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This paper studies how capacity collaboration can benefit two competing firms. We consider a two-stage

model where capacity decisions are made in the first stage when there are significant uncertainties about

market conditions, and then production decisions are made in the second stage after most of these uncertain-

ties are resolved. We vary the degree of collaboration between the two firms in their capacity and production

decisions, examining multiple models and comparing the outcomes. We find that a firm can benefit from

collaboration even with its competitor. Interestingly, the firms do not have to make production decisions

jointly to realize the benefits of collaboration. Additionally, while collaborative capacity investment proves

beneficial, collaborating on production with existing capacity can often yield greater benefits. We find that

the advantages of collaboration are most pronounced when competition intensifies, demand fluctuates sig-

nificantly, and investment costs are high.
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1. Introduction

Most capacity decisions entail major resource commitments and can substantially change the firm’s

asset structure. Capacity decisions are often hard to reverse, and they are made under signifi-

cant demand uncertainty. Several approaches are used to mitigate risks associated with capacity

decisions, including flexible capacity (Bish and Wang 2004) and delayed differentiation (Aviv and

Federgruen 2001). Another option that is becoming more common is for firms to jointly invest

in capacity and/or coordinate the use of it. Interestingly, even competing firms coordinate. One

approach is to establish a joint venture where firms contribute equity to build capacity, agree on how

to utilize the capacity, and share the revenue. In fact, except for rare instances, such coordination

and joint investment are approved by the Federal Trade Commission (FTC) and are not considered

anti-trust violations. For instance, Toyota’s Corolla crossover and Mazda’s new CX-50 crossover

are produced in the same plant in Huntsville, Alabama (Greimel 2021). This is a joint venture

* corresponding author

1
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between Toyota and Mazda, whose similar models compete in the end-user market. While they use

different lines for the two brands, the two lines share some common capacities, mainly stamping,

painting, steel sourcing, and quality inspection. They are even considering mixing production of

their similar car models in the same line in the future.

Of course, firms can collaborate and share capacity without a joint venture. In the automotive

industry, Toyota and Fuji Heavy Industries agreed to share their manufacturing facilities (Toyota

2006). In the airline industry, code-sharing allows different carriers to share flight capacity (Wass-

mer et al. 2010, Chun et al. 2012). The two dominant newspapers in the Detroit market, Detroit

Free Press and Detroit News, have an operating agreement to print in the same facility (Busterna

and Picard 1993), although they put out separate newspapers every weekday. In 2012, Mazda used

its own capacity to build a Toyota sub-compact vehicle based on a Mazda 2 platform at a plant in

Salamanca, Mexico (Automotive Logistics 2012). It was the first time that Mazda built a vehicle

for its rival. Despite the possibility that collaboration can be seen as an act of collusion, these joint

ventures or collaborations between competing firms are not uncommon.

As a further example, in 2018, both U.S. and Korean governments approved a joint venture

between Delta Air Lines and Korean Air for transpacific partnerships. This agreement combines

the networks via fully reciprocal code-sharing between U.S. and Asia, and it implements joint sales

and marketing initiatives.1 Furthermore, Delta and Korean Air co-located to the new terminal at

Incheon International Airport and plan to do one-roof warehousing.2 There are other examples of

sharing transportation and logistics capacities as well. Nestlé, the world’s largest food manufac-

turer, and Pladis, the largest biscuit and snack food manufacturer in the UK, started to share truck

capacity in 2009. This collaboration is estimated to reduce costs by £300,000 a year.3 Another

example can be found in retail industry. Shekar Natarajan, the chief supply chain officer at retailer

American Eagle Outfitters, began building a logistics platform that other retailers including rivals

can share in 2018.4 The goal of the platform is to reduce shipping time and costs by consoli-

dating packages. Over 100 partners have signed up to use the platform so far, including Kohl’s,

Steve Madden. Another example can be observed in the forest and paper products sector. Three

companies, StoraEnso, Norske Skog, and UPM, consolidated the transportation of their inbound

1 https://news.delta.com/delta-and-korean-air-launch-world-class-joint-venture-partnership

2 http://asiacargobuzz.com/2018/07/17/delta-korean-air-press-their-transpacific-belly-cooperation-into-action/

3 https://logistar-project.eu/wp-content/uploads/2020/02/LOGISTAR D7.1 Definition of use cases and validation plan v1.0.pdf

4 https://www.usnews.com/news/best-states/pennsylvania/articles/2022-09-12/american-eagle-exec-works-to-
modernize-the-supply-chain
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materials from Sweden and Finland with a single, dedicated, short-sea vessel.5 This collaboration

allows them to reduce transportation and handling costs, and at the same time, to improve service

through more frequent and reliable replenishments.

In this paper, we study capacity collaboration between two firms, including competitors. We

consider a two-stage model where capacity decisions are made when there are significant uncertain-

ties about market conditions (first stage), and production decisions are made after most of these

uncertainties are resolved (second stage). To capture different collaboration scenarios, we consider

several models that differ in the extent to which the firms collaborate in making capacity and/or

production decisions.

Although many examples of capacity collaboration exist, it is unclear whether a firm benefits

from such collaboration, especially when it collaborates with a competitor. Capacity collaboration

allows firms to reduce investment costs. But doing so with a competing firm can be harmful

because it gives the competing firm easy access to more capacity. Furthermore, as the previous

examples show, collaboration scenarios vary. Firms build and operate capacity together, or firms

build capacity together and operate autonomously, or firms just share the existing capacity. We

are interested in how much each of these collaboration scenarios improves firms’ profits and when

simple collaboration scenarios (such as sharing existing capacities but not collaborating on building

capacity) are as effective as more complicated ones.

Several research questions are central to this paper: (1) Can a firm benefit from collaborating

with a competitor? (2) For a given collaboration scenario, what is the total capacity and how is it

allocated? (3) How do firms gain from collaboration? Is most of the gain from deciding capacity

together or from utilizing capacity together to fulfill demands? (4) How do the outcomes and gains

from collaboration change in business parameters such as variability, cost, etc.?

We find that a firm can considerably benefit from collaboration even with a competitor. If the

firms collaborate on both capacity and production decisions, we show that there is a mutually

beneficial agreement under which the firms select the centrally optimal decisions. This supports the

case for a joint venture. We also find that most of the benefits of collaboration can be captured even

when the two firms compete in the production stage as long as they build the capacity together

and trade their allocations after they observe the demand signals. However, efficiency is lost if the

firms cannot collaborate in both stages. We find that if the firms can collaborate either only in

the capacity investment stage or only in the production stage, collaboration during the production

stage provides more benefits, except when demands are extremely predictable.

5 https://www.supplychainbrain.com/articles/14531-time-and-money-advantages-of-logistics-clusters



Ahn, Çetinkaya, Duenyas, and Zhang: Capacity sharing
4 © 0000

We find that when the firms compete in the production stage, but can trade their capacity after

they observe the demand signals, the total capacity is smaller than the capacity of a centralized

firm. We also find that the total capacity when the firms compete in both stages might end up being

smaller than the total capacity when the firms compete in capacity investment and collaborate

in production. These are surprising results because competition typically leads to larger capacity

than centralization in most existing literature, including Yang and Schrage (2009).

2. Literature Review

Several papers study capacity sharing decisions for two or more products from the perspective of

single or multiple firms. However, the substitution effects (competition) among products are not

considered. Wu et al. (2013) study the setting where the firm potentially shares capacity with a

supplier not competing in the end-product market. Yu et al. (2015) analyze the scenario where

multiple non-competing firms can invest in a shared facility that is modeled as a queuing system

with finite service rates (first come, first served). They find that capacity sharing might not be

beneficial when firms have heterogeneous work contents and service variabilities. With a view

toward maximizing the service level, Jiang et al. (2022) explore how to allocate a shared capacity to

fulfill customer demands with individual service levels. Khanjari et al. (2022) focus on the supplier’s

problems of whether to allow buyers to transfer unused capacity to other buyers and how much

to charge for the transfer. They allow the demand faced by buyers to be dependent, but they do

not model competition among buyers. Similarly, Van Mieghem (1998) and Roels and Tang (2017)

model the capacity allocation problem between two firms with non-competing product lines. Roels

and Tang (2017) find that ex-post transfer payment contracts might make one firm worse off. Yang

et al. (2021) build a multilocation newsvendor model with multiple retail stores owned by a central

planner. In one of the considered scenarios, each retail store decides the order quantity for their own

store, whereas their inventories are pooled. The product substitution effects are not modeled. In a

cooperative inventory transshipment setting, Anupindi et al. (2001) and Granot and Sosic (2003)

consider a model where multiple retailers of a common product can transfer inventory after demand

is realized. Van Mieghem (1999) studies a model with a manufacturer and a subcontractor. In this

model, each firm separately decides on its capacity ex ante but has an option to trade capacity ex

post. He shows that the firms can reach a centrally optimal solution only when the contract terms

are contingent on the demand realizations. Our paper’s key difference from this group of literature

is that we consider the potential substitution effect (competition) between products of two firms

seeking collaboration. The demand in our model is endogeneously determined and affected by the

other player’s decision.
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Several papers use cooperative game or bargaining theory to study capacity sharing. Hu et al.

(2013) use bargaining theory to study the outcome of negotiated proration rates between airlines

for interline and code-share flights. Slikker et al. (2005) use cooperative games to study inventory

centralization with coordinated ex-ante orders and ex-post allocation among retailers. Other papers

studying inventory centralization include Hanany and Gerchak (2008), Ozen et al. (2008) and Chen

and Zhang (2009). Plambeck and Taylor (2005) study a model of two original equipment manufac-

turers (OEMs) that collaborate on capacity and decide investment levels in demand-stimulating

innovations. They characterize the effects of collaboration structures on equilibrium outcomes.

Nishizaki et al. (2022) consider the setting where multiple manufacturers individually determine the

production levels before demand realization. Each manufacturer faces independent demand. After

the demands are realized, manufacturers jointly produce the products using pooled resources, and

surplus products are transshipped to manufacturers with residual demands. All of these papers,

however, assume that the demand of one product is independent of demand for the others. We

consider a model where demands can be dependent and endogenous.

Another stream of literature studies capacity allocation with competing firms or substitutable

products. None of the papers in the area, however, considers the problem with a cooperative

solution in which the firms share the capacity to maximize the total profit, making the outcome

closer to the centralized case. Qi et al. (2015) study the capacity investment decisions of two

competing firms in the face of contractual restrictions that govern the capacity use. They model

the problem as a Cournot quantity competition game, in which demand is endogeneously affected

by the other firm’s production quantity. In a multi-product competition setting, Caldieraro (2016)

finds that strategic production outsourcing can occur between an entrant and an incumbent selling

differentiated products. He shows that the firms might prefer high transfer prices to mitigate price

competition. Guo and Wu (2018) study the capacity sharing problem between two firms that

engage in price competition. Each firm has some fixed demand from loyal buyers and seeks to

undercut its rival in competing for the non-loyal buyers. They consider a linear transfer price for

capacity sharing and model the problem as a price-setting game. They show that capacity sharing

softens price competition. Assuming independent and exogeneously given demand distributions of

two firms, Kemahlıoğlu-Ziya (2015) considers the contract between two firms (selling the same

product or substitutable products) with a manufacturer for capacity reservation and wholesale

prices. After demand realization, the two firms can renegotiate their contract, agreeing to use

either more or less than the reserved capacity. She finds that a firm’s post-renegotiation profit can

be either increasing or decreasing in its or its partner’s demand variances. None of these papers
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considers a cooperative solution to the problem in which the firms share the capacity to maximize

a total profit. In contrast, our paper not only considers the case where the two firms compete, but

also analyzes how competition incentivizes (or discourages) capacity or production collaboration

to maximize a joint profit. We propose a Nash bargaining solution for cooperative capacity and

production planning decisions where two firms’ demands are endogenously affected by each other.

We model the outcome of collaboration between two firms using a bargaining game. Bargain-

ing has been extensively studied in economics literature and applied to model the outcomes of

negotiations on wage settlement between unions and firms, price decisions between retailers and

consumers, and terms of mergers and acquisitions (see Muthoo (1999) for an extensive review).

To characterize the outcome of a bargaining game, we use the Nash bargaining solution (NBS).

The NBS establishes that the equilibrium outcome maximizes the product of the firms’ surpluses

net of their disagreement payoffs (Nash 1950). Although the NBS does not directly specify the

bargaining process, the outcomes of several bargaining processes (or situations) can be modeled

as variants of the NBS, including alternating offers (Rubinstein 1982). Furthermore, a number of

extensions of Rubinstein’s model, such as the possibility of negotiation breakdown or presence of

inside or outside options, lead to outcomes that are slight variations of the NBS outcome (Muthoo

1999). Significant experimental evidence indicates that the NBS is successful in predicting the

outcomes of various bargaining situations (Roth 1995). A number of papers in OM literature use

the NBS to model bargaining between two firms: Van Mieghem (1999), Chod and Rudi (2006),

Plambeck and Taylor (2005), Nagarajan and Bassok (2008), Kostamis and Duenyas (2009), Kuo

et al. (2011), Davis and Hyndman (2021), Melkonyan et al. (2017), Grennan (2014) etc. A compre-

hensive review of cooperative game theory in OM literature can be found in Nagarajan and Sosic

(2008), Fiestras-Janeiro et al. (2011).

The remainder of this paper evolves as follows. In Section 2, we introduce the model, notation,

and preliminaries. In Section 3, we present the analysis and results, starting with the production

subgame, followed by the capacity investment decision. We carry out a computational study to

gain further insights, which we present in Section 4. Section 5 provides future research directions

and concluding remarks.

