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Abstract: We study here the spectral Weyl asymptotics for a semiregular system, ex-
tending to the vector-valued case results of Helffer and Robert, and more recently of
Doll, Gannot and Wunsch. The class of systems considered here contains the important
example of the Jaynes–Cummings system that describes light-matter interaction.
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1. Introduction

In this paper we will establish a result about the asymptotics of the Weyl spectral counting
function N(λ) of a class of semiregular (see Sect. 2) globally elliptic pseudodifferential
N × N systems (of order 2) that contains the important model of the Jaynes–Cummings
system (see Sect. 3.1) that describes the interaction of light and matter (see [21]). The
class we consider extends to a semiregular case (with scalar principal symbol) that of non-
commutative harmonic oscillators (NCHOs) introduced by Parmeggiani and Wakayama
in [16–18] (see also [14,15]). Namely, while the pseudodifferential class considered in
[14] had a step −2 j in the homogeneity of the j th-term in the asymptotic expansion of
the symbol, we consider here a step − j , an example of such a scaling in homogeneity
being in fact the symbol of the Jaynes–Cummings Hamiltonian (we call semiregular
this kind of classical symbols).

In the scalar case, this kind of asymptotics for global operators was initially estab-
lished by Chazarain [3] (in a semiclassical setting) and then generalized by Shubin [22]
(see also Hörmander [8]), and Helffer and Robert [6] (see also [19] and Helffer’s book
[7], and references therein), and more recently made more precise by Doll, Gannot and
Wunsch in [4] (see also Doll and Zelditch [5] for a precise study of the singularities of
the trace of the Schrödinger propagator).

In general, the importance of having asymptotics of N(λ) lies in the fact that passing
to the inverse gives asymptotics of large eigenvalues. Hence, the more precise is the
asymptotics of N(λ), the more precise is the asymptotics of λN. On the strict physical
level, the importance of N(λ) is due to the fact that it determines the number of states
of the system per unit energy as a function of the energy itself.

The asymptotics of the Weyl spectral counting function will be given in terms of the
symbol of the system, and more precisely in terms of the principal part, the semiprincipal
part and the subprincipal part (respectively the terms of order 2, 1 and 0 in the asymptotic
expansion of the symbol). We will show that one can blockwise diagonalize (through a
decoupling theorem) the system so as to be able to implement the scalar results mentioned
above. This is, however, not straightforward, since we have to compose certain Fourier
integral operators and ψdos in the Weyl calculus keeping track of the (matrix) symbols.

We will be retaining the notation relative to the Hörmander-Weyl pseudodifferential
calculus (also in the semiclassical case) as in Parmeggiani [14] (see also [15] and [13]).

The plan of the paper is the following. In the next section we briefly recall the class
of semiregular symbols and its main properties that we will be using in this paper. We
then define the class of systems we will be concerned with here. In Sect. 3, we recall the
Jaynes–Cummings model and its variations to encompass also atoms with several energy
levels. We show that it is possible to associate with such systems coming from physics,
geometrical models related to complexes of vector-valued differential forms. This is
interesting in our opinion, for it shows that very likely higher Lie groups of symmetries
are allowed in the theory. In Sect. 5, we state and prove the decoupling theorem, which
shows that for the class we consider here it is possible to obtain a pseudodifferential
block-reduction of the system. This is fundamental in the study of a parametrix of the
Schrödinger flow associated with our system, which in turn is the basic object to study
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for obtaining the Weyl asymptotics we are interested in. The decoupling theorem will
be stated both in the semiclassical case and in the semiregular case, and the proof given
in the semiclassical setting (in fact, it will be useful, for further projects, to have also
the semiclassical version). Since the subprincipal part enters the picture, we discuss
in Sect. 6 the transformation properties of the subprincipal symbol of the system, along
with its transformation law when changing a “gauge” (that is, when changing the unitary
symbol which diagonalizes the semiprincipal part). In Sect. 7, we will state and prove
the basic Weyl asymptotic results, the first one extending to our class of systems the
asymptotics due to Helffer and Robert [6], and the second presenting a better error term
when the zero-set of the determinant of the semiprincipal part has small dimension (see
Theorems 7.8 and 7.9 below). The results are based on the construction of a reduced
propagator, following the approach of Doll, Gannot and Wunsch [4], and it is here that the
diagonalization theorem plays a fundamental role. The extension to systems, however,
is not for free, for we have to control the conjugation of the Fourier integral operators
(FIOs) with quadratic phases by the pseudodifferential diagonalizers, without losing the
symbol-calculus properties. This point is very delicate and we follow here the approach
of Doll and Zelditch [5], having, however, to adapt it to our case.

