according to a distinction made in [6]).

Our model allows for a fair comparison between MF
and CF since the system noise, controller state, and
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FIG. 1. A schematic diagram for a single “feedback collision.”
A system is subject to noise channel E and then interacts twice with
a controller. In-between these collisions, either measurement-plus-
unitary or just a unitary are implemented on the controller, realizing
MF or CF, respectively. The feedback dynamics is obtained by re-
peated iterations of this circuit. We include both clean (“cold”) and
noisy (“hot”) controllers, initialized, respectively, in pure or mixed
states.

system-controller couplings are kept the same in both cases,
as is the set of unitaries that can be applied to the controller.
The only difference between the two cases is then the pres-
ence or absence of an in-loop measurement. Thus, comparing
these two classes of control strategies ultimately amounts to
asking the following: Does performing a measurement on
the controller act as a resource for a particular task, or is
it a hindrance? Indeed, as we shall clarify, our model also
allows CF to be framed as MF in the limit of infinitely weak
measurements, putting both strategies on different ends of the
same spectrum.

After introducing our framework and showing that it en-
compasses most customary continuous-time treatments, we
apply it to investigate MF and CF for several control tasks
and uncover highly nontrivial hierarchies between the two
strategies, depending on the task at hand. Control tasks can
broadly be grouped into two classes: state control, where the
goal is to prepare the system in a specific state, and operator
control, where the goal is to simulate the effect of a partic-
ular unitary without knowledge of the input state [49–54].
Through optimization of these tasks, we show that MF is often
better at achieving state stabilization and control, especially
when the noise is substantial, whereas CF tends to outperform
MF in operator control, where the preservation of quantum
coherence in all bases is key. As examples of state control,
we consider the cooling of a qudit subject to noise and the
stabilization of a qubit in an excited state, counteracting decay.
For operator control, we investigate the archetypal task of im-
plementing a bit flip on an unknown qubit input. Furthermore,
we investigate the task of complete unitary controllability (i.e.,
the generation of any unitary evolution) in the limit of weak
system-controller interaction. We shall report only the most
relevant findings in the main text, referring the reader to the
Appendixes for detailed proofs and further analysis.

II. A COLLISION MODEL OF QUANTUM FEEDBACK

First, we outline a common framework encompassing both
MF and CF, as sketched in Fig. 1. CF is described by iterated
cycles each comprising the following sequence of events:

(i) The system is subject to noise given by a completely
positive (CP) map E , representing any internal dynamics and
inaccessible noise.

(ii) The system and controller interact through a
unitary U1.

(iii) A unitary operation, chosen from a set {Vj} (con-
strained, in practice, by experimental limitations), is per-
formed on the controller. Here, we expand the definition of the
controller to include the subsystems which interact directly
with the main system, as well as any other auxiliary subsys-
tems. Notice that this operation is deterministic and fixed for
a given control loop: in the spirit of coherent feedback, no
classical information is extracted at this stage to elect it.

(iv) The system and controller interact again, through an-
other unitary U2.

(v) The controller is refreshed to its initial state η.
The last step corresponds to an assumption of Markovian-

ity for the uncontrolled dynamics, well met in quantum optical
systems modeled by the standard input-output formalism [4].

MF is implemented in the same way, with step (iii) being
replaced with the following step:

(iii′) A nondestructive measurement, described by a pos-
itive operator-valued measure (POVM), is performed on the
controller (the available measurements being determined by
experimental limitations). After the measurement, depending
on the measurement result μ, a unitary Vμ, from the set {Vj} is
performed on the controller.

Typically, in MF schemes, the output system state will
depend on the measurement record. If this record is not kept,
then the system will evolve deterministically to an “uncondi-
tional” state resulting from averaging over the measurement
outcomes. If the measurement record is kept, then the
“conditional” system state will generally evolve stochastically
(although there exist cases where the subsequent operations
can undo the measurements’ stochasticity).

Although in this study we shall demonstrate the effective-
ness of our framework by addressing idealized, yet practical,
scenarios, our framework is broadly applicable to concrete
setups, ranging from quantum optics and optomechanics in
the continuous variable regime [55] to linear optics [56,57]
and circuit QED setups [58–62].

Indeed, our model is completely general up to its Marko-
vianity over repeated iterations (so, it does not capture control
schemes like [63]). In Appendix A we explicitly show how all
widely adopted continuous-time treatments are encompassed
by it, including both stochastic master equations and coherent
feedback schemes (in particular, the quantum optical notion
of coherent feedback of, e.g., [16,31], or its equivalent SLH
formulation [26,64,65] may be fully reproduced).

It is also worthwhile to notice that an overarching math-
ematical picture, encompassing and unifying CF and MF
schemes, can be obtained from our model by considering a
MF loop with a POVM’s Kraus operators {Kj, j = 1, . . . , s},
which can be polar decomposed as Kμ = UjPj , where the P′

js
are positive-semidefinite operators while the U ′

js are unitaries.
Then, CF implemented by random unitaries is recovered in
the limit where P2

j ∝ 1 (and no measurement actually takes
place), while unitary CF corresponds to Uj = U ∀ j. This
parametrization is demonstrated in detail in the qubit case in
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Appendix D 2 b, where it is applied to the optimization of an
operator control task. Let us also remark that, under certain
conditions, in “forgetful” MF schemes, i.e., without access
to the measurement record, the feedback action results in a
deterministic CP map and MF reverts, so to speak, to CF, as
exemplified in [64].

In the remainder of this work, we shall take system and
controller to have the same Hilbert space dimension d and
both couplings U1 and U2 to be partial swaps, as commonly
used in CMs [35,66,67], i.e., we set Us = √

τ1 − i
√

1 − τ Ŝ,
where Ŝ is the unitary swap operator and 0 � τ � 1 is
the transmissivity. It is easy to see that such an interaction
is generated by the swap operator itself, which is clearly
Hermitian. For qubits, this evolution corresponds to the
Heisenberg coupling σ (1)

x σ (2)
x + σ (1)

y σ (2)
y + σ (1)

z σ (2)
z , where

σ
( j)
w denotes the Pauli matrix w acting on a hypothetical

qubit system j. In practice, this interaction occurs naturally
among spins but is typically nontrivial to obtain in quantum
optics because it requires the engineering of equally weighted
exchange (σ (1)

+ σ
(2)
− + H.c.) and dispersive (σ (1)

z σ (2)
z ) interac-

tions. Nevertheless, we adopt partial swaps here because they
mimic coherent, beam-splitter interactions in optics and, cru-
cially, allow for a very straightforward generalization to any
dimension d . Many (though not all, as will be noted in due
course) of our quantitative results depend on such a choice and
it will be interesting to investigate other couplings, such as ex-
change ones (which share salient features with partial swaps,
such as the conservation of the total number of excitations) in
future work.

III. FEEDBACK COOLING

First, we apply our framework to the task of feedback
cooling, considering both noisy and clean controllers, as we
explain in the following. In this section, we also assume
that the noise due the inaccessible environmental degrees of
freedom, represented by the CP map E , takes the form of a
depolarizing channel acting on the system as E (ρ) = λρ +
(1 − λ) 1

d 1 where λ determines the strength of such noise and
1 is the identity operator with dimension determined by the
context.

A. Noisy controller

In this section, we consider the case where the controller is
in the maximally mixed, or infinite temperature, state η = 1

d 1,
which we refer to as a “noisy controller” (notice in fact that the
noise acting on the system also comprises the “unaccessible”
depolarizing channel). The relevant figure of merit to cooling
is the von Neumann entropy of the steady state of the system
(i.e., a state which is unchanged by the application of a single
iteration of the MF or CF protocol). If the steady state exists
and is unique (as will be the case in our examples), any input
will tend to the steady state upon repeated applications of the
protocol.

For CF, the set of allowed in-loop operations on the con-
troller is the set of single-qudit unitaries. It is shown in
Appendix B 1, by virtue of the subadditivity of entropy, that
CF is incapable of counteracting the noise on the system and
leads to a maximally mixed steady state ρS = 1

d 1. Notice

that this is the case regardless of the choice of interaction
unitary U .

For MF, we consider a protocol with an in-loop projective
measurement in an arbitrary basis {| j〉 , j = 0, . . . , d − 1}.
Let us consider a strategy where, after measuring, a unitary
is applied to the controller which maps all postmeasure-
ment states to the same pure state, which we will label |0〉
(the wisdom of this choice will be justified shortly). Upon
averaging on the measurement results, the system reaches
the so-called “unconditional” steady state, evaluated in
Appendix B 2 a as

ρS = 1

d

d (1 − τ ) + τ − λτ 2

1 − λτ 2
|0〉 〈0| +

d−1∑
j=1

1

d

τ − λτ 2

1 − λτ 2
| j〉 〈 j| ,

(1)

whose entropy is clearly lower than the maximally mixed state
for all parameter values except for the trivial case where τ = 1
and the system and controller do not interact. Thus, we have
shown that introducing measurements into the feedback loop
is advantageous. If a cold environment (in the form of a pure
controller) is not available as a resource, MF outperforms all
possible CF protocols in the limit of high controller’s tempera-
tures, as measurement acts as a powerful tool for preparing the
controller’s state, which cannot be reproduced through unitary
means.