3. Model, Notation, and Preliminaries

We consider two firms, each producing a single product, engaging in competition and/or collabora-

tion over two stages. In the first stage, firms build capacity before demand information is known. In

the second stage, firms observe the demand signals and then determine the production quantities.
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Scenario Capacity Decision Production Decision
Nn no collaboration (N) no collaboration (n)
Nc no collaboration (N) collaboration (c)
Cn collaboration (C) no collaboration (n)
Cc collaboration (C) collaboration (c)

Monopoly centralized centralized

Table 1 Capacity and production decisions under each scenario.

We assume that the two firms either compete or collaborate in either or both of the two stages. If

they compete, each firm chooses its decisions (of capacity investment or production) to maximize

its own payoff. If they collaborate, the firms make decisions jointly and negotiate over the division

of the total payoff. Along with the benchmark scenario of a single centralized firm, four scenarios

represent a varying degree of collaboration, as summarized in Table 1.

We will separately analyze each of the four scenarios, along with the centralized benchmark sce-

nario. We aim to analyze the benefit that firms get from collaborating on joint capacity investments

and/or using the capacity. Depending on the collaboration scenario, firms invest in capacity—

together (C) or separately (N)—in the first stage. Let c be the capacity building cost per unit. The

analysis for the case of different capacity costs in a centralized firm results in a degenerate outcome

where the entire capacity is built where the cost is lowest. Hence, we do not consider this case.

We denote Ki as the capacity endowment of firm i, for which firm i holds the ownership rights.

If there is no collaboration in the subsequent production stage, Ki is the capacity level that firm

i can use for production. If the firms collaborate in the production stage, they can negotiate over

the use of capacity so that a firm can produce beyond its initial endowment.

In the second stage, the firms observe the demand signals. Let (Θ1,Θ2) be random variables

that represent the demand information and θi be the realization of Θi, i= 1,2. We assume that

Θi has mean µi, standard deviation σi, marginal density function fi(·), i= 1,2, and joint density

function f(·, ·). The observed demand information, (θ1, θ2), and the firms’ capacity endowments,

(K1,K2), define the production subgame ω := (K1,K2, θ1, θ2). Let Ω denote the set of all subgames

with given capacity endowments: Ω := {(K1,K2,Θ1,Θ2)}.

In a given production subgame ω ∈ Ω, firms decide the production quantities
(
q1(ω), q2(ω)

)
.

If the firms do not collaborate in the production stage (scenarios Cn or Nn), each firm can only

produce up to its initial endowment Ki. On the other hand, if the firms collaborate during the

production stage (scenarios Cc and Nc), they jointly choose the production quantities based on

the demand signals. We allow the two products to be (partially) substitutable. Hence, the price

for product i is given as a function of quantities: pi

(
q1(ω), q2(ω), ω

)
= θi − biqi(ω)− b̂qj(ω), i, j =
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1,2, i ̸= j. We assume that bi ≥ b̂≥ 0. In other words, a product’s own quantity is more influential

on its price than the other product’s quantity. In addition, note from the inverse demand function

that, ceteris paribus, the price for product i increases in θi (i.e., the demand signal becomes more

favorable for firm i). This inverse demand function delivers a reasonable representation of reality,

as it arises from a choice model wherein a consumer maximizes a quadratic and concave utility

function (Singh and Vives 1984). Essentially, we are modeling firms competing in quantity. This

demand model has been used in several papers, including Chod and Rudi (2005), Zhou and Zhu

(2010), and Bish and Suwandechochai (2010). To avoid trivial outcomes, we assume that bi > 0

and µi >
b̂

2bj
µj + c for i, j = 1,2 and i ̸= j.

If the firms collaborate in the production stage, a transfer payment that allocates revenues in a

mutually agreeable way can occur between the firms. Let Γ(ω) be the net transfer payment from

firm 1 to firm 2 in a subgame ω: if Γ(ω)> 0, firm 1 pays firm 2; if Γ(ω)< 0, firm 2 pays firm 1.

For each of the four scenarios, we solve the problem using backward induction. We first determine

the equilibrium production quantities and transfer payment for a production subgame ω. We use

superscripts to denote the equilibrium decisions and outcomes. For instance, we let
(
qs∗1 (ω), qs∗2 (ω)

)
be the equilibrium production quantities. Note that these quantities are chosen together if the

firms collaborate in the production stage (s= c for the Cc and Nc scenarios), or separately if the

firms compete in the production stage (s=n for the Cn and Nn scenarios). Similarly, we let Γc∗(ω)

denote the equilibrium transfer payment in the Cc and Nc scenarios. If the firms do not collaborate

on production (Cn and Nn scenarios), no transfer payment occurs: Γn∗(ω) = 0. Combining these,

the equilibrium revenue for firm i in a subgame ω = (K1,K2, θ1, θ2) is denoted by Rs∗
i (ω) and is

written as follows:

Rs∗
i (ω) = qs∗i (ω)pi

(
qs∗i (ω), qs∗j (ω), ω

)
+(−1)iΓs∗(ω), i, j = 1,2, i ̸= j, s∈ {c,n}. (1)

Once we determine the equilibrium revenues for each setting, we calculate the expected profits by

taking the expectation with respect to the demand signals and subtracting the capacity costs. For

given capacity endowments (K1,K2), we let π
s∗
i (K1,K2) denote the expected profit of firm i under

setting s:

πs∗
i (K1,K2) =E

[
Rs∗

i (K1,K2,Θ1,Θ2)
]
− cKi, i= 1,2, s∈ {c,n}. (2)

If the firms do not collaborate in the first-stage investment game, each firm chooses the capacity

that maximizes only its expected profit (Equation (2)). On the other hand, if the firms collaborate

in the investment stage, firms negotiate to jointly build the capacity and share the profit according
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N

C

n

c

n

c

π
s∗

i (KNs∗

1
,KNs∗

2
)

Rn∗
i (ω) = qn∗i (ω)pi

(

qn∗i (ω), qn∗j (ω),ω
)

, i, j = 1, 2, i �= j,

Rc∗
i (ω) = qc∗i (ω)pi

(

qc∗i (ω), qc∗j (ω),ω
)

+ (−1)iΓc∗(ω), i, j = 1, 2, i �= j,

Rn∗
i (ω) = qn∗i (ω)pi

(

qn∗i (ω), qn∗j (ω),ω
)

, i, j = 1, 2, i �= j,

Rc∗
i (ω) = qc∗i (ω)pi

(

qc∗i (ω), qc∗j (ω),ω
)

+ (−1)iΓc∗(ω), i, j = 1, 2, i �= j,

:= E [Rs∗

i (K1,K2,Θ1,Θ2)]− cKi,

i = 1, 2, s ∈ {c, n}

π
s∗

i (KCs∗

1
,KCs∗

2
) + (−1)iηCs∗

i = 1, 2, s ∈ {c, n}

Capacity Decision Production Decision
π
s∗(K1,K2)

Figure 1 Decision tree with payoffs.

to the Nash bargaining solution. In the NBS, the capacity level that maximizes the sum of the

profits, πs∗
1 (·) + πs∗

2 (·) is chosen, and the profit is split in a manner that neither firm wants to

deviate from the agreement (see Section 4.3). We note that for the decentralized cases (Nn, Nc,

Cn, Cc), all our results apply to settings where capacity costs are different. We prove all our results

using the general profit function πs∗
i (K1,K2) =E

[
Rs∗

i (K1,K2,Θ1,Θ2)
]
− cKi, i= 1,2, s∈ {c,n} for

individual firm i, where the capacity investment cost c can be firm i-dependent (c1, c2 instead of

c).

Once we obtain the profit functions, we solve for the equilibrium capacities under each scenario.

To distinguish these, we use superscripts. For instance, KNn*
i is the equilibrium capacity of firm

i in the Nn scenario, etc. To denote the outcomes and profit of a single centralized firm, we

use a superscript “m” (representing monopoly). We finally conclude the model preliminaries by

demonstrating the decisions to be made using a decision tree with payoffs in Figure 1.

Remark: Without loss of generality, we assume that the second-stage production cost is zero

because any positive (and possibly asymmetric) cost can be accommodated in our model by shifting

the demand variable Θi, i= 1,2.

When a variable or a function represents a joint/total value, we use subscript “T”. For instance,

while K1 denotes the capacity for firm 1, KT denotes the joint/total capacity (KT =K1+K2). We

use 1{} to denote the indicator function. We also use ∇ as the differentiation operator: ∇g(x) =

d
dx
g(x), ∇2g(x) = d2

dx2
g(x) for a function with single variable, and ∇1g(x1, x2) =

∂
∂x1

g(x1, x2),

∇2g(x1, x2) =
∂

∂x2
g(x1, x2) and ∇2

12g(x1, x2) =
∂2

∂x1∂x2
f(x1, x2) for a function with multiple vari-

ables. Moreover, the differentiation operator has precedence over assignment. Hence, for instance,

if g(x) = x2, then ∇g(y2) = 2y2 rather than ∇g(y2) = 4y3.
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3.1. Preliminaries—a Centralized Firm

We first consider a single firm that decides the capacity and production quantities for both products.

For given capacity KT and demand signals (θ1, θ2), the centralized firm solves the following problem

to determine the optimal production quantities:

max
q1,q2≥0

q1
(
θ1 − b1q1 − b̂q2

)
+ q2

(
θ2 − b2q2 − b̂q1

)
(3)

s.t. q1 + q2 ≤ KT.

Let
(
qm*
1 (KT, θ1, θ2), q

m*
2 (KT, θ1, θ2)

)
denote the optimal production quantities. Then, the resulting

revenue is
Rm*(KT, θ1, θ2) = qm*

1 (KT, θ1, θ2)
(
θ1 − b1q

m*
1 (KT, θ1, θ2)− b̂qm*

2 (KT, θ1, θ2)
)

+ qm*
2 (KT, θ1, θ2)

(
θ2 − b2q

m*
1 (KT, θ1, θ2)− b̂qm*

1 (KT, θ1, θ2)
)
. (4)

Utilizing this, the expected profit is πm*(KT) =E
[
Rm*(KT,Θ1,Θ2)

]
−cKT. In the capacity building

stage, the centralized firm selects the capacity level Km*
T to maximize the expected profit:

Km*
T = argmax

KT≥0

πm*(KT ). (5)

The following proposition characterizes the optimal production and capacity decisions.

Proposition 1. [Centralized Firm]

i. For given (KT, θ1, θ2), define the two switching curves:

τm*
i (KT, θj) =

{
2biKT , if θj ≤ 2b̂KT ;
2(bibj−b̂2)KT−(bi−b̂)θj

bj−b̂
, if θj > 2b̂KT .

i, j = 1,2, i ̸= j. (6)

Then, the optimal production quantities of a centralized firm, qm*
1 (KT, θ1, θ2), q

m*
2 (KT, θ1, θ2),

are as follows:[(
θ1b2−θ2b̂1{θ2b1>θ1 b̂}

)+

2
(
b1b2−b̂21{θ2b1>θ1 b̂}

) ,

(
θ2b1−θ1b̂1{θ1b2>θ2 b̂}

)+

2
(
b1b2−b̂21{θ1b2>θ2 b̂}

)
]

if θ1 ≤ τm*
1 (KT, θ2) and θ2 ≤ τm*

2 (KT, θ1);

[
(2(b2−b̂)KT+min((θ1−θ2),2(b1−b̂)KT ))

+

2(b1+b2−2b̂)
,
(2(b1−b̂)KT+min((θ2−θ1),2(b2−b̂)KT ))

+

2(b1+b2−2b̂)

]
, otherwise. (7)

ii. There exists a unique optimal capacity Km*
T .

Figure 2 illustrates the optimal production policy characterized in Equation (7). In this figure, we

can observe that it is optimal to fully utilize the capacity only when the firm gets favorable demand

signals. (These areas are marked “binding” for binding capacity in Figure 2). The allocation of the

capacity to production of products 1 and 2 depends on the relative values of the demand signals.

(The gray areas in Figure 2 are areas where it is optimal to produce just one product, while in the

white areas, it is optimal to produce both products.) Finally, Figure 2 also shows both thresholds

τ1, τ2. The centralized case solution is interesting because it will serve as a benchmark against the

decentralized cases with different levels of collaboration.
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Figure 2 Optimal production strategy for a centralized

firm with respect to demand signals.

Figure 3 Equilibrium production strategies when the

firms compete in the production subgame,

with respect to demand signals.

4. Analysis of Decentralized Firms under Different Collabora-

tion Scenarios

We now provide an analysis of the different scenarios of collaboration. We first start with the

production subgames for each scenario and analyze the two different settings of the second stage

production subgame—no collaboration (n) and collaboration (c)—for given capacity endowments

and demand signals. We then roll back the outcome of the corresponding subgame to the first stage

and determine the equilibrium strategies for each of the four different scenarios.