In the closing Sect. 8, we shall show the resulting asymptotics in the 2 × 2 Jaynes–
Cummings system, and of a perturbation of the 3× 3 Jaynes–Cummings system and its
6 × 6 geometric counterpart.

2. Semiregular Symbols and Our Class

We give in this section the definition of semiregular symbols that we will be considering
throughout this paper, recall their basic properties and then introduce the class of systems
we consider here.

In order to prepare the ground also to the study of extensions of this kind of systems
to more general classes of systems, we will be using the following notation for the
Hörmander metric and admissible weight (see Hörmander [9]): with X = (x, ξ), Y =
(y, η) etc. belonging to the phase-space R

n × R
n , and m(X) := 〈X〉 = (1 + |X |2)1/2

the usual "Japanese bracket", we consider the Hörmander metric gX = |dX |2/m(X)2.
Then m is an admissible function (and so is mμ for any given μ ∈ R), and we may
exploit the full power of the Weyl-Hörmander pseudodifferential calculus.

We will write Ṙ
2n for R

n × R
n \ {(0, 0)}.

Definition 2.1. Let MN denote the algebra of N × N complex matrices. A symbol
a ∈ S(mμ, g;MN ) is said to be classical (see Remark 3.2.4 of [14]) if it possesses an
asymptotic expansion

∑
j≥0 aμ−2 j in isotropic (i.e. positively homogenous and smooth

outside the origin) terms aμ−2 j positively homogeneous of degree μ − 2 j . We write
a ∈ Scl(mμ, g;MN ).
We say that a ∈ S(mμ, g;MN ) is semiregular if a = a(0) + a(1), where a(0) ∈
Scl(mμ, g;MN ) and a(1) ∈ Scl(mμ−1, g;MN ). We write a ∈ Ssreg(mμ, g;MN ).

In other words, a symbol a is semiregular if it possesses an asymptotic expansion∑
j≥0 aμ− j in isotropic terms aμ− j positively homogeneous of degree μ − j .

The terms aμ, aμ−1 and aμ−2 are called the principal symbol, the semiprincipal symbol
and the subprincipal symbol, respectively, of the operator aw(x, D).
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Hence, a ∈ Ssreg(mμ, g;MN ) if there exists a sequence (aμ− j ) j≥0 ⊂ C∞(Ṙ2n;MN )

where aμ− j is positively homogeneous of degree μ − j (in X ) and, for an excision
function χ ,

a − χ

N∑

j=0

aμ− j ∈ S(mμ−(N+1), g;MN ), ∀N ∈ Z+.

As usual, we write

a ∼
∑

j≥0

aμ− j .

Comment on the notation. Helffer in [7] and the authors of [4] and of [5] use �cl for
the set of semiregular symbols. We decided to adopt our notation Ssreg because, as the
natural homogeneity of the Poisson bracket of homogeneous symbols is the sum of the
orders minus 2, it is natural in the global calculus to call “regular” those symbols whose
asymptotic expansion is made of homogeneous symbols for which the j-th term has
order μ−2 j where μ is the order of the principal term. This is indeed parallel to the use
of “semiregular” appearing in the paper by Boutet de Monvel [2] on the hypoellipticity
of the ∂̄ operator.

Remark 2.2. It is clear that composition of semiregular symbols yields a semiregular
symbol.

Of course, when the symbol a ∈ S(mμ, g;MN ) is Hermitian, then the corresponding
pseudodifferential operator aw(x, D), obtained by Weyl-quantizing a(X), is formally
self-adjoint. We write 
(mμ, g;MN ), resp. 
sreg(mμ, g;MN ), for the ψdos obtained
by Weyl-quantization of symbols in S(mμ, g;MN ), resp. Ssreg(mμ, g;MN ).