By applying an entropy power inequality [68,69], in
Appendix B 2 b it is proven that, for an input diagonal in the
measurement basis (as is the case for the maximally mixed
state), the entropy of the conditional output state is mini-
mized when, after measuring the controller, all measurement
outcomes are mapped to the system’s dominant eigenvec-
tor (corresponding to the system state’s largest eigenvalue).
Furthermore, when the input is diagonal in the measurement
basis, the output is diagonal in the same basis, with the
same dominant eigenvector. Thus, for repeated application,
starting with a maximally mixed input (or any input state
with dominant eigenvector |0〉) our MF protocol is optimal
when considering conditional dynamics. We could not prove
its optimality for unconditional dynamics too, although it is
confirmed by all numerical evidence we possess.

In general, conditional MF does not yield a steady state,
resulting in oscillating entropies (see Fig. 2). Only in the case
of a full swap (τ = 0) can the postmeasurement unitary com-
pletely undo the stochasticity of the measurement, leading to
the steady state |0〉, i.e., to perfect cooling. Examining Fig. 2
one can see that the cooling performance decreases with τ (as
lower τ imply the possibility of injecting low-entropy states
from the controller) and, as one should expect, decreases with
the noise strength λ (see Appendix B 2 a). Observe also that
the entropy “jumps” become larger for higher system dimen-
sions. This study also allows us to estimate the cooling rate
of the model, i.e., the typical number of iterations needed
to approach the unconditional entropy, as 1/(1 − τ ) (in that
the interaction with the controller dominates the cooling
process). Let us note in passing that this scenario is
tightly reminiscent of the juxtaposition between standard
(“measurement-based”) and unitary (“autonomous”) Maxwell
demons [70–74].
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(a)

(b)

FIG. 2. Normalized (with base-d logarithms) von Neumann
entropy of conditional (continuous lines) and steady-state uncondi-
tional (horizontal dotted lines) measurement-based feedback cooling
for a maximally mixed initial state at different values of τ and d;
λ = 0.99 in the top graph (a) and λ = 0.9 in the bottom one (b). The
x axes report the number of iterations.

B. Clean controller

While MF outperforms CF when cooling with a maximally
mixed controller, this is not always the case when the con-
troller is “clean,” i.e., initialized in a pure state η = |0〉 〈0|
(note that this is the case, for instance, when the controller is
a light mode at room temperature, like in sideband cooling).
For CF, we consider the case where the in-loop unitary is the
identity (which, as proven in Appendix B 3, is optimal for
qubits assuming |0〉 is an eigenvector of the steady state) while
for MF we consider the protocol from the previous section,
which was optimal for a noisy controller. In this case too, we
have found no strategies capable of improving on these two
choices.

In both cases, we find that the steady states have one
eigenvalue larger than the others, which are degenerate. For
states like these, both the linear and von Neumann entropies
are solely functions of the largest eigenvalue and are therefore
equivalent for the purposes of comparison. Here, we present
the linear entropies for qubit systems in view of their more
compact expressions (more general expressions for arbitrary
dimension can be found in Appendixes B 3 and B 4). The
steady-state linear entropy for the MF protocol is

SMF = 1

2
− (τ 2 − 1)2

2(τ 2λ − 1)2
, (2)

while for the CF protocol one has

SCF = 1

2
− 8τ 2(τ − 1)2

((1 − 2τ )2λ − 1)2
. (3)

Comparing the two steady-state entropies for qubits (see Ap-
pendix B 4), we find that SMF < SCF for τ < 1

3 and SMF > SCF

for τ > 1
3 . Thus, there are two regimes: one where MF out-

performs CF and one where CF outperforms MF. We also
find that when τ = 1

2 , SCF = 0 and CF is able to stabilize
a pure state, but no MF protocol with projective measure-
ments can stabilize a pure state for τ = 1

2 (see Appendix B 4).
Conversely, for τ = 0, MF is always capable of stabilizing a
pure state while CF cannot stabilize any state other than the
maximally mixed state, as the action of a unitary alone cannot
undo the effect of the depolarizing map.

C. Finite-temperature controller

At intermediate controller noises (where the controller
is neither pure nor maximally mixed), we have compared
the heuristically optimized protocols where MF prepares the
state corresponding to the largest eigenvalue of the controller,
while the CF loop applies the in-loop identity. Plots of specific
case studies may be found in Appendix B 5. As a significant
example, for d = 2, τ = 0.5, and λ = 0.25, MF exhibits a
superior cooling performance for all controller noises (i.e., all
values of the controller’s largest eigenvalue). Significantly, a
qualitative picture emerges whereby for low-temperature con-
trollers and weak couplings the act of measurement disturbs
the coherent process responsible for low-entropy environmen-
tal states to be transferred to the system, thus making MF
inferior to CF. On the other hand, with strong couplings and
noisy environments, the purification from the act of measure-
ment compensates for this and allows for the injection of purer
states, so that MF then tends to perform better than CF under
such circumstances.

IV. EXCITATION PRESERVATION

After a task based on entropy, we now consider one fo-
cused on the system’s energy. We consider a qubit initially
prepared in the excited state |1〉 (with |0〉 being the ground
state) subject to decay, modeled by E with Kraus operators
E0 = √

γ |0〉 〈1| , E1 = √
1 − γ |1〉 〈1| + |0〉 〈0|. We assume

a controller initialized in the maximally mixed state, employ
a feedback loop, either CF or MF based, to counter the effect
of decay and adopt the steady-state occupation of the |1〉 state
as our figure of merit.

A. Coherent feedback

For CF, we restrict the in-loop unitaries to rotations U =
cos χ1 + i sin χσy and optimize the protocol numerically,
finding that the optimal CF protocol depends on the partial
swap strength; for τ > 1

2 (τ < 1
2 ), the optimal setting is χ =

0 (χ = π
2 ) (see Appendix C 1 for more details).

Figure 3(a) shows the performance of the setup with weak
damping, characterized by γ = 0.2 and Fig. 3(b) shows the
performance of the same setup with stronger damping, charac-
terized by γ = 0.8. For τ > 1

2 , increasing the noise decreases
the steady-state occupation of the excited state. However,
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(a)

(b)

FIG. 3. The steady-state occupation of the |1〉 state for CF setups
with different coupling strengths, characterized by τ . (a) For a setup
with amplitude damping characterized by γ = 0.2 and (b) is for a
setup characterized by γ = 0.8. Note that, for strong couplings (τ <
1
2 ), the setup with stronger amplitude damping actually has a higher
excited-state occupation.

for strong system-controller interactions τ < 1
2 , the optimal

performance (when χ = π
2 ) is improved by stronger damping

since the action of the in-loop π
2 rotation is more effective

at populating the |1〉 state when more of the state is initially
prepared in the |0〉 state. In this sense, CF allows for the
purifying effect of the amplitude damping to be harnessed for
the purpose of increasing the excited-state population.

When χ = 0 and the in-loop unitary is the identity, the
steady-state occupation of the excited state is

ρ
χ=0
11 = 2τ (1 − τ )

4(τ − 1)(γ − 1)τ + γ
, (4)

which is a decreasing function of γ for τ > 1
2 . Conversely,

when χ = π
2 , the steady-state occupation is

ρ
χ= π

2
11 = 1 − τ

2(γ − 1)τ − γ + 2
, (5)

which is an increasing function of γ for τ < 1
2 .

B. Measurement-based feedback

We compare this to an intuitive MF protocol which mea-
sures the controller in the {|1〉 , |0〉} basis, does nothing if the
result is |1〉, and applies an in-loop rotation with χ = π

2 if the

FIG. 4. Excited-state occupation against number of iterations of
MF or CF. The MF trajectories shown as dark (dashed and dotted-
dashed) lines are the unconditional trajectories. For each setup 50
conditional, filtered MF trajectories are shown as solid light gray
lines.

result is |0〉. The excited steady-state occupation is then

ρMF
11 = 2 − τ 2 − τ

2(γ − 1)τ 2 + 2
, (6)

which is greater than (5) for all values of τ and γ , so that
MF outperforms CF in the regime of strong system-controller
coupling τ < 1

2 . However, for some high values of τ , (4)
is greater than (6) and CF outperforms MF, though numer-
ical investigations suggest that the advantage is small (see
Appendix C 2 for further details).

Conversely, in the regime where MF outperforms CF, the
advantage is larger. Figure 4 shows the occupation of the
excited state against the number of feedback loop iterations.

V. OPERATOR CONTROL

Let us now turn to operator control, where the objective
is to realize a certain system dynamics (possibly a “gate”)
on arbitrary initial states, rather than steering the system to
a certain target state.