4.1. Noncollaborative Production

If the firms do not collaborate in the production stage (Nn and Cn scenarios), each firm individually

chooses the quantity that maximizes its own revenue. Specifically, the equilibrium production

quantities, for a given subgame ω= (K1,K2, θ1, θ2), must satisfy the following system of equations:

qn*1 (ω) = argmax
q1∈[0,K1]

q1p1

(
q1, q

n*
2 (ω), ω

)
and qn*2 (ω) = argmax

q2∈[0,K2]

q2p2

(
qn*1 (ω), q2, ω

)
. (8)

Solving this, we obtain the following equilibrium outcomes:

Proposition 2. [Subgame Equilibrium in the Nn and Cn Scenarios] In a subgame ω=

(K1,K2, θ1, θ2), define the two switching curves τn*
i (ω):

τn*
i (ω) =


2biKi, if θj ≤ b̂Ki;
(4bibj−b̂2)Ki+θj b̂

2bj
, if b̂Ki < θj ≤ 2bjKj + b̂Ki;

2bjKj + b̂Ki, if 2bjKj + b̂Ki < θj.

i, j = 1,2 i ̸= j. (9)

There exists a unique equilibrium production strategy
(
qn*1 (ω), qn*2 (ω)

)
such that
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(
qn*1 (ω), qn*2 (ω)

)
=



((
2θ1b2−θ2 b̂1{2θ2b1>θ1 b̂}

)+

4b1b2−b̂21{2θ2b1>θ1 b̂}
,

(
2θ2b1−θ1 b̂1{2θ1b2>θ2 b̂}

)+

4b1b2−b̂21{2θ1b2>θ2 b̂}

)
, if θ1 ≤ τn*

1 (ω) and θ2 ≤ τn*
2 (ω);(

K1,
(θ2−b̂K1)

+

2b2

)
, if θ1 > τn*

1 (ω) and θ2 ≤ τn*
2 (ω);(

(θ1−b̂K2)
+

2b1
,K2

)
, if θ1 ≤ τn*

1 (ω) and θ2 > τn*
2 (ω);

(K1,K2) , if θ1 > τn*
1 (ω) and θ2 > τn*

2 (ω).
(10)

Figure 3 illustrates the equilibrium quantities with respect to demand signals, θ1 and θ2. If

both firms get poor demand signals, their production quantities are low and the initial capacity

endowments do not play any role. If only one firm’s demand signal is favorable, the firm with the

favorable demand signal produces at its capacity. If both firms get favorable demand signals, they

both produce at their capacities.

We let Rn*
i (ω) denote the revenue that firm i will earn in the sub-game ω such that

Rn*
i (ω) = qn*i (ω)pi

(
qn*1 (ω), qn*2 (ω), ω

)
i= 1,2. (11)

4.2. Collaborative Production

If the firms collaborate in the production stage (Cc and Nc scenarios), they jointly set the produc-

tion quantities and share the total revenue obtained from both products. We assume that firms will

decide on the optimal production quantities, and then use Nash bargaining to split the revenues.

To characterize the Nash bargaining solution (NBS), we first need to specify the disagreement

payoff for each firm (that is, the payoff that each firm earns if there is no deal). Note that if the

firms fail to reach an agreement, each firm chooses the quantity that maximizes its own revenue

within its capacity endowment. Hence, the disagreement payoff for firm i is the equilibrium revenue

in the no collaboration setting, Rn*
i (ω), for a subgame ω= (K1,K2, θ1, θ2).

The equilibrium quantities and transfer payment of the NBS solve the problem below, and the

following proposition characterizes the equilibrium:

max
Γ,q1,q2

(
q1p1(q1, q2, ω)−Γ−Rn*

1 (ω)
)(

q2p2(q1, q2, ω)+Γ−Rn*
2 (ω)

)
(12a)

subsject to q1 + q2 ≤ K1 +K2 (12b)

q1p1(q1, q2, ω)−Γ≥ Rn*
1 (ω) (12c)

q2p2(q1, q2, ω)+Γ≥ Rn*
2 (ω). (12d)

Proposition 3. [Subgame Equilibrium in the Cc and Nc scenarios] Suppose that firms

with capacity endowments (K1,K2) collaborate in the production stage. Then, for given ω =

(K1,K2, θ1, θ2), there exists a unique equilibrium
(
qc*1 (ω), qc*2 (ω),Γc*(ω)

)
such that
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i. the firms produce the same quantities as a centralized firm would: qc*i (K1,K2, θ1, θ2) = qm*
i (K1+

K2, θ1, θ2), i= 1,2;

ii. the transfer payment (from firm 1 to firm 2) is

Γc*(ω) =
qc*1 (ω)p1

(
qc*1 (ω), qc*2 (ω), ω

)
−Rn*

1 (ω)

2
−

qc*2 (ω)p2

(
qc*1 (ω), qc*2 (ω), ω

)
−Rn*

2 (ω)

2
. (13)

Proposition 3 establishes that, in the NBS, the quantities produced by the two collaborating

firms are equal to those of a single centralized firm. That is, for any demand signal, there exists

a negotiation outcome where no efficiency is lost. In order to make the arrangement mutually

beneficial for both firms (i.e., each firm’s payoff is no less than its disagreement payoff), the transfer

payment Γc*(ω) is used to allocate the gains from collaboration, and capacity may have to be

reallocated between the firms. Let χc*(ω) be the net capacity allocated from firm 2 to firm 1 in

equilibrium, which is expressed as follows:

χc*(ω) =


(
qc*1 (ω)−K1

)
, if qc*1 (ω)>K1;

−
(
qc*2 (ω)−K2

)
, if qc*2 (ω)>K2;

0, otherwise.

(14)

Note that χc*(ω) is positive if firm 1 borrows capacity, and negative if firm 2 borrows capacity.

Figure 4 illustrates how capacity is shared with respect to the demand signals, (θ1, θ2).

If both firms get poor demand signals, then each firm can serve its demand with its endowed

capacity, hence no capacity reallocation needs to take place. Otherwise, the two firms readily trade

the capacity to produce quantities that maximize the total revenue. Note that there are regions

under which the entire capacity of one firm is reallocated to the other. This happens when one firm

is better off by selling its entire capacity and receiving the transfer payment than by producing

and selling its own product. One may argue that demand signals can be private information to the

firms. Thus, we have also examined the setting where demand signals θi are private information in

the noncooperative production game. In other words, the noncooperating production quantity only

depends on the firm’s own θi, not on the other firm’s θj, j ̸= i. We find that with private demand

information in the production stage, the firms still produce the same quantities as a centralized

firm would (in other words, Proposition 3 still holds), with the only difference being the transfer

payment (details can be found in Appendix A).

Note that for given total capacity, the equilibrium quantities depend on the demand signals but

not on the individual capacity endowments of each firm. Consequently, for a given total capacity,

the revenue a firm earns directly from sales (before the transfer payment) depends only on the

demand signals, (θ1, θ2). However, the transfer payment (which depends not only on the demand
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Figure 4 Equilibrium capacity trade with respect to demand signals.

Figure 5 (a) Transfer payment from firm 1 to firm 2, Γc*(ω), and, (b) amount of capacity traded from firm 2 to

firm 1, χc*(ω), with respect to the demand signal, θ2. (b1 = 3, b2 = 4, K1 =K2 = 40, θ1 = 400)

signals, but also on the firms’ individual capacity endowments K1,K2) balances the firms’ payoffs

according to their initial contributions to the total capacity.

One may expect the transfer payment to be monotone in demand signals or in capacity endow-

ments because capacity becomes more valuable with higher demand. Figure 5 presents the transfer

payment from firm 1 to firm 2, Γc*(ω), and the amount of capacity that firm 1 acquires from firm

2, χc*(ω), with respect to the demand signal for firm 2. When the demand signal is poor (when θ2

is low), firm 2 transfers its whole capacity to firm 1. In this range, as the demand signal for firm 2

becomes more favorable, the disagreement payoff of firm 2 (the opportunity cost for the capacity)

increases. Consequently, although the amount of capacity traded remains the same, the transfer

payment from firm 1 to firm 2 increases. However, when θ2 becomes moderate or high, firm 2 finds

it optimal to keep some of its capacity to satisfy its own demand. In this range, the amount of

capacity that firm 2 trades to firm 1 decreases in θ2. Consequently, firm 1 receives less capacity in

trade and earns less with the traded capacity. Therefore, the transfer payment, Γc*(ω), decreases.

To examine how much a unit capacity is worth when it is reallocated, we define the price per

unit of reallocated capacity: γc*(ω) = Γc*(ω)/χc*(ω), for χc*(ω) ̸= 0. The next result shows that

although the total transfer payment is not monotone, the unit price of capacity is monotone in

demand signals and in capacity endowments when the two products are not substitutes.
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Figure 6 (a) Unit capacity transfer price, γc*(ω), and, (b) Capacity traded from firm 2 to firm 1, χc*(ω), with

respect to the demand of firm 1, θ1. (b1 = b2 = 2, b̂= 1, K1 =K2 = 25 and θ2 = 40)

Proposition 4. [Transfer Payment and Price of Capacity] Suppose that the two products

are not substitutes (i.e., b̂= 0). Then,

i. the price of capacity (per unit), γc*(ω), increases in θi, and decreases in Ki, i= 1,2;

ii. the transfer payment is nonzero if and only if there is capacity trade: Γc*(ω) ̸= 0 ⇔ χc*(ω) ̸= 0.

When a firm’s demand signal becomes more favorable (i.e., θi increases), the market clearing

price for its products will be higher. Thus, the firm’s per-unit profit margin will increase. This

increases the price that it is willing to pay for a unit of capacity. Likewise, when the demand signal

for the firm that sells capacity becomes more favorable, the firm’s opportunity cost of the capacity

increases, which increases the per-unit capacity price it will charge to transfer capacity. Thus, the

price of each unit capacity increases when either demand signal becomes more favorable. On the

other hand, when either firm starts with large respective capacities, capacity trade becomes less

valuable, and hence the transfer price of a unit capacity decreases. We also find that, when the

products are not substitutes, a transfer payment is made if and only if there is nonzero capacity

trade. This is intuitive, as one would exchange the payments to balance the revenue only when

physical capacity is traded.

However, none of these intuitive results holds when the products are substitutes. Firms pay a

non-zero transfer payment even when there is no capacity trade. In addition, even when capacity

is traded, the unit capacity price is not necessarily increasing as either firm’s demand increases.

Figure 6 presents an example. In this example, the amount of capacity firm 1 buys from firm 2 is

constant, but the price per unit of capacity decreases in the demand signal of firm 1, θ1. In other

words, firm 1 earns more but pays less per unit of capacity it acquires from firm 2. To understand

why, first note that firm 2 sells its whole capacity to firm 1 in this case. As θ1 increases, the price

of product 1 increases. Hence, the production quantity of firm 1 also increases as a response to

a higher market price. But, as firm 1 increases the quantity, the price of product 2 decreases.
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Consequently, the opportunity cost for firm 2’s capacity decreases, and, as a result, firm 2 gives

up its capacity at a lower price. Note that when the products are not substitutes, this outcome

will never happen, because the firm 2’s opportunity cost will be independent from firm 1’s demand

signal.

4.3. Capacity Investment Stage

After solving the production subgame, we next study the capacity investment stage in two different

cases, No collaboration (N) and Collaboration (C).

No collaboration

If the firms do not collaborate in the first stage (Nc and Nn scenarios), each firm strategically

decides its capacity level to maximize its own expected profit. Therefore, the equilibrium capacity

levels (KNs∗
1 ,KNs∗

2 ) must satisfy the following system of equations:

KNs∗
1 = argmax

K1≥0

πs∗
1 (K1,K

Ns∗
2 ) and KNs∗

2 = argmax
K2≥0

πs∗
2 (KNs∗

1 ,K2) for s∈ {n, c}. (15)

Collaboration in capacity investment

If the firms collaborate in the first stage (Cc and Cn scenarios), they negotiate to build capacity

jointly and share the capacity and its investment costs according to the Nash bargaining solution

(NBS). We assume that each firm pays the capital to obtain its initial endowment, that is, firm i

pays cKi to have an endowment of Ki, which is a part of πk(·), defined in Equation (2).

To determine the bargaining outcome, we first specify the disagreement payoff, i.e., what each

firm earns if the negotiation fails. Let πd
i denote the disagreement payoff for firm i. For both the

Cc and Cn scenarios, if the firms fail to reach an agreement to collaborate in the first stage, then

they never collaborate in the subsequent stages. Notice that we are modeling a situation in which

firms agree to collaborate in a multi-stage partnership. If the agreement fails during the first stage,

then we are assuming that this collaboration will end. We also separately analyze the case where

firms agree to collaborate on capacity but not on production Cn and vice versa Nc.

Thus, under a multi-period agreement between parties in the Cc scenario, if the firms fail to reach

an agreement at the first stage, each firm will decide its own capacity and production quantity

separately to maximize its own profit. Therefore, each firm will then earn equilibrium profits in

the Nn scenario, and we have (πd
1 , π

d
2 ) =

(
πn*
1 (KNn*

1 ,KNn*
2 ), πn*

2 (KNn*
1 ,KNn*

2 )
)
.

If there is a deal, the firms invest in the capacity and obtain the capacity endowments, K1 and

K2. Then, demand signals are realized, and the firms play the production subgame and earn the

revenue as illustrated in Subsections 3.1 and 3.2. Note, however, that the firms agree to a deal if

their (ex-ante) profits are at least as large as their disagreement payoffs, πn*
i (KNn*

1 ,KNn*
2 ), i= 1,2.
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To guarantee this, one firm may need to make a transfer payment to the other firm so that it earns

at least its disagreement payoff. Let η be the first-stage transfer payment firm 1 makes to firm 2

to induce an agreement (negative if the actual payment is from firm 2 to firm 1). According to the

NBS, the equilibrium outcome, (KCs∗
1 ,KCs∗

2 , ηCs∗), for s ∈ {n, c}, is the solution to the following

optimization problem:

max
K1,K2≥0

η

(
πs∗
1 (K1,K2)− η−πd

1

)(
πs∗
2 (K1,K2)+ η−πd

2

)
(16)

s.t. πs∗
1 (K1,K2)− η≥ πd

1

πs∗
2 (K1,K2)+ η≥ πd

2 .

Notice that the transfer payment, η, plays a role of investment subsidy. Consequently, an equilib-

rium outcome in which η = 0 implies that each firm pays only for its own endowment because no

firm gives or receives a payment in the first stage.