Definition 2.3. A symbol a ∈ Ssreg(mμ, g;MN ) is said to be globally elliptic when its
principal part aμ satisfies

| det(aμ(X))| ≈ |X |μN , ∀X ∈ Ṙ
2n .

When a is globally elliptic, we will say that the corresponding ψdo aw(x, D) is globally
elliptic.

As usual, for A, B > 0, we write A � B when there is C > 0 such that A ≤ CB,
and write A ≈ B when there are C,C ′ > 0 such that CA ≤ B ≤ C ′A.

When μ > 0 and a = a∗ ∈ Ssreg(mμ, g;MN ) is globally elliptic (hence, a∗μ− j =
aμ− j for all j ≥ 0 and aμ is globally elliptic), the existence of a (semiregular) two-sided
parametrix yields that aw(x, D), realized as an unbounded operator on L2(Rn;C

N ) with
maximal domain the Shubin Sobolev space Bμ(Rn;C

N ) (see [22], or [7] or [12]), is
self-adjoint with a discrete spectrum. When furthermore aμ > 0 (as a Hermitian matrix),
then aw(x, D) is semibounded from below, and hence it has a spectrum bounded from
below.

We are now in a position to introduce the class of systems we are interested in.

Definition 2.4. We say that an N × N symbol a ∈ Ssreg(mμ, g;MN ) is a semiregular
metric globally elliptic system (SMGES for short) of order μ, when

a(X) = a(X)∗ = pμ(X)IN + aμ−1(X) + aμ−2(X) + Ssreg(m
μ−3, g;MN ), X �= 0,
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where:

• pμ ∈ C∞(Ṙ2n;R) is positively homogeneous of degree μ and such that |X |μ ≈
pμ(X) for all X �= 0 (below, when μ = 2 we will always take p2 to be the standard
harmonic oscillator p2(X) = |X |2/2);
• aμ−1 = a∗μ−1 is such that there exists r ≥ 1 and e0 ∈ C∞(Ṙ2n;MN ) unitary and
positively homogeneous of degree 0 such that

e0(X)∗aμ−1(X)e0(X) = diag(λμ−1, j (X)IN j ; 1 ≤ j ≤ r), X �= 0,

where N = N1+N2+. . .+Nr and λμ−1, j ∈ C∞(Ṙ2n;R) are positively homogeneous
of degree μ − 1 and such that

j < k �⇒ λμ−1, j (X) < λμ−1,k(X), ∀X �= 0.

3. Some Models

We give here a few examples of semiregular NCHOs in the class SMGES, relevant to
Quantum Optics (see [21]), that serve as a model of the class we consider in this paper.
We will then show that they can indeed be set into a geometric framework, giving rise
to connections on the trivial bundle R

n × C
N → R

n which are in general non-flat.
It turns then out that the JC models in the various configurations (see below) are

actually covariant Laplacians (the operators �(N )
k that will be introduced below).

The existence of such geometric generalizations suggests, as pointed out in the In-
troduction, that one may consider higher groups of symmetries (e.g. SU(N ), N ≥ 3,
instead of SU(2) as in the JC model).

It will be convenient to use the following notation. We denote by σ j , j = 0, . . . , 3,
the Pauli-matrices, i.e.

σ 0 = I2, σ 1 =
[

0 1
1 0

]

, σ 2 =
[

0 −i
i 0

]

, σ 3 =
[

1 0
0 −1

]

,

and

σ± = 1

2
(σ 1 ± iσ 2).

Let 〈·, ·〉 be the canonical Hermitian product in C
N , and e1, . . . , eN be the canonical

basis of C
N . Let

E jk := e∗k ⊗ e j , 1 ≤ j, k ≤ N ,

be the basis of MN (C) = gl(N , C), where E jk acts on C
N as

E jkw = 〈w, ek〉e j , w ∈ C
N .

Hence we have the relation

E jk Ehm = (e∗k ⊗ e j )(e
∗
m ⊗ eh) = e∗k (eh)(e∗m ⊗ e j ) = 〈eh, ek〉(e∗m ⊗ e j ) = δhk E jm .