A. Bit flipping

As an operator control task, we consider the implemen-
tation of a bit-flip operation on a qubit system (d = 2);
we stress that the bit flip must be induced on the sys-
tem by only acting on the controller. We allow in-loop
operations to be any single-qubit unitary, assume that the
system is not subject to additional noise (i.e., the map E
is the identity), and that the controller is initialized to a
generic mixed state η = η0 |0〉 〈0| + (1 − η0) |1〉 〈1|. The sys-
tem input state is of the general form |ψ〉 = cos χ

2 |0〉 +
eiφ sin χ

2 |1〉 and the figure of merit will be the Haar-averaged
fidelity of the output state to the desired state, i.e., A =
(4π )−1

∫
dφ dχ sin χ 〈ψX | ρout

S |ψX 〉, where |ψX 〉 = σx |ψ〉.
Crucially, the feedback protocol must be implemented without
knowledge of the input state (i.e., without knowledge of χ

and φ).
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First, we consider an intuitive CF protocol, where the
in-loop operation performed is a σx unitary. When the state
|ψ〉 is put through this protocol, we obtain, as detailed in
Appendix D 1, the average output fidelity for coherent feed-
back

ACF = 1 − 2
3τ . (7)

As shown in Appendix D 2, by using proper matrix de-
compositions we could fully analytically optimize our MF
protocol and, quite remarkably, prove that no MF protocol
can outperform this CF protocol. This was first proven for
projective measurements, where, after interacting through the
partial swap, the controller is measured in the {|0〉 , |1〉} basis
(notice that all choices of basis are equivalent due to the
unitary covariance of the Haar measure) and then subject to
a σx gate, which is shown to yield maximum output fidelity
AMF = 2

3 − 1
3τ regardless of the measurement outcome. This

average fidelity is always smaller than what is achievable
through CF (except for the trivial case τ = 1). Finally, by
adopting the unified description of feedback obtainable via
the polar decomposition of the POVM’s Kraus operators, we
were able to show that the performance of MF improves with
(nonprojective) weaker measurements but cannot ever outper-
form the CF value above for any in-loop POVM. Therefore,
we can state that CF is definitely superior to MF in assisting
bit flipping.

B. Unitary operator control in the limit of weak interactions

Having considered the task of implementing a specific
unitary, we now investigate the realization of an arbitrary
unitary on the system in the limit of infinitesimally weak
system-controller interactions, i.e., letting θ −→ dθ in the
transmissivity of the partial swap τ = cos2 θ . To first order in
dθ , one finds (see Appendix E) that one iteration of MF or CF
results in the following transformation on the system density
operator:

ρS −→ ρS − i[( j (η) + η), ρS]dθ, (8)

where  j represents the particular CP map applied in loop
(unitary for CF and measurement followed by a unitary
for MF) from the set of possible in-loop CP maps { j}.
Therefore, in this weak interaction limit, the system evolves
unitarily for both MF and CF, under the transformation Vj =
e−iHj dt , with Hj = [ j (η) + η]. By iteratively applying this
process, both MF and CF can simulate any Hamiltonian on
the system, provided that it falls within the algebra generated
by commutation of elements of the set { j (η) + η} (assuming
that the  j can be changed after each iteration as necessary).
If the set of in-loop CP maps generated by MF or CF is non-
trivial, this algebra is typically the entire space of Hermitian
matrices since all pairs of Hermitian matrices, except a set
of measure zero, can generate the entire space of Hermitian
matrices by commutation [75]. Thus, in the weak interac-
tion limit, provided that the set { j (η) + η} is nontrivial,
both MF and CF can be used to simulate the effect of any
Hamiltonian on the system and for this purpose are equivalent.
However, the dramatic ability of measurements to change the

controller’s spectrum can be leveraged here to achieve faster
evolutions to target states than in CF schemes, as  j (η) can in
principle be any quantum state in MF. In this regard, let us also
notice that in the limiting case where η is maximally mixed,
the set { j (η) + η} for CF will contain only one element
which will be proportional to the identity (since the action of
any unitary leaves the identity unchanged), and so CF will not
be able to exert any Hamiltonian control in that case.

VI. CONCLUDING REMARKS

We have introduced a common framework for coher-
ent and measurement-based quantum feedback based on a
collision model, featuring repeated interactions with an en-
vironment that acts as a controller. This allows MF and
CF to be compared on equal footing, under the assumption
of nondestructive measurements, so that our extensive case
studies, covering a wide range of control scenarios based
on partial swap interactions, provide one with strong indi-
cations of the advantages and disadvantages of each type of
feedback.

At variance with what one might expect, the comparison
and respective optimality of measurement-based vs coher-
ent feedback loops is necessarily nuanced, even for fixed
figures of merit, as it depends on specifics of the uncontrolled
dynamics. Nonetheless, by applying our model we were able
to reach a number of clear-cut results in this regard. First,
we found that MF is superior to CF for the task of lowering
the steady-state entropy of a system subject to noise, unless
the controller is initially at very low entropy. For the case
of maximum environmental entropy, we could prove exactly
that CF cannot help at all, regardless of the choice of unitary
interaction between system and environmental, whereas MF
can still be very effective. When the controller is initialized
to a pure state, the comparison becomes more subtle and
the question of which type of feedback is superior depends
on the strength of the interaction, as parametrized by the
transmissivity τ . We showed that, in this setup, when τ = 1

2 ,
CF can stabilize a pure state, which is not possible through
any MF protocol. In contrast, when τ = 0 and the interaction
is as strong as it can be, we showed that MF is capable
of stabilizing a pure state when CF could only stabilize the
maximally mixed state. We then considered the preservation
of energy in a system subject to decay, and observed that
MF would prove superior to CF at strong system-controller
couplings, and vice versa at weak couplings. Hence, we turned
to operator control and found that CF is superior to MF for
implementing a bit-flip operation on an unknown, arbitrary
input state. Furthermore, we showed that MF and CF are, in
most cases, equally capable of emulating any Hamiltonian on
the system in the limit of weak system-controller couplings,
except for maximally mixed controllers, where MF is superior
since a measurement is needed to achieve any Hamiltonian
engineering.

Notably, our approach is applicable to very general in-
teractions and noises, in order to obtain optimized feedback
loops for concrete setups, which will be the subject of future
work, with especial regard to engineering remote Hamiltonian
interactions [55] and setups based on giant emitters [58,59].

042413-6



UNIFIED COLLISION MODEL OF COHERENT AND … PHYSICAL REVIEW A 108, 042413 (2023)

ACKNOWLEDGMENTS

M.B. acknowledges funding from the Swiss National
Science Foundation (Grant No. PCEFP2_194268). We also
thank F. Ciccarello for several useful discussions on collision
models.

APPENDIX A: REPRODUCTION
OF STANDARD FEEDBACK MODELS

This section is meant to substantiate the claim that our
general framework subsumes most standard open-system
treatments of feedback scenarios. More specifically, we will
show that widely adopted stochastic master equations in the
presence of Markovian noise and monitoring are included in
our framework and, for the case of CF, provide the reader with
an explicit derivation of the standard quantum optical master
equation under “all-optical” coherent feedback (the true staple
of the genre).

As for MF, it is straightforward to see that the monitor-
ing and feedback actions described through stochastic master
equations are encompassed by our framework through the
following argument. In the continuous-time limit of infinites-
imal increments, one can treat our dynamics by rearranging
the four steps of each iterative cycle [(i) first interaction,
(ii) measurement, (iii) CP map on the environment, (iv) sec-
ond interaction] in the order [(i) first interaction, (ii) second
interaction, (iii) measurement, (iv) CP map on the environ-
ment] and, by keeping the same interaction Hamiltonian in
the first and second steps, by reducing it to the standard three
steps process [(i) interaction, (ii) measurement, (iii) CP map
on the environment], up to a mere rescaling of the interaction
Hamiltonian by a factor 2. This is the standard framework for
the derivation of stochastic master equations with and without
feedback (see, e.g., [9,76]; see also [35] for a derivation of a
master equation for collisional models). Notice that the case of
pure “filtering,” i.e., when the only control is exerted through
monitoring, can be reproduced by letting the CP map feed
in the initial state of the bath, regardless of outcome. It is
also worth mentioning that, in all derivations from discrete
models, it is necessary to let the coupling strength diverge as
1/

√
�t as �t → 0 (a standard assumption which is equivalent

to white noise, and which will be illustrated explicitly in the
CF case that follows). This does not jeopardize our argument
since, for any fixed interaction Hamiltonian ĤC , the equation
eiĤC dt eiĤC dt = ei2ĤC dt holds true in this limit too.

Let us now move on to CF, and reexamine the classic case
of a mode in a cavity interacting with a finite temperature,
white-noise environment through two mirrors (resulting, in
the absence of feedback, in the “quantum optical master equa-
tion”), where the output of one cavity undergoes losses by a
factor η and, in the absence of delays, is fed back into the
other cavity mirror. Note that delays can be accommodated
in our model by enlarging the bath to keep track of recurring
interacting modes and by including them in the environmental
CP map: they would just make our mathematical treatment
cumbersome but could be handled exactly in the same way
as in other formalisms (typically by moving to the frequency
domain). Since this dynamics involves only linear coupling
to the environment, it can be characterized entirely by the

corresponding Gaussian dynamics, which will allow for a
very compact and expedient mathematical rendition and will
thus be adopted (see, e.g., [77] for a full exploitation of this
argument). Let r̂ = (x̂

p̂

)
be the vector of the system’s canonical

quadratures, such that, in outer product form, [r̂, r̂T] = i� (to
be read components wise as [r̂ j, r̂k] = i� jk), for the antisym-

metric symplectic form � = ( 0 1
−1 0), and let us also define

the covariance matrix σ = 〈{r̂, r̂T}〉 − {〈r̂〉, 〈r̂T〉}, where 〈·〉
stands for the expectation value on the system quantum state.
The dynamical equation for the covariance matrix σ of a
system subject to the CF loop described above is given by
the following Lyapunov equation [31]:

σ̇ = −2γ (1 − √
η)σ + 2γ N (1 − √

η)12, (A1)

where
√

γ is the coupling with the white-noise environmental

modes and N = eβ h̄ω+1

eβ h̄ω−1 at inverse temperature β and system
mode frequency ω. Our aim is to show that such an equa-
tion can be reproduced by a CF scheme in our model.