When the products are not substitutes (b̂ = 0), all of the results that follow will hold for any

continuous demand distribution with positive support. This includes cases in which the demand

signals are correlated. However, when the products are substitutes (b̂ > 0), obtaining analytical

results is much more difficult. This is because the derivative of the firm’s profit (following the

subgame outcome) is discontinuous and makes verifying the second-order condition formidable. To

overcome this, we make the following additional assumptions for the case of substitutable products:

(i) Θ1 and Θ2 are independent, and (ii) Θi follows either an uniform or exponential distribution,

i= 1,2. Although our results are proven for the two distributions, our computational study shows

that the results are still valid with other distributions as well.

Theorem 1. [Equilibrium Outcome]

i. In all four scenarios (Nn, Nc, Cn, and Cc), a pure strategy equilibrium exists. Moreover, the

equilibrium is unique in the Nn and the Nc scenarios.

ii. When the firms collaborate on capacity investment (Cn or Cc scenarios), the following are true.

(a) The difference between the firms’ equilibrium profits is equal to the difference in their dis-

agreement payoffs:

(
πs∗
1 (KCs∗

1 ,KCs∗
2 )− ηCs∗

)
−
(
πs∗
2 (KCs∗

1 ,KCs∗
2 )+ ηCs∗

)
= πd

1 −πd
2 , for s∈ {n, c}. (17)

(b) In the Cc scenario, the total capacity in equilibrium is equal to the optimal capacity of a

centralized firm: KCc*
1 +KCc*

2 =Km*
T .
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Theorem 1 implies that, while capacity collaboration makes both firms better off, the difference

in profit remains the same as the difference in their disagreement payoffs. In other words, the

negotiation outcome only increases the total surplus without changing the difference. Theorem 1

also establishes that, if the firms collaborate both in the capacity-building and the production stages

(Cc scenario), the total capacity is the same as a centralized firm’s capacity. In this scenario, the

firms not only produce the centrally optimal quantities (Proposition 3) but also agree to build the

optimal capacity of a centralized firm. Thus, no efficiency is lost in either stage. The result—that

the Cc scenario achieves the centrally optimal solution—is consistent with the existing literature:

cooperation usually leads to Pareto optimal solutions and improves profits for both parties. The

primary reason lies in the dynamics of Cournot competition (when products are substitutes). In

such a scenario, both firms will choose quantities that drive the price down, lowering revenues for

both parties. However, in the Cc scenario, both firms can do better than the Cournot outcome even

without a transfer payment (see Theorem 2 below) as the Nash bargaining solution guarantees both

firms gain at least the profits in the Cournot competition. The benefit of cooperation increases as

the substitutability (competition) increases.

An interesting question is how firms pay for the capacity they wish to purchase. Suppose the

two firms agree to collaborate and build capacity K1 and K2. Do they each pay for the capacity

they build or must that one of the firms provide a subsidy to the other? One might expect that

each firm’s contribution should be proportional to its endowment and that it is subsidy-free: in

other words, ηCs∗ = 0. The next result characterizes the condition under which this occurs.

Theorem 2. [When Do Two Firms Trade Capacity for Free?] For the Cc and Cn

scenarios, the following are true.

i. An investment equilibrium is subsidy-free (i.e., ηCs∗ = 0), if and only if the equilibrium endow-

ments (KCs∗
1 ,KCs∗

2 ) satisfy the following:

πn*
1 (KCs∗

1 ,KCs∗
2 )−πn*

2 (KCs∗
1 ,KCs∗

2 ) = πd
1 −πd

2 for s∈ {n, c}. (18)

ii. If the products are not substitutes (b̂ = 0), then there always exists a subsidy-free investment

equilibrium. If the products are substitutes (b̂ > 0), a subsidy-free investment equilibrium exists

when the firms collaborate in the second stage (Cc scenario) and KNn*
T ≥Km*

T . Otherwise, a

subsidy-free investment equilibrium may not exist in general.

The condition in Equation (18) leads to a subsidy-free investment. Notice that the left-hand

side is the difference between the profits when the firms compete in the second stage with the
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endowments (KCs∗
1 ,KCs∗

2 ). The right-hand side is the difference between the disagreement payoffs,

same as in the condition in Equation (17). This implies that, under the subsidy-free equilibrium,

the difference in profit must be the same regardless of whether they collaborate in the subsequent

production stage.

Theorem 2 also implies that when the two products are not substitutes, a subsidy-free equilibrium

exists regardless of whether the firms collaborate in the production stage or not (Cc and Cn,

respectively). In the Cn scenario, as no capacity sharing occurs in the second stage, there is no gain

from joint capacity investment. Hence, each firm agrees to build the endowment that maximizes

its own profit, leading to no investment subsidy. On the other hand, in the Cc scenario, the firms

share capacity in the second stage, and hence they gain from joint investment in capacity. The

second-stage negotiation allocates these gains so that the firms do not need the investment subsidy

to select the centrally optimal capacity in the first stage.

On the other hand, when the products are substitutes, a subsidy-free equilibrium exists only

when the firms collaborate in both stages (Cc scenario) and the total capacity of a centralized

firm is smaller than the total capacity in the Nn scenario (i.e., Km*
T ≤ KNn*

T ). Note that when

the products are substitutes and the firms collaborate in both stages, the gains of collaboration

come not only from pooling capacities but also from pooling demands (i.e., forgoing competitive

behavior). The negotiation in the second stage allocates the gains from pooling demands. If the

total capacity of a centralized firm is smaller than the total capacity in the Nn scenario, by jointly

building the centrally optimal capacity in the first stage, the firms achieve the investment cost

savings. Consequently, in the first stage, the firms jointly build the centrally optimal capacity and

select the endowments at which the savings from their capacity investment costs are split without

an investment subsidy.

When the products are substitutes and the total capacity of a centralized firm is larger than

the total capacity in the Nn scenario (i.e., Km*
T > KNn*

T ), a subsidy-free investment equilibrium

does not necessarily exist even when the firms collaborate in both stages. Without the investment

subsidy, the firms’ total capacity might be less than that of a centralized firm. Thus, even if they

collaborate in the second stage, the firms could earn less than what a centralized firm would earn

for the same realization of demand signals. Therefore, the firms lose efficiency. Hence, one firm finds

it beneficial to pay a subsidy to the other firm and induce it to agree on building a larger capacity

to guarantee that the revenue in the second stage is the same as the revenue of a centralized firm.

When the products are substitutes and the firms do not collaborate in the second stage (Cn

scenario), a subsidy-free investment equilibrium does not exist in general. Even without capacity



Ahn, Çetinkaya, Duenyas, and Zhang: Capacity sharing
20 © 0000

sharing in the second stage, there still exists a gain from joint investment in capacity for substi-

tutable products. However, because there is no ex-post recourse to resolve the inefficiencies (due to

possible imbalance between endowments and demand signals), whether each firm realizes the gain

or not depends on its initial endowment. Consequently, an up-front subsidy is generally needed so

that the firms select the endowments that maximize the gains of collaboration.

When the firms collaborate in both stages, one might wonder how much will each firm invest

in a subsidy-free equilibrium? First, note from Theorem 1 that the total capacity is equal to that

of a centralized firm. This implies that KCc*
2 can be replaced by Km*

T −KCc*
1 in Equation (18).

Moreover, note that Equation (18) is defined by the disagreement payoffs and πn*
i (·, ·), i = 1,2.

The disagreement payoffs do not depend on the endowments. In addition, πn*
i (·, ·) is a well-defined

continuous function. Therefore, one can simply solve Equation (18) with a search in single variable

in a bounded interval to determine the investment level under a subsidy-free equilibrium.

4.4. Collaboration in Capacity and Partial Collaboration in Production (Cp)

So far, we have analyzed the equilibrium outcomes for four scenarios and show that the firms

gain the most if they can fully collaborate in both stages (Cc scenario). However, to achieve this

outcome, the two firms must build capacity and set production quantities together. Furthermore,

the two firms not only need to make decisions together but they also need to agree in detail on how

to split the profit for each contingency. In the previous section, we show that if the two products are

substitutes, the firms may exchange the transfer payment even when there is no physical exchange

of the capacity. One alternative arrangement is that the firms collaborate on strategic decisions

(e.g., building capacity), but each firm individually sets its production quantity, while they trade

the capacity endowments if necessary. We call this arrangement the Cp scenario (where subscript

p stands for partial collaboration in production).

In this scenario, the firms build joint capacity in the first stage. In the second stage, after

the firms observe the demand signals, they trade capacity to establish new endowments. Then,

each firm individually decides its production quantity within its new endowment. An example of

such collaboration can be found in an arrangement between AMD and Fujitsu for producing flash

memory chips (Devine 2003). Under this arrangement, the firms built a plant together (thus col-

laboratively choosing the total capacity), but each firm individually decided how much to purchase

from the plant’s output (Plambeck and Taylor 2005). Another such example is the limited joint

operating agreement between two newspapers: the Detroit Free Press and Detroit News. Under this

arrangement, the newspapers operate separately but are printed in the same, jointly built facility

(Busterna and Picard 1993).
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Once again, we solve for the equilibrium outcome using backward induction. Let K̂i, i= 1,2, be

the new endowment of firm i after the capacity trade, and let ω̂ be the vector that represents the

new capacity endowments and demand signals, ω̂ := (K̂1, K̂2, θ1, θ2). For each realization of ω̂, the

equilibrium production quantities must satisfy the following set of equations:

qCp*
1 (ω̂) = argmax

q1∈[0,K̂1]

q1p1

(
q1, q

Cp*
2 (ω̂), ω̂

)
and qCp*

2 (ω̂) = argmax
q2∈[0,K̂2]

q2p2

(
qCp*
1 (ω̂), q2, ω̂

)
. (19)

Note that the equilibrium outcome of this quantity-setting game is identical to the outcome of

the Nn scenario (described in Equation (8)) except that (K̂1, K̂2) replaces (K1,K2). Therefore,

by Equation (11), firm i earns the revenue Rn*
i (ω̂) from sales. Given this, we can consider the

preceding capacity trading game for given initial endowments (K1,K2) and demand signals (θ1, θ2).

As before, let Γ be the transfer payment that firm 1 pays to firm 2 (negative if firm 2 pays to firm

1). Thus, if the firms agree on a deal, firm i earns Rn*
i (K̂1, K̂2, θ1, θ2)+ (−1)iΓ, i= 1,2.

If the firms fail to reach a deal, each firm individually decides its production quantity using

its initial endowment, Ki, as the capacity constraint. Hence, the disagreement payoff of firm i is

Rn*
i (K1,K2, θ1, θ2), i= 1,2, and the NBS is a solution to the following problem:

max
Γ,K̂1,K̂2

(
Rn*

1 (K̂1, K̂2, θ1, θ2)−Γ−Rn*
1 (K1,K2, θ1, θ2)

)(
Rn*

2 (K̂1, K̂2, θ1, θ2)+Γ−Rn*
2 (K1,K2, θ1, θ2)

)
s.t. K̂1 + K̂2 = K1 +K2

Rn*
1 (K̂1, K̂2, θ1, θ2)−Γ≥ Rn*

1 (K1,K2, θ1, θ2)

Rn*
2 (K̂1, K̂2, θ1, θ2)+Γ≥ Rn*

2 (K1,K2, θ1, θ2)

K̂1, K̂2 ≥ 0.

The first constraint implies that the total capacity will remain the same before and after the

trade. The remaining two constraints guarantee that both firms’ payoffs must be improved after

negotiation. We find that when the products are not substitutes, in the Cp scenario, the equilibrium

total capacity is centrally optimal (equal to that of a centralized firm). We characterize the full

equilibrium outcome and render the discussions of the Cp scenario in the Appendix (Section B).

One might also be interested in the case where firms with initial capacity endowments (K1,K2)

trade capacity before the realization of demand signals (with transfer payment a linear function of

the transferred capacity); and then, during the production stage, each firm maximizes their own

expected revenue to decide the production quantity. To further distinguish this scenario from other

settings we considered in the paper, we draw the timelines below in Figure 7. The two firms thus

solve the following problem:
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Capacity decision Demand signal realization Production decision

Capacity decision: C Demand signal realization Production decision: n

Cp scenario:

Capacity trading

Capacity decision: C Demand signal realization Production decision: n
Cp with transfer payment

Capacity trading

as a function of

determined before
transferred capacity

demand realization:

Cc, Cn, Nc, Nn:

Figure 7 Model timelines.

max
γ,K̂1,K̂2

(
πn∗
1 (K̂1, K̂2)− γ(K̂1 −K1)−πd

1

)(
πn∗
2 (K̂1, K̂2)+ γ(K2 − K̂2)−πd

2

)
s.t. K̂1 + K̂2 = K1 +K2

πn∗
1 (K̂1, K̂2)− γ(K̂1 −K1)≥ πd

1

πn∗
2 (K̂1, K̂2)+ γ(K2 − K̂2)≥ πd

2

K̂1, K̂2 ≥ 0.

(20)

The solution to the problem (20) is K̂∗
1 =KCn∗

1 , K̂∗
2 =KCn∗

2 and γ∗ =
πn∗
1 (K̂∗

1 ,K̂
∗
2 )−πd

1

2(K̂∗
1−K1)

− πn∗
2 (K̂∗

1 ,K̂
∗
2 )−πd

2

2(K2−K̂∗
2 )

.

All the results related to the Cn scenario apply to this new setting.