We also let, for X = (x, ξ) ∈ R
n × R

n = R
2n ,

ψ j (X) := x j + iξ j√
2

, 1 ≤ j ≤ n,
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so that ψw
j (x, D) is the annihilation operator and ψw

j (x, D)∗ = (ψ̄ j )
w(x, D) is the

creation operator, with respect to the j-th variable. Hence, with p2(X) = |X |2/2 being
the (standard) harmonic oscillator,

n∑

j=1

ψw
j (x, D)∗ψw

j (x, D) = pw
2 (x, D) − n

2
.

We will also have to consider 2N × 2N matrices of the form σ j ⊗ E jk, in which
case the product is given by

(σ j ⊗ Ehk)(σ j ′ ⊗ Eh′k′) = σ jσ j ′ ⊗ Ehk Eh′k′ ,

and the action on a vector w ∈ C
2N , written as

w =
N∑

j=1

[
w2 j−1
w2 j

]

⊗ e j ,

given by

(σm ⊗ Ehk)w =
N∑

j=1

(σm

[
w2 j−1
w2 j

]

) ⊗ (Ehke j ).

We next list a few important models due to Jaynes and Cummings, recalling at the same
time the physics that leads to the mathematical expression of the first of them (the 2× 2
JC-model).

3.1. The Jaynes–Cummings (JC) model. This is the model of a two-level atom in one
cavity, given by the 2 × 2 system in one real variable x ∈ R

Aw(x, D) = pw
2 (x, D)I2 + α

(
σ +ψw(x, D)∗ + σ−ψw(x, D)

)
+ γσ 3, α, γ ∈ R.

(3.1)

The JC-model is a solvable, fully quantum mechanical model of an atom in a field,
introduced by E. Jaynes and F. Cummings [1] in 1963. It has served as a theoretical
description of the light-matter interaction and has continued to fulfil in unanticipated
ways the objectives of its discoverers, making it possible to examine the basic proper-
ties of quantum electrodynamics. The relative simplicity of the JC-model and the ease
with which it can be extended through analytic expressions or numerical computations
continue to motivate attention.

More precisely the JC-model was first introduced to study the classical aspects of
spontaneous emission (SE) and to reveal the existence of Rabi oscillations in atomic
excitation probabilities for fields with sharply defined energy (or photon number). In
fact, Jaynes and Cummings considered a single two-state atom (molecule) interacting
with a single near-resonant quantized cavity mode of the electromagnetic field. In case
of fields with a statistical distribution of photon numbers, the oscillations collapse to an
expected steady value. Thus:
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The Jaynes–Cummings model consists of a single two-level atom coupled to a quantized
single-mode field, represented as a harmonic oscillator (HO): the coupling between atom
and field is characterized by a Rabi frequency. Loss of excitation in the atom appears as
a gain in excitation of the oscillator.

For more on the history of the JC-model, see Shore and Knight [21].
We next give some physical insight of the Hamiltonian (3.1), starting from the physical

meaning of its terms and the description of the light-matter interaction phenomenon.

• Representing mathematically the photon creation and annihilation operators â† and
â, respectively, by ψw(x, D)∗ and ψw(x, D), the term

pw
2 (x, D)I2 − 1

2
I2 = ψw(x, D)∗ψw(x, D)(=: â†â)

is the photon number operator which acts on photon number states |n〉,
â†â |n〉 = n |n〉 ,

since

â† |n〉 = √
n + 1 |n + 1〉 , â |n〉 = √

n |n − 1〉 ;
• α denotes one half of the atom-field coupling constant normalized by the frequency
ω of the mono-modal field;

• 1
2 ± γ denote the energies of the two atomic states |g〉 and |e〉 (respectively, ground

and excited, that we represent mathematically by the vectors e j for j = 1, 2, respec-
tively) normalized by �ω, � being the Plank constant;

• σ± denote the transition operators acting on the atomic states, defined as

σ + |s〉 =
{
|g〉 , if s = e
0, if s = g

and σ− |s〉 =
{
|e〉 , if s = g
0, if s = e

; (3.2)

• σ 3 denotes the commutator of the transition operators acting on the atomic states,
that is σ3 := [σ+, σ−].