Therefore, if r̂′
in is the four-dimensional operator vector

grouping together two environmental input modes, then we
will choose a fixed interaction Hamiltonian ĤC such that

ĤC dt = √
γ r̂T(�T,�T )r̂′

in

√
dt . (A2)

The, initially uncorrelated, global covariance matrix of system
plus bath is given by the direct sum σgl = σ ⊕ N12 ⊕ N12

and evolves, under the quadratic Hamiltonian ĤC for an in-
terval dt , by congruence under the corresponding symplectic
transformation eJC dt , where

JC = √
γ

⎛
⎝ 0 12 12

−12 0 0
−12 0 0

⎞
⎠. (A3)

At first order in dt , one gets

σgl 
→ eJC dtσgle
JT

C dt = σgl + σSB

√
γ dt + [(N12 − σ )

⊕ σ̃B ⊕ σ̃B]γ dt + o(dt )

for some environmental covariance increment σ̃B, which will
have no bearing on what follows and will thus be disregarded,
and a system bath correlation matrix

σ̃SB =
⎛
⎝ 0 −σ + N12 −σ + N12

−σ + N12 0 0
−σ + N12 0 0

⎞
⎠ , (A4)

which will instead play a key role since it is precisely the
memory of such correlations which empowers the feedback
control action. The CP map acting on the bath at the interme-
diate step then just maintains one of the two environmental
modes as the interacting one (we can safely assume that will
be the first bath mode), acts on its covariance matrix by mixing
it with a thermal noise bath and by rotating its optical phase,
and refreshes the state of the second bath mode to the initial
state with uncorrelated covariance matrix N12, resulting in the
following correlation matrix:

σSB = √
η

⎛
⎝ 0 σ − N12 0

σ − N12 0 0
0 0 0

⎞
⎠ (A5)

042413-7



HARWOOD, BRUNELLI, AND SERAFINI PHYSICAL REVIEW A 108, 042413 (2023)

(notice the change of sign, corresponding to a rotation of the
bath mode’s optical phase, which is key to canceling the noise
in the next step: CF is indeed a coherent mechanism, hinging
on quantum interference!). The second and last interaction
then lets a diagonal term in dt contribute to the covariance
matrix of the system mode (note that partial tracing in the
Gaussian realm just amounts to pinching out the relevant main
submatrix), so that the total iteration of the feedback loop acts
on the initial system covariance matrix σ as

σ 
→ σ + (N12 − σ)γ dt + (N12 − σ )γ dt

+ √
η
(
JCσSB + σSBJT

C

)
γ dt = −2γ dt (1 − √

η)σ

+ 2Nγ dt (1 − √
η) , (A6)

which indeed corresponds to Eq. (A1).

General diffusive coherent feedback

Having demonstrated that our collision model captures one
of the archetypal forms of quantum-optical coherent feedback
in continuous time, it should now be clear that it is capable
of fully capturing any form of Gaussian coherent feedback
through input-output interfaces. Nevertheless, we will show
this explicitly by reproducing all the interferometric, diffusive
dynamics included in the modeling considered in [31]. To
this aim, we will generalize the notation and model from the
preceding section to accommodate n bosonic modes coupled
to a white-noise environment through an arbitrary number of
input-output interfaces [4]. The output of some fraction of
these interfaces will be subject to a general Gaussian CP map
(in the form of interaction, through a quadratic Hamiltonian,
with an arbitrary number of auxiliary modes), before reinter-
acting with the system through more input-output interfaces.
Since the input-output formalism can be framed as a collision
model [41], it should not be surprising that our collisional
model of coherent feedback fully captures this form of co-
herent feedback, although we would like here to dispel any
possible doubt in this regard that may arise from consider-
ing pairs of repeated interactions. Therefore, we will here
make explicit the connection between our collision model of
coherent feedback and the conventional model of Gaussian
quantum-optical coherent feedback. It should be emphasized
that our collision model also covers many more general no-
tions of coherent feedback (such as those involving discrete
time steps and finite-dimensional systems), which cannot be
captured using the standard Gaussian description.

The system of bosonic modes will be described using a
vector r̂ = (x̂1, p̂1, . . . x̂n, p̂n)T, where x̂ and p̂ are the canoni-
cal operators. These obey the canonical commutation relation
[r̂ j, r̂k] = i� jk where we are now using � to represent an
antisymmetric form of an arbitrary dimension:

� =
n⊕

i=1

(
0 1

−1 0

)
. (A7)

We will use � to denote any square matrix of this form
and let the context specify its dimension. In the Gaussian
formalism, a unitary operation on the Gaussian state can be
represented as a symplectic transformation on the canonical
operators r̂ −→ Sr̂, where S is a real matrix which preserves

the symplectic form so that S�ST = �. Symplectic transfor-
mations correspond physically to evolution under a quadratric
Hamiltonian of the form Ĥ = 1

2 r̂TH r̂ where H is known as
the Hamiltonian matrix. It is related to the symplectic matrix
through the equation S = e�H [77].

The controller (or environment) will be denoted by a vector
of white-noise modes r̂in = r̂in,a ⊕ r̂in,b (note that keeping the
setup general and making no assumptions about dimensions
of r̂in,a and r̂in,b). In our collision model of coherent feedback,
the system and environment first interact through a unitary.
We will assume that this interaction lasts for a time increment
�t
2 and that it is generated by the coupling Hamiltonian Ĥ1

so that we can write U1 = eiĤ1
�t
2 . This Hamiltonian will be

written

Ĥ1 = 2r̂TCar̂in,a. (A8)

The matrix Ca is real and known as the coupling matrix and
characterizes the quadratic interaction between the system
and environment. Note that we have put no restrictions on
the form of this interaction, other than that is quadratic and
physical. Also, note that this first interaction can easily include
interactions with “inaccessible” white-noise modes which, if
necessary, can be included to model the noise channel E . The
factor of 2 is here required since the input-output formalism
implicitly assumes that each interaction last for a time �t ,
but here we are assuming that each interaction takes �t/2.
As is customary in collision model literature, we will assume
that the strengths of the coupling Hamiltonians are inversely
proportional to

√
�t , which prevents the interaction from

vanishing in the continuous limit �t −→ dt [35,41]. This is
implicit in input-output model of quantum optics since r̂in,a

and r̂in,b do not correspond to physical quadratures (since they
do not obey the canonical commutation relation). But they can
be related to physical quadratures which we will label r̂′

in,a and

r̂′
in,b through a factor of

√
�t [41,77]:

r̂in,a = 1√
�t

r̂′
in,a, r̂in,b = 1√

�t
r̂′

in,b . (A9)

This allows us to write the coupling Hamiltonian in terms of
r̂T = r̂ ⊕ r̂′

in,a ⊕ r̂′
in,b:

Ĥ1 = 1

2
r̂T

T H1r̂T where H1 = 2√
�t

⎛
⎝ 0 Ca 0

CT
a 0 0

0 0 0

⎞
⎠.

(A10)

Therefore, the first collisional interaction between the system
and environment is characterized by a symplectic operation
S1 = e�H1

�t
2 on r̂T . The extra factor of 1√

�t
in our definition

of H1 means that Taylor expanding to first order in �t leads
to the symplectic

S1 =

⎛
⎜⎝1 + 1

2�Ca�CT
a �t �Ca

√
�t 0

�CT
a

√
�t 1 + 1

2�CT
a �Ca�t 0

0 0 1

⎞
⎟⎠.

(A11)

The next stage of our collision model corresponds to an
in-loop unitary U , performed on the controller alone. This
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unitary will be represented by a symplectic acting on r̂′
in,a ⊕

r̂′
in,b. We will assume that this interaction is instantaneous and

general. We will write it as(
r̂′

in,a

r̂′
in,b

)
−→

(
E F
G H

)(
r̂′

in,a

r̂′
in,b

)
=

(
E r̂′

in,a + F r̂′
in,b

Gr̂′
in,a + H r̂′

in,b

)
. (A12)

When represented as a symplectic on r̂T , this can be written

Sl =
⎛
⎝1 0 0

0 E F
0 G H

⎞
⎠. (A13)

Finally, after the in-loop unitary has been applied, there is
another collisional interaction between the system and con-
troller. This is characterized similarly to the first. The unitary
interaction U2 = eiĤ2

�t
2 corresponds to a symplectic transfor-

mation S2 = e�H2
�t
2 on r̂T , characterized by a Hamiltonian

Ĥ2 = 1

2
r̂T

T H2r̂T where H2 = 2√
�t

⎛
⎝ 0 0 Cb

0 0 0
CT

b 0 0

⎞
⎠.

(A14)

Again, Taylor expanding in �t yields the symplectic

S2 =

⎛
⎜⎝1 + 1

2�Cb�CT
b �t �Cb

√
�t 0

�CT
b

√
�t 1 + 1

2�CT
b �Cb�t 0

0 0 1

⎞
⎟⎠.