5. Comparison of Equilibrium Capacities

In the previous section, we solved for the equilibrium capacity in five different scenarios. We show

that in some cases, collaboration leads to a centrally optimal outcome. For example, if the two

firms can fully collaborate in both stages (Cc scenario), the equilibrium joint capacity level is equal

to the optimal capacity of a centralized firm. Similarly, if the two products are not substitutes (i.e.,

b̂= 0), the equilibrium joint capacity level in the Cp scenario is also equal to the optimal capacity

of a centralized firm. However, in all other scenarios, some efficiency is lost and the equilibrium

capacity level deviates from the capacity of a centralized firm. The next proposition compares the

total equilibrium capacity levels under different scenarios.

Theorem 3. [Comparison of Equilibrium Capacities]

A. When the products are not substitutes (i.e., b̂= 0), the following results hold:

(i) KCn*
T =KNn*

T , (ii) min(KCc*
T ,KNn*

T )≤KNc*
T ≤max(KCc*

T ,KNn*
T ), (iii) KCp*

T =KCc*
T .

B. When the products are substitutes (i.e., b̂ > 0), the following results hold:

(i) KCn*
T ≤KNn*

T , (ii) min(KNn*
T ,KCc*

T )≤KNc*
T , (iii) KCp*

T <KCc*
T .

Parts A(i) and B(i) of Theorem 3 compare the total capacity in the two scenarios—Nn and Cn.

If the two products are not substitutes (part A(i)), the total capacity in the Cn scenario (i.e.,
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collaborating in the capacity game, but not collaborating in the production subgame) is the same

as that of the Nn scenario (i.e., not collaborating in both games). In other words, in terms of

the total capacity, not collaborating in the production subgame is the same as not collaborating

at all. On the other hand, if the products are substitutes, part B(i) implies that the Cn scenario

yields smaller capacity than the Nn scenario, although the firms do not lend or borrow capacity

from each other in the production subgame, KCn*
T ≤KNn*

T . This is because, although no capacity

is physically shared in the second stage, jointly deciding the total capacity together curbs the

downstream competition by making capacity more scarce. Recall that in part B(i), products are

substitutes whereas in part A(i), they are not, and it is interesting that collaborating in capacity

investments without any production coordination and therefore, implicitly, pricing coordination

results in decreasing competition when products are substitutes.

Parts A(ii) and B(ii) compare the total capacity in the Nc scenario with those in the Nn and

Cc scenarios. If the products are not substitutes, the total capacity in the Nc scenario is always

between KCc*
T and KNn*

T . To see why, recall that firm i selects its capacity to maximize πc*
i (K1,K2)

in the Nc scenario. Note that from Proposition 3, we have

πc*
i (K1,K2) =

1

2

(
πm*(K1 +K2)+πn*

i (K1,K2)−πn*
j (K1,K2)

)
i, j = 1,2 i ̸= j.

Because the products are not substitutes, for given Kj, the disagreement payoff of firm j,

πn*
j (K1,K2), is independent of firm i’s capacity, Ki. Thus, firm i chooses the capacity that maxi-

mizes 0.5πm*(·)+0.5πn*i(·). Notice that if each firm wants to maximize πm*(·), then this results in

the total capacity of KCc*
T . On the other hand, each firm maximizing πn*(·)i will result in the total

of KNn*
T . Consequently, KNc*

T falls between between KCc*
T and KNn*

T .

However, this result is no longer true when the products are substitutes. Although we can

establish KNc*
T ≥min(KCc*

T ,KNn*
T ), KNc*

T can exceed the maximum of KCc*
T and KNn*

T . Figure 8a

illustrates an example: KNc*
T >KNn*

T when demand variability is low (the coefficient of variation is

less than 0.35) and KNc*
T <KNn*

T otherwise.

When the demand variability becomes smaller, the chances that one firm needs to borrow capac-

ity from the other firm decrease. However, larger capacity can still be beneficial to the firms when

products are substitutes. Note that the disagreement payoff of firm i’s competitor, πn*
j (K1,K2),

decreases in Ki (see Lemma 2 in the appendix). Hence, increasing the firm’s initial endowment

can weaken the competitor’s bargaining position and improve that of the firm. Consequently, both

firms try to get an edge in the negotiation that will occur in the production subgame and end up

building larger capacity in the capacity subgame than they would otherwise and this is why the
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(a) Total capacity versus coefficient of variation. (b) Total capacity versus b̂/bi ratio.

Figure 8 Equilibrium capacity.

total capacity in the Nc scenario exceeds the total capacity in the Nn scenario. On the other hand,

when demand becomes highly variable, the opposite effect prevails. When demands are highly

variable, the value of pooling and sharing the capacity is high, resulting in smaller total capacity.

Finally, parts A(iii) and B(iii) compare the equilibrium capacity in the Cp and the Cc scenarios.

One would expect the total capacity to be higher with increased competition, i.e., it may be

reasonable to expect that KCp*
T ≥KCc*

T . However, surprisingly, Theorem 3 shows that the opposite

is true. To understand why, first consider the case where each firm has ample capacity. Then, in the

Cp scenario, for most demand realizations, each firm can satisfy its demand with its own capacity.

In this case, it is unlikely that the two firms will trade capacity, thus they will be competing in

the production subgame, deviating from producing the centrally optimal quantities. On the other

hand, this adverse effect can be prevented if the firms do not build too much capacity in the

first place. Therefore, in the first stage, the firms anticipate this outcome and build smaller joint

capacity and reduce the intensity of competition.

We further examine the effects of demand uncertainty and substitutability on the equilibrium

total capacities. The results are illustrated in Figures 8a and 8b (µ1 = µ2 = 600, b1 = b2 ∈ {5, . . . ,35},

b̂/bi ∈ {0, . . . ,0.99}, and c ∈ {20, . . . ,160}). As the substitutability increases (b̂/bi ratio increases),

the total optimal centralized capacity Km∗
T (KCc∗

T or KCp∗
T in the figure) decreases, and the devi-

ation of the total capacities of firms in situations in which they compete in either the capacity

planning stage (N) or the production stage (n) from Km∗
T increases. This implies that the benefit

of collaboration increases if the products are more similar to each other, which is also consistent

with the profit improvement results illustrated in Figure 9 below. Keeping everything else the

same, a higher level of substitutability (competition) makes it less desirable for firms to increase

capacity to make production because the marginal benefit of increasing capacity decreases as b̂/bi
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increases. As a result, it is optimal to build less capacity when the two firms collaborate. Similarly,

in Figure 8a, we observe that the deviation from the centralized optimal capacity becomes larger

as the demand variability increases. As the demand variability increases, firms must prepare more

capacity to hedge against the variability. However, they must prepare even more capacity in the

non-collaborating settings. This shows the potential benefit of collaborating in both stages as the

demand variability increases.

6. Computational Study

We conduct a computational study to gain further managerial insights into the benefit of capacity

collaboration. In particular, we aim to (1) measure the gains the firms can achieve via collabora-

tion, (2) find out how the gains change in the level and the form of collaboration, and (3) assess

the impacts of business parameters (such as costs, demand variability, etc.) on the gains from

collaboration.

For this, we compare the firms’ performances in five scenarios: Cc, Cp, Cn, Nc, and Nn. To

examine the effects of the business parameters on the gains from collaboration, we systematically

vary cost and demand parameters. Specifically, the following combinations of parameters (in 2,268

problem instances) are used in the computational study:

• bi ∈ {5,10, . . . ,35},

• b̂/bi ∈ {0,0.25,0.5,0.75,0.99},

• CVi = σi/µi ∈ [0.03,0.50],

• c∈ {20,40, . . . ,120}.

Throughout the experiments, we use several distributions—uniform, truncated normal, triangu-

lar, etc.—with E[θi] = 600, i= 1,2. To measure the gains from collaboration in different scenarios,

we compute the percentage improvement in total profit over the profit in the no-collaboration

scenario:

ICc =
ΠCc*

T −ΠNn*
T

ΠNn*
T

×100, ICp =
ΠCp*

T −ΠNn*
T

ΠNn*
T

×100, ICn =
ΠCn*

T −ΠNn*
T

ΠNn*
T

×100, INc =
ΠNc*

T −ΠNn*
T

ΠNn*
T

×100.

The descriptive statistics are summarized in Table 2.

We observe that the overall gains from collaboration are significant except for the Cn scenario.

In particular, the performance in the Cp scenario (where the firms invest in capacity together

and decide jointly whether to trade capacity but independently on the production quantities) is

very close to the performance in the Cc (full collaboration) scenario. We also observe that the

gain is significant when the firms collaborate only in the production stage (Nc scenario): the total

profit increases by 14.4% on average. On the other hand, if the firms cannot collaborate in the

production stage, they do not gain much even when they build the capacity together (4.5% on
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ICc ICp ICn INc

Mean 20.45% 20.34% 4.50% 14.36%
Standard Deviation 17.78% 17.80% 5.35% 14.50%

Minimum 0.05% 0.05% 0.00% 0.02%
25th Percentile 5.41% 5.24% 0.17% 2.87%

Median 15.37% 15.13% 2.24% 9.62%
75th Percentile 31.31% 31.29% 7.47% 21.99%

Maximum 72.79% 72.78% 30.62% 62.60%

Table 2 Summary statistics for improvements in a dataset of 2,268 problem instances.

average). To understand why, notice that the investment decisions are made before observing the

demand signals, but production decisions are made afterwards. Therefore, even if the firms build

capacities close to the ideal level, they cannot capture most of the potential gain if they do not use

shared capacity to respond to demand variability.

6.1. The Impact of Business Parameters

For each scenario, we examine the change in the performance with respect to the changes in the

problem parameters. These results are presented in Figures 9a (substitutability), 9b (capacity

cost) and 10 (demand variability). Figure 9(a) plots the percentage improvements with respect

to b̂/bi. Note that bi is the elasticity and b̂ is the cross-elasticity of the inverse demand function.

Therefore, the ratio of the two, b̂/bi, measures the degree of substitutability, or the intensity

of competition between the two firms (Lus and Muriel 2009). We observe that the percentage

improvement increases in the ratio b̂/bi, which implies that the gains from collaboration increase

as the competition becomes more intense under all scenarios. On the other hand, we observe that

the performance gaps between the scenarios where the firms collaborate only in one stage—the

Cn and Nc scenarios—and the scenarios where the firms collaborate in both stages—the Cc and

Cp scenarios—also increase. In the Cc scenario, the firms completely coordinate the decisions. In

the Cp scenario, the firms compete in quantity, but they are able to trade the capacity. As the

substitutability increases, the value of collaborating in both stages (Cc or Cp scenarios) increases.

On the other hand, in the Cn and Nc scenarios, the firms collaborate in one stage but compete in

the other stage. Thus, although the gains in the Cn and Nc scenarios increase in substitutability,

the gain is much less than the gain in the Cc or Cp scenarios.

Figure 9b shows that the percentage gains increase in the unit capacity building cost. When

capacity becomes more expensive, the firms build smaller capacity. When the firms collaborate in

the production stage (Cc, Cp, and Nc scenarios), they utilize the limited capacities more efficiently.

Therefore, in these scenarios, the gains from collaboration increase significantly when the unit
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Figure 9 Improvements versus (a) b̂/bi ratio, and (b) unit capacity building cost c.

Figure 10 Improvements versus the coefficient of

variation of demand.

Figure 11 Regions on (θ1 × θ2) space that determine

whether the prices in the Cp scenario are

larger than the prices in the Cc scenario in

equilibrium.

capacity building cost increases. On the other hand, in the Cn scenario, the gain slightly increases

first, but the rate of increase diminishes as the cost increases. The firms are already building smaller

capacities in the Nn scenario when the capacity cost is high, the gain in the Cn scenario is small

and the growth diminishes with higher capacity cost.

Figure 10 illustrates how the gains change in demand variability. Overall, the gains increase in

demand variability when the firms collaborate in the production stage (Cc, Cp, and Nc scenarios).

If the firms do not collaborate in the production stage at all, however, the gain from collaboration

on capacity alone (Cn scenario) decreases in demand variability. To see why, note that for given

capacity endowments, as the demand variability increases, the probability that at least one firm is

short of capacity increases as well. Thus, collaborating on production after observing the demand

signals (reactive collaboration) becomes more valuable.
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6.2. Full versus Partial Collaboration on Production and Implications on Price

Recall that in the Cp scenario, each firm sets its own production quantity and the firms exchange

capacity once they observe demand signals. Therefore, one might expect that the increased competi-

tion compared to the full collaboration (Cc) scenario will force the firms to produce larger quantities

resulting in lower prices. However, when we compare the equilibrium quantities and prices between

the Cc and the Cp scenarios (see Figure 11, b1 = b2 = 10, b̂= 2.5, c= 20, µ1 = µ2 = 600), we see that

the exact opposite can happen. In fact, the possibility that coordinated production can result in a

lower price for customers might explain why many joint investment and production coordination

activities are permitted under anti-trust regulations. When demand signals for both products are

unfavorable to moderately favorable, the price in the Cp scenario is strictly lower. When one firm

observes a favorable demand signal and the other firm gets a poor one, the price in the Cp scenario

is equal to the price in the Cc scenario. In other cases, however, the price in the Cp scenario is

strictly higher than the price in the Cc scenario. To understand why, first note that, although the

firms eventually engage in quantity competition in the Cp scenario, they trade the capacity when

doing so is mutually beneficial. Thus, the firms engage in the full level of competition only when

both firms have sufficient capacity (i.e., when they get demand signals that are unfavorable to

moderately favorable). Otherwise, the capacity becomes binding. Recall that, firms build smaller

joint capacity in the Cp scenario (Proposition 3). Therefore, when the capacity is binding under

both the Cp and the Cc scenarios, the total output is smaller under the Cp scenario. As a result,

the consumers pay higher prices.

7. Discussion and Conclusions

In this paper, we considered collaboration between two competing firms. Specifically, firms col-

laborate on both capacity building and/or production decisions. We considered several different

collaboration scenarios and examined the resulting equilibrium outcomes.