The phenomenon described is the following. In the full Hamiltonian (3.1) we distinguish
three parts:

Ĥatom = γσ 3 +
1

2
I2,

Ĥfield = pw
2 (x, D)I2 − 1

2
I2,

Ĥint = α
(
σ +ψw(x, D)∗ + σ−ψw(x, D)

)
.

The terms Ĥatom and Ĥfield describe, respectively, the variation of the energy contained
in the atom and in the electromagnetic field, while Ĥint is the most relevant part of the
full Hamiltonian since it describes the interaction, that is the energy transfer between
the two physical objects. Namely, σ +ψw(x, D)∗ describes the photon emission by the
atom with loss of excitation of the atom itself, while σ−ψw(x, D) describes the photon
absorption by the atom which becomes excited.
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3.2. The JC-model for an N-level atom and n = N − 1 cavity-modes in the �-
configuration. In this case, for α1, . . . αN−1 ∈ R \ {0}, γ1, . . . γN−1 ∈ R with γ1 ≤
γ2 ≤ · · · ≤ γN−1, we consider the N × N system in R

n , n = N − 1, given by

Aw(x, D) = pw
2 (x, D)IN

+
N−1∑

k=1

αk

(
ψw
k (x, D)∗Ek,k+1 + ψw

k (x, D)Ek+1,k

)
+

N−1∑

k=1

γk Ek+1,k+1.

In this case, the levels of the atom are given by 0 and the γk .

3.3. The JC-model for an N-level atom and n = N − 1 cavity-modes in the
∧
-

configuration. In this case, for α1, . . . αN−1 ∈ R \ {0}, γ1, . . . γN−1 ∈ R with γ1 ≤
γ2 ≤ · · · ≤ γN−1, we consider the N × N system in R

n , n = N − 1, given by

Aw(x, D) = pw
2 (x, D)IN

+
N−1∑

k=1

αk

(
ψw
k (x, D)∗Ek,N + ψw

k (x, D)EN ,k

)
+

N−1∑

k=1

γk Ek+1,k+1.

In this case, the levels of the atom are given by 0 and the γk .

3.4. The JC-model for an N-level atom and n = N − 1 cavity-modes in the so-called∨
-configuration. In this case, for α1, . . . αN−1 ∈ R \ {0}, γ1, . . . γN−1 ∈ R with γ1 ≤

γ2 ≤ . . . ≤ γN−1, we consider the N × N system in R
n , n = N − 1, given by

Aw(x, D) = pw
2 (x, D)IN

+
N−1∑

k=1

αk

(
ψw
k (x, D)∗E1,k+1 + ψw

k (x, D)Ek+1,1

)
+

N−1∑

k=1

γk Ek+1,k+1.

In this case, the levels of the atom are given by 0 and the γk .

3.5. The diagonalizability of the first-order part in the above JC-models. We next show
that the first-order part of the above JC-models may be diagonalized, so that the Jaynes–
Cummings models all belong to the class of systems we consider in this paper. The result
of the 2 × 2 system is straightforward. We consider therefore only the 3 × 3 and the
N × N cases.

Lemma 3.1. The JC-model for a3-level atomand2 cavity-modes in the�-configuration,
for a N-level atom and N − 1 cavity-modes in the

∧
-configuration and in the

∨
-

configuration may all be smoothly diagonalized.

Proof. Let A1(X) for the first order part of the system. We compute the characteristic
polynomial p(λ; X) = det(λ− A1(X)) for each of the models in the statement, that we
call for short JC-3-�, JC-

∧
and JC-

∨
respectively.
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• As for JC-3-� we have

p(λ; X) = λ
(
λ2 − (α2

1 |ψ1(X)|2 + α2
2 |ψ2(X))|2)

)
, X ∈ R

4.

Hence, there are three eigenvalues

λ0(X) ≡ 0, λ±(X) = ±
√

α2
1 |ψ1(X)|2 + α2

2 |ψ2(X)|2,

that may be ordered as

λ−(X) < λ0(X) < λ−(X), X ∈ Ṙ
4.