(A15)

Thus, the total symplectic for each iteration of the feedback
process will be given by the action of S1, followed by Sl ,
followed by S2. This is found by multiplying Eqs. (A11),
(A13), and (A15) together. We will represent this as

S = S2Sl S1 =
⎛
⎝S11 S12 S13

S21 S22 S23

S31 S32 S33

⎞
⎠. (A16)

Since we will trace over the environment after every itera-
tion of the loop, we are only concerned with S11, S12, and
S13 which will affect the system operators according to r̂ −→
S11r̂ + S12r̂′

in,a + S13r̂′
in,b. These submatrices are given by

S11 = 1 + 1
2�Cb�CT

b �t + 1
2�Ca�CT

a �t + �CbE�CT
a �t,

(A17)

S12 = �Ca

√
�t + �CbE

√
�t, (A18)

S13 = �CbF
√

�t, (A19)

where we have discarded higher-order terms in �t . Applying
S to r̂T = (r̂T, r̂′T

in,a, r̂′T
in,b)T and tracing out the environment

yields the incremental change in the system operators after
one iteration of the feedback loop (which takes, in total, a
time �t) :

�r̂ = (
1
2�Cb�CT

b + 1
2�a�CT

a + �CbE�CT
a

)
r̂�t

+ (�Ca + �CbE )
√

�t r̂′
in,a + �CbF r̂′

in,b

√
�t . (A20)

Using r̂in�t = r̂′
in

√
�t allows us to write

�r̂ = (
1
2�Cb�CT

b + 1
2�Ca�CT

a + �CbE�CT
a

)
r̂�t

+ (�Ca + �CbE )�t r̂in,a + �CbF r̂in,b�t . (A21)

Finally, taking the continuous limit yields the stochastic
equation

d r̂ = (
1
2�Cb�CT

b + 1
2�Ca�CT

a + �CbE�CT
a

)
r̂ dt

+ (�Ca + �CbE )r̂in,adt + �CbF r̂in,bdt . (A22)

For a generic quadratic system-environment interaction, the
evolution of the system operators is governed by a quantum
Langevin equation which takes the form [77]

˙̂r = (
�H + 1

2�C�CT)
r̂ + �Cr̂in , (A23)

where C is the coupling matrix between r̂ and r̂in =
(r̂T

in,a, r̂T
in,b)T and H is the system Hamiltonian matrix.

Note that we can write Eq. (A22) in this form, provided
that the coupling and system Hamiltonian matrices take the
form

C = (Ca + CbE ,CbF ), H = 1
2

(
CbE�CT

a + Ca�
TETCT

b

)
.

(A24)

Thus, when our collisional model of coherent feedback is
applied in the continuous limit in the regime of Gaussian
quantum optics, the evolution of the system is fully charac-
terized by a standard Langevin equation of the form (A23)
with coupling and Hamiltonian matrices given by (A24). This
is the same result as that given in [31] (up to an implicit phase
shift which replaces E with −E ), which was derived in a
different manner. Thus, our collisional model captures fully
the previously established general model of Gaussian coherent
feedback.

APPENDIX B: DETAILED RESULTS AND PROOFS
ON FEEDBACK COOLING

1. Coherent feedback cooling with noisy controller

We prove here that for “noisy” controllers initialized in the
maximally mixed state, coherent feedback cannot provide any
advantage. All of our examples use the model introduced in
the paper. In this model, the system and controller are both
d-dimensional qudits which interact twice through a partial
swap unitary. Inside the coherent feedback loop, we have no
ancillary systems, and the only allowed in-loop operations are
single-qudit unitaries. Throughout these notes, the subscript T
will indicate the total two-qudit, system-controller joint state
and the subscript S will refer to the system alone. Our setup for
cooling with coherent feedback at high temperature unfolds as
follows:

(1) The controller is initialized to the maximally mixed
state ηin = 1

d 1. The system input ρ in
S is the result of the previ-

ous iteration of the process.
(2) The system is subject to noise in the form of a depo-

larizing channel.
(3) The system and controller interact through a partial

swap unitary.
(4) A unitary U is applied to the controller.
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(5) The system and controller interact again through a
partial swap unitary.

The von Neumann entropy of the total input state ρ in
S ⊗ η

is given by

Sin
T = S

(
ρ in

S ⊗ η
) = S

(
ρ in

S

) + S(ηin) . (B1)

After the application of the noise, the system is still in a
separable state and the total entropy is

ST = S
[
E
(
ρ in

S

)] + S(ηin) . (B2)

Since the rest of the protocol can be described by unitary
operations, the global entropy is left unchanged so

Sout
T = ST = S

[
E
(
ρ in

S

)] + S(ηin). (B3)

Using the subadditivity of entropy, we can obtain the follow-
ing bound on the entropy of the system output state:

S(ρout
S ) � Sout

T − S(ηout) = S
[
E
(
ρ in

S

)] − �S(η), (B4)

where �S(η) = S(ηout) − S(ηin) is the change in entropy of
the controller. Since ηin is maximally mixed, the maximum
value of �S(ηin) is 0. This gives us the bound on the entropy
of the output:

S(ρout
S ) � S

[
E
(
ρ in

S

)]
� S

(
ρ in

S

)
. (B5)

The entropy of the system output state can never be lower than
the entropy of the input. Furthermore, the input and output
entropies are only equal when S[E (ρ in

S )] = S(ρ in
S ) which is

only true when ρ in
S is maximally mixed, meaning that the only

steady state is the maximally mixed state.

2. Measurement-based feedback for cooling
with a noisy controller

In this section we consider measurement-based feedback
cooling for a two-qudit setup with an initially maximally
mixed environment/controller η = 1

d 1. The system under-
goes a depolarizing map, before system and controller interact
through a first partial swap. The controller is then measured in
the basis {| j〉} and a unitary Vj is applied to the controller,
depending on the measurement outcome. The system and
controller then interact again through a partial swap, and the
controller is traced over. Throughout the Appendixes, we use
the convention that the partial swap is written Us = √

τ1 −
i
√

1 − τ Ŝ.

a. Unconditional MF

We will now derive the steady state for the case of
measurement-based feedback averaged over all trajectories.
This means that the in-loop measurement and feedback can be
represented as a CP map with elements {Vj | j〉 〈 j|}. In partic-
ular, we will find the steady state for the case where, through
the action of Vj , all measurement outcomes are mapped to the
same state, which we will label |0〉. This corresponds to a CP
map with elements {|0〉 〈 j|}. In the next section we will show
that this is optimal when one filters and conditions the state
on the measurement outcome. We will first derive expressions
for the most general projective MF protocol, and then restrict
to the optimal case. Throughout, we will denote the action of
the initial depolarizing map as ρN = E (ρin) = λρin + 1−λ

d 1.

Notice that ρN has the same eigenvectors as ρin as well as
the same ordering (i.e., the eigenvector corresponding to the
largest eigenvalue of ρin also corresponds to the largest eigen-
value of ρN ).

After the action of the depolarizing map and the first partial
swap, the system and controller are correlated in the following
state:

ρT = τρN ⊗ η + (1 − τ )η ⊗ ρN − i
√

τ
√

1 − τ [S, ρN ⊗ η] ,

(B6)

where S is the swap unitary. After the measurement, and
application of the unitaries {Vj}, the global state is

ρT =
∑

j

p jρ j ⊗ |ψ j〉 〈ψ j | , (B7)

where |ψ j〉 = Vj | j〉 and p j are the probabilities of each out-
come. The (unnormalized) system state for each measurement
outcome is given by

p jρ j = 1

d
τρN + (1 − τ )η(ρN ) j j − i

√
τ
√

1 − τ [| j〉 〈 j| , ρN ] ,

(B8)

where (ρN ) j j = 〈 j| ρN | j〉. We have also used the fact that
TrC[S, A ⊗ B] = [B, A]. After a final interaction through a
partial swap, the controller is traced out, leaving the output
state:

ρout =
∑

i

pi(τρi + (1 − τ ) |ψi〉 〈ψi|

− i
√

τ
√

1 − τ [|ψi〉 〈ψi| , ρi]). (B9)

The optimal protocol, in which all measurement results are
mapped to the |0〉 state through the unitaries Vj , amounts to
setting |ψ j〉 = Vj | j〉 = |0〉 for all j. Using

∑
j p jρ j = τρN +

(1 − τ )η, we find the output state:

ρout = τ 2ρN + τ (1 − τ )η + (1 − τ ) |0〉 〈0|
− iτ

3
2
√

1 − τ [|0〉 〈0| , ρN ] . (B10)

The fact that η = 1
d 1 allows us to write ρN = λρin + (1 −

λ)η. We now assume a steady state, which involves setting
ρin = ρout = ρss. Rearranging for ρss gives

ρss = 1

1 − τ 2λ
([τ 2(1 − λ) + τ (1 − τ )]η + (1 − τ ) |0〉 〈0|

− λiτ
3
2
√

1 − τ [|0〉 〈0| , ρss]) . (B11)

The only solution to this equation is one where ρss is diagonal
in a basis {| j〉} which contains |0〉. To see this, we can act on
the above equation with 〈 j| and |k〉 from the left and right (for
j �= k) and obtain

〈 j| ρss |k〉 = 1

1 − τ 2λ
− λiτ

3
2
√

1 − τ (δ j0 〈0| ρss |k〉

− 〈 j| ρss |0〉 δ0k ) . (B12)

Note that the right-hand side of this equation is only nonzero
when either j or k is equal to zero. For j = 0, k �= 0, we obtain

〈0| ρss |k〉 = 1

1 − τ 2λ
− λiτ

3
2
√

1 − τ (〈0| ρss |k〉) . (B13)
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The only solution to this equation is when 〈0| ρss |k〉 = 0.
Therefore, ρss is diagonal in the basis {| j〉}. This means that
the eigenvalues of ρss are given by 〈 j| ρss | j〉. The eigenvalue
associated with |0〉 is

α0 = 1

1 − τ 2λ

(
τ 2(1 − λ) + τ (1 − τ )

d
+ (1 − τ )

)
. (B14)

The remaining d − 1 eigenvalues are degenerate, each with
value

α j = 1

1 − τ 2λ

(
τ 2(1 − λ) + τ (1 − τ )

d

)
. (B15)

Thus, the steady state under this protocol takes the form

ρS = 1

d

d (1 − τ ) + τ − λτ 2

1 − λτ 2
|0〉 〈0| +

d−1∑
j=1

1

d

τ − λτ 2

1 − λτ 2
| j〉 〈 j| .