We find that if the firms can fully collaborate on both capacity and production decisions (Cc

scenario), they can achieve the centrally optimal outcome in equilibrium. In other words, no effi-

ciency is lost. Moreover, compared to the scenario in which the firms do not collaborate at all,

the gains from collaboration with a competitor can be substantial. This supports the joint venture

agreements between competing firms, in which the firms jointly make decisions under a separate

economic entity. However, for a joint venture agreement to be sustainable, the firms might need to

agree on investment subsidies and on a detailed transfer payment schedule. Interestingly, we find

that an investment scheme that is proportional to the capacity endowment structure (e.g., one firm
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owns 60% of capacity and the other owns 40% of capacity in a 60 - 40 joint venture) might not

always be an equilibrium, and subsidies from one firm to the other could be necessary to achieve

mutually beneficial collaboration.

We also study an arrangement where the firms jointly build capacity but still compete in pro-

duction after trading their capacity endowments (Cp scenario). We find that most of the benefits

from full collaboration can be captured in the Cp scenario. This coordination not only benefits

firms but can also benefit consumers because prices will be lower than the centralized case and can

even be lower than if no coordination took place at all. The sensitivity of the gains of collaboration

with respect to different parameters implies that overall gains increase when (1) the products are

more substitutable, (2) capacity is more costly to build, and (3) demand is more variable.

For future research, it would be interesting to consider collaboration structures other than the

ones we consider in this paper. For instance, we assume that when the firms collaborate in the

operational stage, they negotiate contract terms such as the capacity trade and the transfer pay-

ment. This causes the contract terms to be contingent on the demand signals (these contracts are

labeled as incomplete contracts by Van Mieghem (1999)). One extension is to consider a simpler

contract that can be agreed upon before demand signals are observed. It will be interesting to see

how much of the benefit can be captured through such a simple mechanism.
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E-companion: Online Appendix

Appendix A: Private information

We first solve the production game in a noncooperative setting, of which the solution also serves as the

disagreement value in the cooperative game (Nash bargaining setting). We let K ≜ (K1,K2) and µθi denote

the expectation of θi, i= 1,2. Thus, we need to solve (revising (8))

qn
∗

1 (K,θ1) = arg max
q1∈[0,K1]

q1Eθ2

(
θ1 − b1q1 − b̂qn

∗

2 (K,θ2)
)
,

together with

qn
∗

2 (K,θ2) = arg max
q2∈[0,K2]

q2Eθ1

(
θ2 − b2q2 − b̂qn

∗

1 (K,θ1)
)
.

We further define the expected revenues to be

Rn∗

i (K,θi)≜ qn
∗

i (K,θi)Eθj

(
θi − biq

n∗

i (K,θi)− b̂qn
∗

j (K,θj)
)
.

The solution satisfies

qn
∗

1 (K,θ1) =min

{
θ1 − b̂Eθ2(q

n∗

2 (K,θ2))

2b1
,K1

}
,

qn
∗

2 (K,θ2) =min

{
θ2 − b̂Eθ1(q

n∗

1 (K,θ1))

2b2
,K2

}
.

For given Rn∗

i (K,θi), we solve the production Nash bargaining solution as follows

maxΓ,q1,q2

(
q1

(
θ1 − b1q1 − b̂q2

)
−Γ−Rn∗

1 (K,θ1)
)(

q2

(
θ2 − b2q2 − b̂q1

)
+Γ−Rn∗

2 (K,θ2)
)

subject to q1 + q2 ≤K1 +K2,

q1

(
θ1 − b1q1 − b̂q2

)
−Γ≥Rn∗

1 (K,θ1),

q2

(
θ2 − b2q2 − b̂q1

)
+Γ≥Rn∗

2 (K,θ2).

(21)

With private demand information in the production stage, the firms still produce the same quantities as a

centralized firm would, with the only difference in the transfer payment defined below:

Γc*(ω) =
qc*1 (ω)p1

(
qc*1 (ω), qc*2 (ω), ω

)
−Rn*

1 (K,θ1)

2
−

qc*2 (ω)p2

(
qc*1 (ω), qc*2 (ω), ω

)
−Rn*

2 (K,θ2)

2
. (22)

We note that in Nash bargaining solutions, players always cooperate to jointly maximize an objective

function knowing each other’s parameters but the disagreement value can be defined with private information.

Thus, in (21), the two firms decide each other’s cooperative production quantities and the disagreement

value is calculated based on maximizing the expected revenue given the other firm’s demand signal to be

unknown.
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Figure 12 Equilibrium capacity trade and production under the Cp scenario. (b1 = b2 = 4, b̂= 2)

Appendix B: Cp scenario

The next result characterizes the properties of the equilibrium outcome in the Cp scenario.

Proposition 5. [Trading and Production Outcomes in the Cp Scenario]

i. There exists an equilibrium in the capacity trading game. If K̂i =Ki, i= 1,2 in equilibrium, then it must

be ΓCp*(ω) = 0 for any ω= (K1,K2, θ1, θ2).

ii. If the products are not substitutes (i.e., b̂ = 0), the equilibrium quantities in the subsequent production

game are the same as those of a centralized firm with capacity K1 +K2.

Note that the equilibrium outcome described by Proposition 5 and equation (19) is different from the

equilibrium outcome in a subgame under full collaboration (i.e., Cc scenario). For instance, unlike the Cc

scenario, the firms exchange the transfer payment only if there is a physical trade of capacity. To see why,

notice that, in the Cp scenario, each firm chooses the quantity that maximizes its own revenue. Therefore,

if there is no capacity trade, each firm’s revenue would be equal to its disagreement payoff, and hence there

would be no transfer payment.

Another interesting outcome is about how the shared capacity is used. In the Cp scenario, one firm may

buy capacity from the other firm and idle the purchased capacity: In Figure 12, we observe that firm 2

buys 10 units of capacity from firm 1, but uses only 3.75 units in production. Although such an outcome

is counterintuitive at the first glance (why does it pay for capacity and waste some?), firm 2 actually gains

more by reducing the intensity of competition by limiting firm 1’s production. At the same time, firm 1 also

benefits from selling a portion of capacity to firm 2 and limiting the competition.

After substituting the equilibrium outcome in the second stage, we write the equilibrium payoff of firm i,

RCp*
i (ω) for a given ω= (K1,K2, θ1, θ2) as follows:

RCp*
i (ω) =Rn*

i

(
K̂Cp*

1 (ω), K̂Cp*
2 (ω), θ1, θ2

)
+(−1)iΓCp*(ω). (23)

Now let us consider the first stage game. If two firms choose the initial endowments (K1,K2), the expected

profit of firm i is πCp*
i (K1,K2) = E

[
RCp*

i (K1,K2,Θ1,Θ2)
]
− cKi. As in the analysis of the Cc scenario, an

(upfront) investment subsidy might be needed for the firms to agree on a deal. Putting them altogether, the
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equilibrium capacity endowments, (KCp*
1 ,KCp*

2 ), and investment subsidy, ηCp*, are given by an optimization

problem analogous to the one in (16). The next proposition characterizes the properties of the bargaining

outcome.

Proposition 6. [Equilibirum Capacity under the Cp Scenario]

i. There exists a pure strategy equilibrium in the capacity investment game such that the difference in the

firms’ equilibrium profits is equal to the difference between their disagreement payoffs.

ii. If the two products are not substitutes (b̂= 0), the equilibrium outcome in the Cp scenario is identical to

the equilibrium outcome in the Cc scenario.

iii. A subsidy-free investment equilibrium exists (i.e., ηCp* = 0), if and only if the equilibrium endowments

(KCp*
1 ,KCp*

2 ) satisfy the following condition:

πn*
1 (KCp*

1 ,KCp*
2 )−πn*

2 (KCp*
1 ,KCp*

2 ) = πd
1 −πd

2 (24)

iv. Let KCp*
T be the total capacity in equilibrium under the Cp scenario. In addition to the conditions of Theo-

rem 2(ii), assume that KCp*
T ≥KNn*

i , for i= 1,2. Then, there exists a subsidy-free investment equilibrium

in the Cp scenario.

Proposition 6 implies that, when the products are not substitutes, the equilibrium total capacity is centrally

optimal (equal to that of a centralized firm). However, this is not necessarily true for the substitute case.

When the products are substitutes, even with the same total capacity, the production quantities in the Cp

scenario are different from the quantities of a centralized firm. For instance, when both firms get poor demand

signals, there will be no capacity trade and the firms engage in quantity-setting game with their initial

endowments. Because the second stage outcome is not always the same as the centrally optimal outcome,

the firms’ total expected profit is not the same as the profit of a centralized firm. As a result, in the Cp

scenario, the firms build a joint capacity that is different from the capacity of a centralized firm.

Proposition 6 provides the condition that must be satisfied by the subsidy-free investment equilibrium.

Note that this condition, given in equation (24), is analogous to (18), the equation that determines the

subsidy-free investment equilibrium under the Cc scenario. Therefore, for the cases where the existence is

guaranteed, similar to the Cc scenario, one can simply solve the condition in (24) with a search in single

variable in a bounded interval to determine the investment level in a subsidy-free equilibrium.

Appendix C: Proofs of results

Proof of Proposition 1: The proof immediately follows from the fact that rm(q1, q2, θ1, θ2) is concanve in

(q1, q2) (part i) and the fact that πm*(KT) is concave in KT.

Proof of Proposition 2: Notice that, for a given subgame ω, the second-stage payoff of firm i, qi(θi −

biqi− b̂qj), is concave in qi. Also, the strategy space for (q1, q2) is compact, a pure strategy equilibrium exists
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(Fudenberg and Tirole, 1991). To show uniqueness, for given qj , the best response of firm i is qni (qj , ω) =

min
(( θi−b̂qj

2bi

)+
,Ki

)
. Taking its derivative with respect to qj , we get:

d

dqj
qni (qj , ω) =

{
− b̂

2bi
, if 0≤ θi−b̂qj

2bi
≤Ki;

0, otherwise.

Since bi > b̂, we have −1 < d
dqj

qni (qj , ω) ≤ 0 and the best response mapping is a contraction. Hence, the

equilibrium (Fudenberg and Tirole, 1991) described in equation (10) is unique.

Proof of Proposition 3: To determine the NBS, we solve the optimization problem defined in (12). We

first determine the optimal transfer payment, Γc*(ω), for given production quantities. Then, we solve for the

optimal production quantities. For given (q1, q2), it can be shown that (12a) is strictly concave in Γ, and

hence the optimal transfer payment Γc*(ω) is unique. To solve for Γc*(ω) (thereby proving part ii), we first

write the KKT conditions. Let ν1 and ν2 be the Lagrangian multipliers. Then, the KKT conditions are as

follows: (
q1p1(q1, q2, ω)− q2p2(q1, q2, ω)

)
−
(
Rn*

1 (ω)−Rn*
2 (ω)

)
− 2Γ− ν1 + ν2 = 0 (25a)

ν1

(
q1p1(q1, q2, ω)−Γ−Rn*

1 (ω)
)
= 0, ν1 ≥ 0 (25b)

ν2

(
q2p2(q1, q2, ω)+Γ−Rn*

2 (ω)
)
= 0, ν2 ≥ 0 (25c)

From the KKT condition, we obtain

Γc*(ω) =
q1p1(q1, q2, ω)−Rn*

1 (ω)

2
− q2p2(q1, q2, ω)−Rn*

2 (ω)

2
, (26)

To obtain the optimal production quantities, we rewrite (12) utlizing equation (26):(
q1p1(q1, q2, ω)+ q2p2(q1, q2, ω)

2
− Rn*

1 (ω)+Rn*
2 (ω)

2

)2

=

(
rm(q1, q2, θ1, θ2)

2
− Rn*

1 (ω)+Rn*
2 (ω)

2

)2

Since the second part of the expression within the parentheses is independent of (q1, q2), the solution will

maximize rm(q1, q2, θ1, θ2) and this proves the result.

Proof of Proposition 4: i. We first determine the equilibrium transfer payment and capacity trade for

given market signals. Then, we evaluate the unit price of capacity to establish the result. As illustrated in

Figure 13, depending on the demand signals, the optimal capacity trade and the transfer payment can fall

in one of 10 different regions. Table 3 presents the equilibrium capacity trade, (χc*(ω)), and unit price of

capacity, γc*(ω), and condition for each of the 10 regions.

It can be shown that χc*(ω) and Γc*(ω), are continuous functions in (θ1, θ2). Thus, γ
c*(ω) is also continuous

in regions where χc*(ω) ̸= 0. To show γc*(ω) is increasing in θi and decreasing in Ki, it suffices to show that

γc*(ω) is monotone in each region. To illustrate this, we will show that γc*(ω) is increasing in θ1 in Ψc
3.

Other cases are similar, thus omitted. Taking the derivative of γc*(ω) in Ψc
3 with respect to θ1 and applying

algebra, we get:

d

dθ1
γc*(ω) =

[
(2b22 − b1b2 − b21)(θ1 − θ2 − 2b1K1 +2b2K2)

2 − (b1 + b2)
2(θ1 − 2b1K1)

2

+2(b1 + b2)
2(θ1 − 2b1K1)(θ1 − θ2 − 2b1K1 +2b2K2)

]
4b2(b1 + b2)(θ1 − θ2 − 2b1K1 +2b2K2)2

> 0
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Figure 13 The capacity trade and transfer payment when firms collaborate in production.

Region Definition Capacity Trade, |χc*(ω)| Unit Price of Capacity, γc*(ω)

Ψc
0 θ1 ≤ 2b1K1, θ2 ≤ 2b2K2 0 Not defined

Ψc
1 θ1 > 2b1K1, θ1b2 + θ2b1 ≤ 2b1b2(K1 +K2)

θ1
2b1

−K1
θ1 − 2b1K1

4

Ψc
2 θ2 > 2b2K2, θ2b1 + θ1b2 ≤ 2b1b2(K1 +K2) K2 −

θ2
2b2

θ2 − 2b2K2

4

Ψc
3

θ1b2 + θ2b1 > 2b1b2(K1 +K2),
θ2 ≤ 2b2K2, θ1 − θ2 ≤ 2b1(K1 +K2)

θ1 − θ2 − 2b1K1 +2b2K2

2(b1 + b2)


4b2(b1 + b2)

2K1(b1K1 − θ1)+ (b1 + b2)
2θ22

+b2(2b1(K1 +K2)− θ1 + θ2) [−2b1θ2 − b2(θ1 + θ2)]
+b2(2b2(K1 +K2)+ θ1 − θ2) [2b2θ1 + b1(θ1 + θ2)]
+4b1b

2
2(K1 +K2) [(b1 − b2)(K1 +K2)− θ1 + θ2] 2


4b2(b1 + b2)(θ1 − θ2 − 2b1K1 +2b2K2)

Ψc
4

θ2b1 + θ1b2 > 2b1b2(K1 +K2),
θ1 ≤ 2b1K1, θ2 − θ1 ≤ 2b2(K1 +K2)

θ1 − θ2 − 2b1K1 +2b2K2

2(b1 + b2)


4b1(b1 + b2)

2K2(θ2 − b2K2)− (b1 + b2)
2θ21

+b1(2b1(K1 +K2)− θ1 + θ2) [−2b1θ2 − b2(θ1 + θ2)]
+b2(2b2(K1 +K2)+ θ1 − θ2) [2b2θ1 + b1(θ1 + θ2)]
+4b21b2(K1 +K2) [(b1 − b2)(K1 +K2)− θ1 + θ2]


4b1(b1 + b2)(θ1 − θ2 − 2b1K1 +2b2K2)

Ψc
5 θ2 ≤ 2b2K2, θ1 − θ2 > 2b1(K1 +K2) K2

θ22 +4b2K2 [θ1 − b1(2K1 +K2)]

8b2K2

Ψc
6 θ1 ≤ 2b1K1, θ2 − θ1 > 2b2(K1 +K2) −K1

θ21 +4b1K1 [θ2 − b2(2K2 +K1)]

8b1K1

Ψc
7 θ2 > 2b2K2, θ1 − θ2 > 2b1(K1 +K2) K2

θ1 + θ2 − 2b1K1 − (b1 + b2)K2

2

Ψc
8 θ1 > 2b1K1, θ2 − θ1 > 2b2(K1 +K2) −K1

θ1 + θ2 − 2b2K2 − (b1 + b2)K1

2

Ψc
9

θ1 − θ2 > 2b1K1 − 2b2K2,
θ2 > 2b2K2, θ1 − θ2 ≤ 2b1(K1 +K2)

θ1 − θ2 − 2b1K1 +2b2K2

2(b1 + b2)

[
θ2(3b1 + b2)+ θ1(b1 +3b2)
−2

[
b1(b1 +3b2)K1 + b2(3b1 + b2)K2

] ]
4(b1 + b2)

Ψc
10

θ2 − θ1 > 2b2K2 − 2b1K1,
θ1 > 2b1K1, θ2 − θ1 ≤ 2b2(K1 +K2)

θ1 − θ2 − 2b1K1 +2b2K2

2(b1 + b2)

[
θ2(3b1 + b2)+ θ1(b1 +3b2)
−2

[
b1(b1 +3b2)K1 + b2(3b1 + b2)K2

] ]
4(b1 + b2)

Table 3 The equilibrium capacity trade for the regions in Figure 13.

ii. The proof follows from Table 3, theorefore omitted.

Proof of Theorem 1: i. We present the proof when Θ1 and Θ2 are exponentially distributed with rates

λ1 and λ2. The proof utilizes Lemma 1 which is stated and proved below.

Lemma 1. Suppose that Θ1 and Θ2 are independent exponential random variables with rates λ1 and λ2,

respectively. Let KNs
i (Kj), i ̸= j, be the firm i’s best response when firm j sets its capacity to Kj of firm j

under the scenario Ns, s∈ {n, c}. Then, we have the following:

i. πn*
i (K1,K2) is concave in Ki, i= 1,2.
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ii. ∇KNn
i (Kj)∈ (−1,1), i= 1,2, i ̸= j.

iii. Define π̃n*
i (K1,K2) = πn*

i (K1,K2)− πn*
j (K1,K2), i ̸= j. Then, we have π̃n*

i (K1,K2) is concave in Ki,

i= 1,2.

iv. ∇KNc
i (Kj)>−1, i= 1,2, i ̸= j.

Proof of Lemma 1: We show that πn*
1 (K1,K2) is concave in K1. The proof for π

n*
2 (K1,K2) is symmet-

ric. The second order derivative of πn*
1 (K1,K2) with respect to K1 is

∇2
11π

n*
1 (K1,K2) = b̂3K1

2b2

[∫∞
2b1K1+b̂K2

f(t1,2b2K2 + b̂K1)dt1 −
∫∞
2b1K1

f(t1, b̂K1)dt1

]
− b̂2(4b1b2−b̂2)K1

4b22

∫ 2b2K2+b̂K1

b̂K1
f( (4b1b2−b̂2)K1+b̂t2

2b2
, t2)dt2

− 2b1

[∫ b̂K1

0

∫∞
2b1K1

f(t1, t2)dt1dt2 +
∫∞
2b2K2+b̂K1

∫∞
2b1K1+b̂K2

f(t1, t2)dt1dt2

]
− 2b1b2−b̂2

b2

∫ 2b2K2+b̂K1

b̂K1

∫∞
(4b1b2−b̂2)K1+b̂t2

2b2

f(t1, t2)dt1dt2 (27)

Using the fact that Θi is exponentially distributed, the above equation can be simplified to

∇2
11π

n*
1 (K1,K2) = −2b1e

−2b1K1λ1

− b̂(1−eb̂K2λ1+2b2K2λ2 )(b̂λ2(2−b̂K1λ2)+2b1λ1(1−b̂K1λ2))

b̂λ1+2b2λ2
e−(2b1K1+b̂K2)λ1−(2b2K2+b̂K1)λ2 (28)

Noting that b̂λ1 + 2b2λ2 > 0 and e−(2b1K1+b̂K2)λ1−(2b2K2+b̂K1)λ2 > 0, ∇2
11π

n*
1 (K1,K2) must have the same

sign as b̂λ1+2b2λ2

e−(2b1K1+b̂K2)λ1−(2b2K2+b̂K1)λ2
πn*
1 (K1,K2). After some algebra, we have:

b̂λ1 +2b2λ2

e−(2b1K1+b̂K2)λ1−(2b2K2+b̂K1)λ2
πn*
1 (K1,K2)

=−2b1

(
eb̂K1λ2

)(
eb̂K2λ1+2b2K2λ2

)
(b̂λ1 +2b2λ2)− b̂

(
1− eb̂K2λ1+2b2K2λ2

)(
b̂λ2(2− b̂K1λ2)+ 2b1λ1(1− b̂K1λ2)

)
≤−λ2

(
2(2b1b2 − b̂2)+ b̂2(2b1λ1 + b̂λ2)K1

)
eb̂K2λ1+2b2K2λ2 − b̂

(
b̂λ2(2− b̂K1λ2)+ 2b1λ1(1− b̂K1λ2)

)
≤−2b1

(
b̂λ1 +2b2λ2

)
< 0. (29)

The first inequality comes from the fact that −2b1

(
eb̂K1λ2

)
≤−2b1 and the second inequality comes from

the fact −λ2e
b̂K2λ1+2b2K2λ2 ≤−λ2. The last inequality implies that ∇2

11π
n*(K1,K2)< 0, hence πn*

1 (K1,K2)

is concave in K1. The proofs for remaining parts use similar logic, thus omitted.

Proof of part (i): Nn Scenario: The best response of firm i to the firm j’s action, Kj is uniquely

determined
(
Lemma 1.i

)
, and the mapping is a contraction

(
Lemma 1.ii

)
. Note that limKi→0 π

Nn*
i (K1,K2) =

0 and limKi→∞ πNn*
i (K1,K2)→−∞. Without loss of generality, it suffices to restrict the firm i’s strategy

space to be a compact interval, [0, K̄i] for some K̄i <∞. From Fudenberg and Tirole (1991), the equilibrium

exists and it is unique.

Nc Scenario: Applying Proposition 3, the expected profit of firm i who has endowment Ki and will

collaborate with firm j (with endowment Kj), in the second stage, πc*
i (K1,K2), is :

πc*
i (K1,K2) =

1

2

(
πm*(K1 +K2)+πn*

i (K1,K2)−πn*
j (K1,K2)

)
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Define π̃n*
i (K1,K2) = πn*

i (K1,K2)−πn*
j (K1,K2), i ̸= j and substitute this into the previous equation, we

rewrite

πc*
i (K1,K2) =

1

2

(
πm*(K1 +K2)+ π̃n*

i (K1,K2)
)

i, j = 1,2 i ̸= j. (30)

It should be noted that πc*
i (K1,K2) is concave in Ki (this follows from the fact that πm*(K1 +K2) and

π̃n*
i (K1,K2) are concave: see Lemma 1.(iii). Similar to the Nn scenario, it suffices to restrict the firm i’s

strategy space to be a compact interval, which guarantees the existence (Fudenberg and Tirole, 1991).

For the uniqueness, first note that the best response mapping under the Nc scenario is not a contraction

in general. We show the uniqueness by showing that the slopes of the best response functions are bounded

in a way so that they will intersect exactly once. To start with, observe that the best response of firm i to

the capacity Kj of firm j under the Nc scenario, KNc
i (Kj), is

KNc
i (Kj) =

{
0, if ∇iπ

c*
i (0,Kj)≤ 0;

K̃Nc
i (Kj), otherwise.

i, j = 1,2 i ̸= j (31)

where K̃Nc
i (Kj) is the solution to the following first order condition for given Kj :

∇iπ
c*
i

(
K̃Nc

i (Kj),Kj

)
=

1

2

{
∇πm*(K̃Nc

i (Kj)+Kj)+∇iπ̃
n*
i (K̃Nc

i (Kj),Kj)
}
= 0

Then, implicitly differentiating the first order condition, we get:

∇KNc
i (Kj) =−1 ·

∇2πm*
(
KNc

i (Kj)+Kj

)
+∇2

ijπ̃
n*
i

(
KNc

i (Kj),Kj

)
2∇2

iiπ
c*
i

(
KNc

i (Kj),Kj

) .

To obstain the bound on ∇KNc
i (Kj), we first use Lemma 1(iv) and ∇KNc

i (Kj)>−1. Furthermore, since

πc*
i (K1,K2) is strictly concave in Ki, the denominator has a negative sign. Hence, ∇KNc

i (Kj) has the same

sign as the numerator. Note that the first term in the numerator is negative since πm*(·) is concave. Thus, in

order for ∇KNc
i (Kj) to be positive, the sign of the second term in the numerator must be postive. Subsutitute

qn*i (ω) into π̃n*
i

(
K1,K2

)
and taking cross-partial derivative in Ki and Kj yield

∇2
ijπ̃

n*
i

(
Ki,Kj

)
= b̂2

{
Ki

∫ ∞

2biKi+b̂Kj

f(ti,2bjKj + b̂Ki)dti −Kj

∫ ∞

2bjKj+b̂Ki

f(2biKi + b̂Kj , tj)dtj

}
. (32)

If Θis are exponentially distributed, ∇2
ijπ̃

n*
i

(
Ki,Kj

)
becomes

∇2
ijπ̃

n*
i

(
Ki,Kj

)
= b̂2e−(2biKi+b̂Kj)λi−(2bjKj+b̂Ki)λj [Kiλj −Kjλi] (33)

Note that this term is positive only if Kiλj >Kjλi. Therefore, ∇KNc
i (Kj) can be positive only if Kiλj >

Kjλi. This and the fact that ∇KNc
i (Kj) > −1 together implies that ∇KNc

i (Kj) ∈ [−1,0] for Kiλj < Kjλi

and ∇KNc
i (Kj) ≥ −1 for Kiλj > Kjλi: This is shwon in Figure 14(a). We now use this to show that the

best response functions cannot cross multiple times. For this, suppose that the best responses cross twice

or more and one of these intersections occurs at point A in Figure 14(b). Notice that from the fact that

∇KNc
2 (K1)∈ [−1,0] for K2λ1 <K1λ2 and ∇KNc

2 (K1)≥−1 elsewhere, the additional intersection point must

be in the shaded region in Figure 14(b). However, if KNc
1 (K2) passes through point A, the other intersection

(which is in the shaded region) must have ∇KNc
1 (K2)<−1, contradicts the fact that ∇KNc

1 (K2)≥−1 (see

Figure 14(a)). Thus, the response functions cannot cross more than once.
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Figure 14 (a) Signs of the best response functions’ derivatives with respect to the regions on K1 ×K2 space,

(b) Example for contradiction to prove that the intersection of the best response functions is unique.

Cc and Cn Scenarios: The existence comes from the fact that (K1,K2, η) = (KNn*
1 ,KNn*

2 ,0) and the

fact that the total profit is bounded above by that of a centralized firm.

The proof of part ii.(a) is algebraic, thus omitted. The proof for uniform distribution is similar.