(B16)
The linear entropy for this steady state is

SL = 1 −
∑

j

α2
j =

(
1 − 1

d

)
− (τ − 1)2(d − 1)

d (τ 2λ − 1)2 . (B17)

We note that, for states like these with one large eigenvalue
and d − 1 degenerate eigenvalues, both von Neumann and
linear entropies are solely functions of the largest eigenvalue
and are thus equivalent for the purposes of comparison. This
is always the case for qubits, where the linear entropy and
von Neumann entropy are equivalent. Because of this, and in
view of their more compact expressions, we will use the linear
entropy for the remainder of this investigation (though we will
give expressions for the eigenvalues of each state, from which
the von Neumann entropy can easily be calculated).

b. Conditional MF

In this section, we will consider filtered measurement feed-
back, meaning that the measurement result is recorded and
the system’s conditional state evolves stochastically. After
the measurement is performed along with the in-loop unitary
operation, the system and controller are in the joint state
ρ j ⊗ |ψ j〉 〈ψ j | for a measurement result labeled by j (where
ρ j and |ψ j〉 are defined as in the previous section). This is as
opposed to averaged MF, where the system and controller are
in the mixture of states given by (B7). After the second partial
swap and tracing out of the controller, the system output
will be

ρout, j = TrC[Usρ j ⊗ |ψ j〉 〈ψ j |U †
s ] . (B18)

We will now show that, for a ρin which is initially diagonal
in the measurement basis (as would be the case for the max-
imally mixed state, which represents the uncontrolled steady
state of the system, as well as for the unconditional steady
states determined in the previous section), the entropy of this
output is minimized when |ψ j〉 is set to be the dominant
eigenvector of ρin (i.e., the eigenvector associated to its largest
eigenvalue), regardless of the measurement result. Notice also
that the choice of basis for the “atomic” projective measure-
ment (i.e., a measurement that resolves each individual basis
state) is irrelevant, given the unitary invariance of the problem
(here, we are disregarding more general POVMs or adaptive

measurements, which may become the subject of further in-
quiry in the future). If ρin is diagonal in the measurement
basis, the commutator in Eq. (B8) is equal to zero and we can
write

ρ j = 1

p j

(
1

d
τρN + (1 − τ )η(ρN ) j j

)
. (B19)

Note that each ρ j has the same set of eigenvectors in the same
ordering as ρin, so the eigenvector corresponding to the largest
eigenvalue is the same for both ρin and ρ j .

We now make use of the entropy power inequality for the
output of a partial swap gate derived in [68], in the form of the
following Majorization relation:

λ(ρout, j ) ≺ τλ(ρ j ) + (1 − τ )λ(|ψ j〉 〈ψ j |) , (B20)

where we have used λ(ρ) to indicate the spectrum of ρ,
ordered from the largest eigenvalue to the smallest. The right-
and left-hand sides of this relation are equal when |ψ j〉 is
pointing along the direction of the dominant eigenvector of
ρ j , which in turn is the dominant eigenvector of ρin. Thus, to
minimize the conditional output entropy for an input diagonal
in the measurement basis, we must set all |ψ j〉 equal to the
eigenvector corresponding to the largest eigenvalue of ρin.

Let us now also briefly consider some quantitative exam-
ples of the conditional stochastic evolution occurring under
this filtered, measurement-based feedback. This provides in-
sight into the dependence of the optimal cooling process on
the various system parameters. Let us remind that the latter
are the depolarizing strength λ (from complete depolarization
for λ = 0 to the identity channel for λ = 1), the partial swap
angles parametrized by

√
τ and the system dimension d .

Figure 2 shows the evolution of the von Neumann entropy
(with base d logs, such that 1 is always maximum entropy
for all dimensions) for various choices of parameters, always
starting from the maximally mixed state (which corresponds
to the uncontrolled steady state). The unconditional (“unfil-
tered”) steady-state entropies are also reported for comparison
and, as may be seen, always fall within the range of two pos-
sible, typical unconditional values, deviating relatively little
from them, such that the stabilized, unfiltered strategy proves
to be very effective in these instances. Indeed, in all of these
case studies, regardless of the Hilbert space dimension, only
one of the system eigenvalues is different from the other,
accruing probability at the expense of the other eigenvalues,
which remain equal (therefore, any POVM capable of resolv-
ing the dominant eigenvector would also be optimal). When
the dominant eigenvector is detected on the controller branch
of the feedback loop, its proportion in the system branch
decreases, and therefore the measurement is disadvantageous
in terms of cooling the system. At each run of the feedback
loop, this occurs with probability

p0 = τ

d
+ (1 − τ )αλ, (B21)

where αλ = λ αin + (1−λ)
d and αin is the dominant eigenvalue

of the input state. For completeness, let us also report the
values of the largest output eigenvector upon measurement
of the dominant eigenvector in the feedback loop (α0,0) upon
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measurement of another outcome (α0,1), to be contrasted with
the average, unconditional α0 of Eq. (B14):

α0,0 = ταλ

p0d
+ (1 − τ ) , (B22)

α0,1 = τ

(1 − p0)d
[τ dαλ − αλ + (1 − τ ) ] + (1 − τ ) .

(B23)

All of these three functions are monotonically increasing
in λ and decreasing in τ . Therefore, as one should expect,
the asymptotic cooling performance will be more effective
for higher λ, corresponding to less noise, and lower τ ,
corresponding to a larger connectivity between system and
controller, which allows one to swap a substantial part of the
final state with a low-entropy one. Hence, as shown in Fig. 2,
higher connectivities can offset larger noise parameters. Ob-
serve also that higher dimensions, typically, make for larger
spread in the normalized entropy around the unconditional
value. Further, it is worthwhile noticing that the model also al-
lows one to observe that cooling will be achieved in a number
of steps of the order of 1/(1 − τ ): the transmissivity between

controller and system is the parameter that determines the
model’s cooling rate.

3. Coherent feedback for cooling with a clean controller

We will consider a setup identical to the previous section,
except that the environment is initialized to a pure state |0〉 〈0|.
We will restrict to qubits and find the lowest-entropy steady
state achievable through CF which is diagonal in the {|0〉 , |1〉}
basis. We express the in-loop unitary as using the general
decomposition:

U =
(

eiϕ1 cos χ eiϕ2 sin χ

−e−iϕ2 sin χ e−iϕ1 cos χ

)
. (B24)

The steady state which satisfies the condition that it is diago-
nal in the basis containing |0〉 takes the form

ρss = diag(e1, 1 − e1) (B25)

with

e1 = −2τ 2(λ + 1)p2(q + 1) + 2τ {p2[λ(q + 2) + q + 1] − λ} + λ − 2λp2 + 1

λ(4τ {p2[(τ − 1)q + τ − 2] + 1} + 4p2 − 2) − 2
, (B26)

where p = cos χ and q = cos 2ϕ1. The linear entropy for this
state is minimized when χ and ϕ1 are both integer multiples
of π , which is satisfied when the in-loop unitary U is equal to
the identity. In this case the steady state has linear entropy:

SCF = 1

2
− 8τ 2(τ − 1)2

((1 − 2τ )2λ − 1)2
. (B27)

If this CF protocol (“do nothing” in the loop) is applied to
a setup with a system and environment of dimension d , the
steady state will have its largest eigenvalue (with eigenvector
|0〉) equal to

β0 = 4(τ − 1)τ (d + λ − 1) + λ − 1

d ((1 − 2τ )2λ − 1)
. (B28)

The other (d − 1) eigenvalues are

β j = (1 − 2τ )2(λ − 1)

d ((1 − 2τ )2λ − 1)
. (B29)

For dimension d , this steady state will have linear entropy:

SL =
(

1 − 1

d

)
− 16τ 2(τ − 1)2(d − 1)

d ((1 − 2τ )2λ − 1)2
, (B30)

which is always less than the linear entropy of the maximally
mixed state. Note that when τ = 1

2 , β0 = 1 and β j �=0 = 0 and
the steady state is pure. This is because, when τ = 1

2 , the
partial swap is the square root of the full swap, so applying
it twice enacts a full swap, replacing the system mode with
the pure environmental mode.

4. Measurement-based feedback for cooling
with a clean controller

We will now look at the effect of our averaged MF proto-
col when the environment is not maximally mixed. We will
consider a qubit system with a generic environmental input
state η which will have an arbitrary temperature and apply the
same MF protocol as in the high-temperature case. After one
iteration of our MF protocol, the output state is

ρout = τ 2ρN + τ (1 − τ )η + (1 − τ ) |0〉 〈0|
− iτ

3
2
√

1 − τ [|0〉 〈0| , ρN ] . (B31)

Previously, we assumed that η was maximally mixed, but it
need not be. We will restrict to qubits and choose |0〉 to point
along the direction of the dominant eigenvector of η, so we
can write η = η0 |0〉 〈0| + (1 − η0) |1〉 〈1|. Solving for steady
state gives

ρss = 1

1 − τ 2λ

(
τ 2(1 − λ)

1

d
1 + [τ (1 − τ )η0

+ (1 − τ )] |0〉 〈0| + τ (1 − τ )(1 − η0) |1〉 〈1| (B32)

− iλτ
3
2
√

1 − τ [|0〉 〈0| , ρss]

)
. (B33)

As before, this state is diagonal in the basis {| j〉}. It has
eigenvalues

α0 = 1

1 − τ 2λ

(
τ 2(1 − λ)

1

2
+ τ (1 − τ )η0 + (1 − τ )

)
,

(B34)

α1 = 1

1 − τ 2λ

(
τ 2(1 − λ)

1

2
+ τ (1 − τ )(1 − η0)

)
. (B35)
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The linear entropy of this state is

SMF = 1

2
− (τ − 1)2[τ (2η0 − 1) + 1]2

2(τ 2λ − 1)2 . (B36)

A maximally mixed environment corresponds to η0 = 1
2 ,

which recovers the expression from earlier. For a pure en-
vironment, we set η0 = 1 and we obtain the following
expression:

SMF = 1

2
− (τ 2 − 1)2

2(τ 2λ − 1)2
. (B37)

We can compare this with the performance of CF in the same
setup, as quantified by Eq. (B27). Comparing Eq. (B37) with
(B27), we find that SMF < SCF for τ < 1

3 and SMF > SCF for
τ > 1

3 .
We will now prove that, even with a pure environment,

no MF protocol can prepare a pure steady state when τ = 1
2 .

Recall that, for τ = 1
2 and a pure environment CF produces a

pure steady state, so this is an interesting point of comparison.
Again, we will restrict our investigation to qubits. As we have
seen before, after projective measurement and the action of a
unitary, the system and controller are in a joint state:

ρT =
∑

j

p jρ j ⊗ |ψ j〉 〈ψ j | , (B38)

where

ρ j = 1

p j

(
1

2
τρN + (1 − τ )η(ρN ) j j − i

√
τ
√

1 − τ [| j〉 〈 j| , ρN ]

)
.

(B39)

First, we will show that ρ j cannot be pure. We do this by
writing ρ j in the basis containing | j〉 and restrict to the case
of interest, when τ = 1

2 . This gives us

ρ
(1)
S = 1

2

(
1 + ρ00 ρ01(1 + i)

ρ10(1 − i) 1 − ρ00

)
, (B40)

where ρi j are the matrix elements of ρN . This matrix has
eigenvalues

λ+/− = 1
2

(
1 ±

√
ρ2

00 + 2ρ01ρ10
)
� 0 . (B41)

If this state is pure, then one of its eigenvalues will be equal to
0, and the other equal to 1. This requires

√
ρ2

00 + 2ρ01ρ10 = 1.
Since both eigenvalues must be greater than or equal zero,
ρ2

00 + 2ρ01ρ10 � 1. The equality is reached only in the case
where ρ00 = 1, which could only be the case if ρN was
pure. However, ρN cannot be pure since it has been subject
to the depolarizing map. Even if ρin was pure, ρN would not
be pure for any non-negligible value of the noise parameter λ.
Thus, we can conclude that the ρ j’s are not pure.

After the second system-controller interaction, the con-
troller is traced out and the output state is given by

ρout =
∑

i

pi(τρi + (1 − τ ) |ψi〉 〈ψi|

− i
√

τ
√

1 − τ [|ψi〉 〈ψi| , ρi]) =
∑

i

piσi. (B42)

By applying the same argument that we used to prove that ρ j

could not be pure, we can prove that σ j also cannot be pure.
Thus, since ρout is a mixture of mixed states, it cannot be
pure. This means that no averaged MF protocol can achieve
a pure steady state for a partial swap interaction when the
coupling is characterized by τ = 1

2 .

5. Cooling comparison at intermediate noise

We will now apply our CF protocol from earlier, where
the in-loop unitary is the identity, to a setup with a nonzero
temperature environment with state η = η0 |0〉 〈0| + (1 −
η0) |1〉 〈1|. This leads to a steady state which is diagonal in the
{|0〉 , |1〉} basis with the following eigenvalue corresponding
to the |0〉 eigenvector:

β0 = 4(τ − 1)τ (2η0 + λ − 1) + λ − 1

2(1 − 2τ )2λ − 2
. (B43)

This steady state has a linear entropy

SCF = 1

2
− 8τ 2(τ − 1)2(1 − 2η0)2

((1 − 2τ )2λ − 1)2
. (B44)

We will now compare the performance MF and CF for inter-
mediate environmental temperatures by comparing Eqs. (B36)
and (B44). Equation (B36) gives the steady-state system
entropy when the MF protocol involves measuring the an-
cilla and, regardless of the outcome, preparing it in the
same state before the system and environment interact for
the second time. This equation assumed that, after measure-
ment, the controller is prepared in the state |0〉 〈0|. Note
that the protocol allows for some flexibility as the con-
troller could be prepared in any state after measurement.
It is optimal to use MF to prepare the controller in the
state corresponding to the largest eigenvalue of the envi-
ronmental input. For η0 < 1

2 , this corresponds to |0〉 〈0| and
for η0 > 1

2 , this corresponds to |1〉 〈1|. For our compari-
son, we assume that the optimal MF protocol is used. The
steady-state entropy for these protocols, along with steady-
state CF entropy given by Eq. (B44), is plotted in Fig. 5
for different environmental states, as parametrized by η0.
We find that for the setup with

√
τ = 0.5, MF outper-

forms CF for all environmental temperatures. For a weaker
system-environment interaction, characterized by

√
τ = 0.9

and noise parameter λ = 0.5, we find that MF outperforms
CF for high-temperature environments with 0.357 < η0 <

0.764, but CF outperforms MF at low temperatures char-
acterized by η0 < 0.357 and η0 > 0.764. Broadly, we can
make the following observations: For low-temperature en-
vironments and weak couplings, the act of measurement
disturbs the coherent process which allows for low-entropy
environmental states to be transferred to the system, meaning
that MF is inferior to CF. However, with strong couplings
and noisy environments, the purification from the act of mea-
surement compensates for this and leads MF to be superior
to CF.
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(a) (b)

FIG. 5. (a) Shows the steady-state entropy against the largest eigenvalue of the environmental state for MF and CF setups, as given by
Eqs. (B36) and (B44) where

√
τ = 0.5 and λ = 0.25. (b) Shows the same expressions for setups where

√
τ = 0.9 and λ = 0.5.

APPENDIX C: PROTECTION OF AN EXCITED STATE
FROM AMPLITUDE DAMPING

1. Coherent feedback for protecting an excited state
from amplitude damping

We will now investigate the ability of CF to protect a
qubit from amplitude damping. The qubit will be subject to
amplitude damping channel, after which the CF loop will be
applied. We will assume that the highest-energy state is the
|1〉 state, so that amplitude damping channel is given by Kraus
operators

E0 = √
γ |0〉 〈1| , E1 =

√
1 − γ |1〉 〈1| + |0〉 〈0| . (C1)

This channel will be applied to the system before the CF loop
is applied to attempt to counter it. Using our model again, the
two system-controller interactions will be partial swaps. We
will restrict the in-loop unitaries to rotations of the form

U =
(

cos χ sin χ

− sin χ cos χ

)
. (C2)

We will assume that the controller is “noisy” and initialized
in the maximally mixed state. Our figure of merit will be the
steady-state occupation of the |1〉 state. We did not perform an
analytical optimization in this case, but rather investigated the
problem, and found that the optimal CF protocol depends on
the partial swap strength, characterized by τ . For τ < 1

2 , the
optimal protocol involves setting χ = π

2 and for τ > 1
2 , the

optimal protocol involves setting χ = 0. Plots of the steady-
state occupation of the |1〉 state, against χ , for different values
of the τ , are plotted in Fig. 3 of the main text.

From Fig. 3(a), showing the performance of the setup with
weak damping characterized by γ = 0.2, and Fig. 3(b), show-
ing the performance of the same setup with stronger damping,
characterized by γ = 0.8, one observes that, for weak system-
controller interactions (where τ > 1

2 ), increasing the damping
noise strength decreases the steady-state occupation of the ex-
cited state, as expected. However, for strong system-controller
interactions (where τ < 1

2 ), the optimal performance (when
χ = π

2 ) is actually improved by stronger damping. This is
because the action of the in-loop π

2 rotation is more effective
at populating the |1〉 state when more of the state is initially
prepared in the |0〉 state. In this sense, CF allows for the puri-
fying effect of the amplitude damping map to be harnessed for
the purpose of increasing the excited-state population. When
χ = 0 and the in-loop unitary is the identity, the steady-state

occupation of the |1〉 state is

ρ
χ=0
11 = 2τ (1 − τ )

4(τ − 1)(γ − 1)τ + γ
, (C3)

which is a decreasing function of γ for τ > 1
2 . Conversely,

when χ = π
2 , the steady-state occupation of the |1〉 state is

ρ
χ= π

2
11 = 1 − τ

2(γ − 1)τ − γ + 2
, (C4)

which is an increasing function of γ for τ < 1
2 .