For (b), observe that (KCs∗
1 ,KCs∗

2 ) maximizes πs∗
1 (K1,K2)+πs∗

2 (K1,K2). In the Cc scenario, by Proposi-

tion 3, we have πc*
1 (K1,K2)+πc*

2 (K1,K2) = πm*(K1 +K2). Thus, K
Cc*
1 +KCc*

2 =Km*
T holds. □

The proofs of Propositions 5, 7, and 8 use the following technical lemma.

Lemma 2. We have the following:

i. πn*
i (Ki,Kj) is decreasing in Kj, i= 1,2, i ̸= j.

ii. The optimal capacity of a centralized firm is larger than an individual capacity of a firm under the Nn

scenario: Km*
T ≥KNn*

i , i= 1,2.

iii. The joint capacity under the Cp scenario is smaller than the capacity of a centralized firm: KCp*
T <Km*

T .

Proof of Lemma 2. We present the proof of Part iii. The proofs of parts (i) and (ii) are algebraic,

therefore omitted. Under the Cp scenario, the firms negotiate to determine the reallocation of the total

capacity in the second stage, before each firm individually sets its production quantity. Therefore, the total

revenue, RCp*
T (KT, θ1, θ2), for given demand signals (θ1, θ2), is a function of the total capacity KT. By the

NBS,KCp*
T maximizes E

[
RCp*

T (KT, θ1, θ2)
]
−cKT. We can show that E

[
RCp*

T (KT, θ1, θ2)
]
−cKT is increasing

at KT = 0 and decreasing when KT →∞. Therefore, the first order condition is a necessary condition for

KCp*
T to be optimal:

d
dKT

|
KT=K

Cp*
T

{
E
[
RCp*

T (KT,Θ1,Θ2)
]
− cKT

}
= 0

Note that for any incremental capacity, a centralized firm optimally allocates it to production while the

efficiency is not guaranteed in the Cp scenario. This implies that, for any marginal increase in capacity, the

increase in the total profit of a centralized firm is always larger than the increase in the total profit under

the Cp scenario. Hence,

d
dKT

{
E
[
Rm*

T (KT,Θ1,Θ2)
]
− cKT

}
> d

dKT

{
E
[
RCp*

T (KT,Θ1,Θ2)
]
− cKT

}
for any KT, and we have
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d
dKT

|
KT=K

Cp*
T

{
E
[
Rm*

T (KT,Θ1,Θ2)
]
− cKT

}
> d

dKT
|
KT=K

Cp*
T

{
E
[
RCp*

T (KT,Θ1,Θ2)
]
− cKT

}
= 0

As E
[
Rm*

T (KT,Θ1,Θ2)
]
− cKT is concave in KT, this implies that KCp*

T <Km*
T .

Proof of Proposition 2: i. We first show that a subsidy-free equilibrium, (KCs∗
1 ,KCs∗

2 ) satisfies equation

(18). Note that applying ηCs∗ = 0, the equation in (17) is simplified as follows:

πs∗
1 (KCs∗

1 ,KCs∗
2 )−πs∗

2 (KCs∗
1 ,KCs∗

2 ) = πd
1 −πd

2 s∈ {n, c} (34)

For the Cn scenario (i.e., s= n), this directly implies equation (18). For the Cc scenario (i.e., s= c), from

(30), we have

πc*
i (K1,K2) = πn*

i (K1,K2)+
πm*(K1 +K2)−πn*

i (K1,K2)−πn*
j (K1,K2)

2
i, j = 1,2 i ̸= j (35)

Substituting Ki =KCc*
i , i= 1,2 and applying in (34), we get (18).

We now show that any equilibrium (KCs∗
1 ,KCs∗

2 ) that satisfies equation (18) is subsidy-free. The result

ηCn* = 0 follows from algebra for the Cn scenario. For the Cc scenario, we first rewrite (18) using the

expression of πc*
i (K1,K2) in equation (35). Then, we have πc*

1 (KCc*
1 ,KCc*

2 )− πc*
1 (KCc*

1 ,KCc*
2 ) = πd

1 − πd
2 .

Substituting this in (17), we obtain 2ηCc* = 0, which completes the proof.

ii. From the fact that (πd
1 , π

d
2 ) =

(
πn*
1 (KNn*

1 ,KNn*
2 ), πn*

2 (KNn*
1 ,KNn*

2 )
)
, equation (18) can be expressed as:

πn*
1 (KCs∗

1 ,KCs∗
2 )−πn*

2 (KCs∗
1 ,KCs∗

2 ) = πn*
1 (KNn*

1 ,KNn*
2 )−πn*

2 (KNn*
1 ,KNn*

2 ) s∈ {n, c} (36)

For b̂ = 0, we will first consider the Cn scenario. Since b̂ = 0, qn*i (ω) and the inverse demand function,

pi(q1, q2, ω) = θi − biqi, are independent from Kj . Therefore, the profit πn*
i (Ki,Kj) is independent from

Kj . Under the Cn scenario, the equilibrium, (KCn*
1 ,KCn*

2 ) will maximize πn*
1 (K1,K2)+ πn*

2 (K1,K2). Since

πn*
i (Ki,Kj) is independent from Kj , we have KCn*

i =KNn*
1 . The proof for the Cc scenario is similar, thus

omitted. Now, consider the Cc scenario when b̂ > 0. First note that, by Theorem 1, KCc*
1 +KCc*

2 =Km*
T . For

the proof, define the following function

h(K1) =
(
πn*
1 (K1,K

m*
T −K1)−πn*

1 (KNn*
1 ,KNn*

2 )
)
−
(
πn*
2 (K1,K

m*
T −K1)−πn*

2 (KNn*
1 ,KNn*

2 )
)

We next prove that there exists a K1 such that h(K1) = 0. For this, observe that h(·) is continuous (since

πn*
1 (·, ·) is continuous). In addition, we have:

h(KNn*
1 ) =

(
πn*
1 (KNn*

1 ,Km*
T −KNn*

1 )−πn*
1 (KNn*

1 ,KNn*
2 )

)
−
(
πn*
2 (KNn*

1 ,Km*
T −KNn*

1 )−πn*
2 (KNn*

1 ,KNn*
2 )

)
Since KNn*

2 ≥Km*
T −KNn*

1 and πn*
1 (K1,K2) is decreasing in K2 (Lemma 2(i)), the terms in the first paren-

thesis is positive. Also, from the fact that KNn*
2 is the best response to KNn*

1 , the terms in the second

parantehesis is negative. Combining these, we have h(KNn*
1 )≥ 0.

A similar argument shows that Km*
T −KNn*

i ≥ 0 (Lemma 2(ii)) and

h(Km*
T −KNn*

2 ) =
(
πn*
1 (Km*

T −KNn*
2 ,KNn*

2 )−πn*
1 (KNn*

1 ,KNn*
2 )

)
−
(
πn*
2 (Km*

T −KNn*
2 ,KNn*

2 )−πn*
2 (KNn*

1 ,KNn*
2 )

)
≤ 0
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These two inequalities imply that there exists K1 between min(Km*
T − KNn*

2 ,KNn*
1 ) and max(Km*

T −

KNn*
2 ,KNn*

1 ) that satisfies equation (36) (i.e., h(K1) = 0).

Proof of Proposition 5: i. The proof is similar to that for the existence of the NBS solution for the Cc

senario, thus omitted. ii. Under the Cp scenario, the firms negotiate to trade capacity before they make

quantity decisions. Notice that, if b̂ = 0, the firm i’s revenue is indepedent from the other firm’s quantity.

Hence, as long as the total endowment is the same, the quantities that firms will produce when they do not

collaborate during the production are the same as the those chosen by a centralized firm.

Proof of Proposition 6: We omit the proof of part i. since it is similar to the proof of Theorem 1(i)

(existence) and the proof of Theorem 1(ii)a (difference), respectively. For part ii., from Proposition 5,

observe that, the equilibrium production quantities are the same as the quanitites that a centralized firm

with the same total capacity would produce. Since the firms fully collaborate in capacity investment in the

first stage, the equilibrium outcome must coincide with the equilibrium outcome under the Cc scenario. The

proof of part iii. is similar to the proof of Proposition 2(i), thus omitted. Finally, for part iv., the case where

b̂ = 0 immediately follows from part (ii) of Proposition 6. Now, consider the case where b̂ > 0. Note from

Lemma 2(iii) that Km*
T >KCp*

T . Furthermore, from the assumption, it must be KCp*
T ≥KNn*

i for i= 1,2.

Then, the result follows from a similar argument used in the proof of Proposition 2(ii) with KCp*
T replacing

Km*
T .

Proof of Proposition 3.

(A) First note that from Proposition 2, qn*i (ω) and πn*
i (Ki,Kj) are independent from Kj when b̂= 0. Thus,

we will simplify the notation and drop Kj from the arguments of πn*
i (·), i, j = 1,2, i ̸= j in this proof.

(i.) Note that (KCn*
1 ,KCn*

2 ) maximizes πn*
1 (K1) + πn*

2 (K2). Since πn*
i (·) is independent of Kj , i, j = 1,2,

i ̸= j, KCn*
i = argmaxπn*

i (Ki) =KNn*
i , i= 1,2.

(ii.) From Theorem 1(ii)b, we have KCc*
T = Km*

T . Therefore, it suffices to show that min(Km*
T ,KNn*

T ) ≤

KNc*
T ≤max(Km*

T ,KNn*
T ). We provide the proof for the case where the equilibrium under the Nc scenario,

(KNc*
1 ,KNc*

2 ) is an interior solution where both capacity endowments satisfy the first order conditions. The

treatment for the boundary solution as the analysis is similar. From equation (30), the first order conditions

that determine the equilibrium for the Nc scenario is expressed as follows:

∇iπ
c*
i (KNc*

i ,KNc*
j ) =∇πm*(KNc*

1 +KNc*
2 )+∇πn*

i (KNc*
i ) = 0 i, j = 1,2 i ̸= j (37)

Thus, we must have ∇πn*
1 (KNc*

1 ) =∇πn*
2 (KNc*

2 ).

Consider the case that KNn*
T >Km*

T . Suppose that KNc*
1 +KNc*

2 =KNc*
T <Km*

T . Since πm*(·) is concave,

we have ∇πm*(KNc*
T )> 0. Then, from equation (37), it must be ∇πn*

1 (KNc*
1 )< 0. Since, πn*

i (·) is also concave

in Ki and it is independent of Kj , it must be the case that KNc*
i >KNn*

i , i= 1,2. Hence, we have

Km*
T > KNc*

1 +KNc*
2 > KNn*

1 +KNn*
2 =KNn*

T

which contradicts KNn*
T >Km*

T . Hence, we must have KNc*
T ≥Km*

T .



Ahn, Çetinkaya, Duenyas, and Zhang: Capacity sharing
42 © 0000

Now, to prove KNc*
T ≤KNn*

T , suppose that KNc*
1 >KNn*

1 . Since πn*
1 (·) is concave, ∇πn*

1 (KNc*
1 )< 0. Then,

from equation (37), it must be the case that ∇πm*(KNc*
T )> 0. As πm*(·) is concave, this implies KNc*

T <Km*
T .

Note that ∇πn*
1 (KNc*

1 )< 0 also implies that ∇πn*
2 (KNc*

2 )< 0, and hence KNc*
2 >KNn*

2 . Therefore:

Km*
T > KNc*

1 +KNc*
2 > KNn*

1 +KNn*
2 =KNn*

T

which contradicts KNn*
T >Km*

T . Hence, we must have KNc*
1 ≤KNn*

1 and hence KNc*
2 ≤KNn*

2 , establishing

KNc*
T ≤KNn*

T . Therefore, we have Km*
T ≤KNc*

T ≤KNn*
T . The proof when KNn*

T ≤Km*
T is similar.

(iii.) Directly follows Proposition 6(ii).

(B) The proof is similar to part (A) but uses Lemma 2(i). Hence, we only provide the sketches and

highlight difference. For part (i), notice that, when the firms collaborate in the capacity building stage (as in

Cn scenario), the NBS stipluates that the firms select the capacities to maximize the total profit. Therefore

(KCn*
1 ,KCn*

2 ) satisfies the following conditions:

∇1π
n*
1 (KCn*

1 ,KCn*
2 )+∇1π

n*
2 (KCn*

1 ,KCn*
2 ) = 0 and ∇2π

n*
1 (KCn*

1 ,KCn*
2 )+∇2π

n*
2 (KCn*

1 ,KCn*
2 ) = 0

Lemma 2(i) establishes that ∇jπ
n*
i (Ki,Kj) < 0, for i, j = 1,2, and i ̸= j. Therefore, we have:

∇1π
n*
1 (KCn*

1 ,KCn*
2 ) > 0 and ∇2π

n*
2 (KCn*

1 ,KCn*
2 ) > 0. Recall that KNn

i (Kj) is the best response of firm

i to the capacity Kj of firm j under the Nn scenario. Since πn*
i (Ki,Kj) is concave in Ki, we have

∇iπ
n*
i (KNn

i (Kj),Kj) = 0. Thus, KCn*
1 <KNn

1 (KCn*
2 ) and KCn*

2 <KNn
2 (KCn*

1 ). This is depicted in Figure 15,

where (KCn*
1 ,KCn*

2 ) can only be in the lightly shaded region. In this figure, the dashed line represents the

values where K1+K2 =KNn*
T . The lightly shaded region is to the left of this line because ∇KNn

i (·)∈ (−1,1)

by Lemma 1(ii). Therefore, KCn*
T ≤KNn*

T .

Figure 15 The best response curves under the Nn scenario and the equilibrium capacity vectors under the Cn

and Nc scenarios.

(ii.) We use contradiction to prove the result that min(Km*
T ,KNn*

T )≤KNc*
T . The argument is similar to the

proof of part (A.ii) in Proposition 3, thus omitted.

(iii.) The result immediately follows Lemma 2.(iii).
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