2. Measurement-based feedback for protecting
an excited state from amplitude damping

We will compare this to an intuitive MF protocol which
measures the controller in the {|1〉 , |0〉} basis, does nothing if
the result is |1〉, and applies an in-loop rotation with χ = π

2 if
the result is |0〉, resulting in a controller which is always pre-
pared in the |1〉 state postmeasurement. This protocol results
in a steady-state occupation of the |1〉 state:

ρMF
11 = 2 − τ 2 − τ

2(γ − 1)τ 2 + 2
. (C5)

This expression is greater than Eq. (C4) for all values of τ and
γ , so we can say that MF outperforms CF in the regime of τ <
1
2 . However, for some setups with τ > 1

2 , Eq. (C5) is slightly
lower than (C3). In particular, (C3) is greater than (C5) when

√
τ >

1

2

√
−7γ + √

γ (17γ − 24) + 16 + 4

2 − 2γ
. (C6)

In this regime, CF will outperform MF, though numerical
investigations suggest that the advantage is small. Conversely,
in the regime where MF outperforms CF, the advantage tends
to be larger. Figure 4 in the main text shows the occupa-
tion ρ11 of the |1〉 state, against N , the number of iterations
of the feedback loop. Both MF and CF protocols described
above are presented. In one setup, MF outperforms yields a
higher steady-state occupation of the the excited state, and in
the other, CF achieves a higher steady-state occupation. The
unconditional (averaged) MF trajectory is shown, as well as
50 conditional trajectories for each setup.
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APPENDIX D: DETAILED RESULTS AND PROOFS
ON FEEDBACK-ASSISTED BIT FLIP

1. Coherent feedback assisted bit flip

The input for the system will be a pure state given by

|ψ〉 = cos
χ

2
|0〉 + eiφ sin

χ

2
|1〉 . (D1)

The environment is initialized to a state of the form η =
η0 |0〉 〈0| + (1 − η0) |1〉 〈1|. The system and environment in-
teract though a partial swap unitary given by Us = √

τ1 −
i
√

1 − τ Ŝ. After this interaction, a σx unitary is performed on
the controller, before the system and controller interact again
through Us and the controller is traced out. For such a setup,
the final output state is ρout

S , which does not depend on the
value of η0 and takes the form

ρout = 1

2

(
(2τ − 1) cos(χ ) + 1 e−iφ sin(χ )[τ + (1 − τ )e2iφ]

e−iφ sin(χ )[(1 − τ ) + τe2iφ] (1 − 2τ ) cos(χ ) + 1

)
. (D2)

The desired final output state is ρX = |ψX 〉 〈ψX | where

|ψX 〉 = σx |ψ〉 = cos
χ

2
|1〉 + eiφ sin

χ

2
|0〉 . (D3)

The fidelity of the output state to the desired state is a function
of χ and φ and is given by

FCF(χ, φ) = 〈
ψX | ρout

S |ψX
〉 = 1

4 {τ [cos(2φ)

− 2 cos(2χ ) cos2(φ)] − 3τ + 4}. (D4)

As our figure of merit, we take this ouput fidelity, averaged
over the Haar measure for the input states, given by

ACF = 1

4π

∫
FCF(χ, φ) sin (χ )dχ dφ = 1 − 2

3
τ , (D5)

where χ is integrated from 0 to π and φ is integrated from 0
to 2π .

2. Measurement-based feedback for performing a bit flip

a. Projective measurements

Our general projective MF protocol is as follows. The
system is initialized in the pure state |ψ〉 given above, and
the controller initialized in the state η = η0 |0〉 〈0| + (1 −
η0) |1〉 〈1|. They interact through Us. Then, a measurement
is made on the controller. If the result is |0〉, the unitary U
is applied to the controller and if the result is |1〉, a unitary V is
applied instead. This process is equivalent to the POVM with
elements {U |0〉 〈0| ,V |1〉 〈1|} being applied to the controller.
After this, the system and controller interact again through
Us. The output system state ρout

S,MF is too lengthy to print here,
as is the fidelity FMF = 〈ψX | ρout

S,MF |ψX 〉. However, after the
Haar measure average is taken, we obtain the more reasonable
expression

AMF = 1

4π

∫
FMF(χ, φ) sin (χ )dχ dφ

= 1

12
[6 − 2τ 2 − (1 − τ )2 cos 2θu − (1 − τ )2 cos 2θv],

(D6)

where we have used the decomposition of 2 × 2 unitary
matrices to write magnitudes of the matrix elements ujk

and v jk as

|u00| = cos θu, |u10| = sin θu, |v11| = cos θv,

|v01| = sin θv. (D7)

We find that the Haar measure averaged fidelity is maximized
when θu = θv = π

2 , meaning that both U and V are equal to σx

(up to a phase which does not affect the outcome). Plugging
these optimal unitaries gives the maximum average output
fidelity

AMF = 2
3 − 1

3τ. (D8)

It is straightforward to see that this expression is lower than
ACF for all values of θ , except when τ = 1 and there is no
feedback present.

b. General POVMs

In the previous section, we considered MF using projec-
tive measurements in loop, but we can also consider more
general POVMs. Here, we will consider the action of general
POVMs in-between the two system-environment partial swap
interactions. The polar decomposition can be used to write
the Kraus operators of any POVM, represented with Kj as
Kj = UjPj , where Uj is a unitary matrix and Pj is a positive-
semidefinite matrix. Note that, to define a POVM, we must
have

∑
j K†

j Kj = 1 which implies
∑

k P†
j Pj = 1. Thus, we

can view any general POVM as the action of measurement
characterized by {Pj}, followed by the action of a unitary Uj

which depends on the measurement outcome (this observation
was made in [6]). Since, in MF, we are already allowing for the
action of a unitary depending on the measurement outcome,
we can absorb Uj into these feedback unitaries and consider
the measurement process as entirely characterized by {Pj}.

Furthermore, since our figure of merit is averaged over the
Haar measure, which is unitarily invariant, we can assume
that Pj are diagonal in the {|0〉 , |1〉} basis. Therefore, the
most general qubit POVM can be described using the Kraus
operators:

P0 = a |0〉 〈0| + b |1〉 〈1| ,
P1 =

√
1 − a2 |0〉 〈0| +

√
1 − b2 |1〉 〈1| (D9)

for 0 � a � 1 and 0 � b � 1. Note that when a = b, both
elements of the POVM are proportional to the identity and
correspond to no measurements being performed. When
a = 1 and b = 0 the POVM corresponds to a projective mea-
surement. Thus, the difference between a and b acts as a
measure of the strength of the measurement.

We will absorb the action of Uj into U and V , so that the en-
tire process is captured by a POVM with elements {UP0,V P1}.
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Again, by using the decomposition of 2 × 2 unitary matrices,
we come to the optimal protocol, which is when U = V = σx.
Applying this optimal protocol yields the following expres-
sion for the Haar-measure averaged fidelity:

AMF = 1
3 [

√
1 − a2

√
1 − b2(1 − τ ) + ab(1 − τ ) + 2 − τ ].

(D10)

This expression yields the expression previously obtained
for projective measurement feedback when a = 1 and b = 0.
When a = b = 1

2 , we have P0 = P1 = 1
21, which corresponds

to no measurement being performed (or “infinitely weak”
measurement) and only the action of the unitaries. In this case,
(D10) yields the expression previously obtained for coherent
feedback. It is in this sense CF can be viewed as MF in the
limit of infinitely weak measurements.

It is straightforward to show that the output fidelity (D10)
is maximized when a = b, thus proving that no measurement-
based feedback process can outperform the coherent feedback
protocol in this task. However, for performing a bit flip,
POVMs corresponding to weaker measurements (where the
value of a is closer to b) can achieve better performance than
stronger measurements, as they disturb the input state less.

APPENDIX E: OPERATOR CONTROL
IN THE LIMIT OF WEAK INTERACTIONS

We have looked at comparing MF and CF with a partial
swap coupling

U θ
s = cos θ1 − i sin θ Ŝ, (E1)

where Ŝ is the full swap. When θ = 0, both MF and CF are
trivially the same, as the system and controller do not interact
at all. We will now investigate the effect of MF and CF in the
limit of an infinitesimal interaction angle θ −→ dθ .

Expanding Us to lowest order in θ ,

lim
θ−→dθ

U θ
s = 1 − i dθ Ŝ + o[(dθ )2]. (E2)

Then, to first order we have

UsUT Us = UT − i dθ{S,UT } (E3)

for any operator UT . The effect of one iteration of CF is

ρ −→ TrC[UsUT Usρ ⊗ ηU †
s U †

T U †
s ] , (E4)

where UT = 1 ⊗ U is a unitary which acts only on the
controller. Expanding Us to first order in θ and discarding
higher-order terms gives

TrC[UT ρ ⊗ ηU †
T − idθ{S,UT }ρ ⊗ ηU †

T

+ idθUT ρ ⊗ η{S†,U †
T }], . (E5)

Using the fact that TrC (SA ⊗ B = BA) and the fact that the
partial trace is cyclically invariant over the subspace which is
being traced over, we obtain

TrC[{S,UT }ρ ⊗ ηU †
T ] = UηU †ρ + ηρ , (E6)

TrC[UT ρ ⊗ η{S†,U †
T }] = ρUηU † + ρη . (E7)

Combining these, we obtain the transformation

ρS −→ ρS + i[ρS,UηU †]dθ + i[ρS, η]dθ . (E8)

To represent more general in-loop operations, we can replace
U with a Kraus operator Kj acting on the controller. Due to the
linearity of the trace, we can sum over these Kraus operators
and in this way we obtain the expression

ρS −→ ρS + i[ρS,�(η)]dθ + i[ρS, η]dθ, (E9)

where �(η) = ∑
j KjηK†

j . This expression can be used to
describe measurement-based feedback when Kj are used to
describe the POVM operators, followed by the action of a
unitary.
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