Since their pairwise differences in absolute value are bounded from below by |X |,
the diagonalization Theorem 5.1 below can be applied.

• As for JC-
∧

we have

p(λ; X) = λN−2

⎛

⎝λ2 −
N−1∑

j=1

α2
j |ψ j (X)|2

⎞

⎠ , X ∈ R
2n .

In fact, the expression above for p(λ; X) can be obtained by induction on (the number
of atomic levels) N . Hence, there are N eigenvalues

λ0(X) ≡ 0, λ±(X) = ±
(N−1∑

j=1

α2
j |ψ j (X)|2

)1/2
,

that we may order as

λ−(X) < λ1(X) = . . . = λN−2(X) =: λ0(X) < λ+(X), X ∈ Ṙ
2n .

Thus, Theorem 5.3 can be applied with respect to the blockwise diagonalization with
blocks

λ1,1 = 0N−2 and λ2,1 =
[

λ− 0
0 λ+

]

.

• As for JC-
∨

, Theorem 5.3 can be applied because the blockwise diagonalization is
the same as in the previous case, since the characteristic polynomial of this model is
the same as that of JC-

∧
above, and have the same structure.

��
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3.6. Possible extensions. In this case, for α1, . . . αN−1 ∈ R \ {0}, γ1, . . . , γN ∈ R with
γ1 ≤ γ2 ≤ . . . ≤ γN , we consider the following 2N×2N systems in R

n , with n = N−1,
given by

Aw(x, D) = pw
2 (x, D)I2N

+
N∑

k=1

n∑

j=1

αk

(
ψw
j (x, D)∗σ− ⊗ Ekk + ψw

j (x, D)σ+ ⊗ Ekk
)

+
N∑

k=1

γkσ 3 ⊗ Ekk ,

and given by

Aw(x, D) = pw
2 (x, D)I2N

+
N−1∑

k=1

αk

(
ψw
k (x, D)∗σ− ⊗ Ek,k+1 + ψw

k (x, D)σ+ ⊗ Ek+1,k

)
+

N∑

k=1

γkσ 3 ⊗ Ekk .

4. Geometric Examples Generalizing the JC-Model for an N-Level Atom and
n = N − 1 Cavity-Modes

Let �k(Rn) be the space of smooth (C∞) k-differential forms over R
n . We will denote

by �k(Rn;C
N ) = �k(Rn) ⊗ C

N . Consider the exterior derivative operator dk acting
on k-forms, and its adjoint d∗k acting on k + 1-forms which has the expression d∗k =
(−1)nk+1 � d�, where � is the Hodge-� operator induced by the Euclidean metric. We
may hence define the operators

D = Dk := 1√
2

(
dk +

n∑

j=1

x j dx j∧
)
: �k(Rn) −→ �k+1(Rn),

and its �-adjoint

D∗ = D∗
k := 1√

2

(
d∗k +

n∑

j=1

x j i∂/∂x j

)
: �k+1(Rn) −→ �k(Rn).

One has

�k := D∗
k Dk + Dk−1D

∗
k−1 = (pw

2 (x, D) + k − n

2
)1k : �k(Rn) −→ �k(Rn),

where 1k stands for the identity operator on
∧k

(Rn). We consider ordered multiindices
of length k, I = (i1, i2, . . . , ik) where 1 ≤ i1 < i2 < . . . < ik ≤ n. The set of all such
multiindices is denoted by I(n, k). We say that j ∈ I if j appears as one of the entries
of I . We also put dxI = dxi1 ∧ dxi2 ∧ . . . ∧ dxik , so that the dxI , for I ∈ I(n, k), form
a basis of

∧k
(Rn). We have the following set of formulae.

Proposition 4.1. Let ω = ωI dxI ∈ �k(Rn), I ∈ I(n, k). We have:
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(i) For 1 ≤ j ≤ n,

Dk−1(i∂/∂x j ω) =
n∑

h=1

ψw
h (x, D)ωI dxh ∧ i∂/∂x j (dxI );

(ii) For 1 ≤ j ≤ n,

dx j ∧ D∗
k−1ω =

n∑

h=1

ψw
h (x, D)∗ωI dx j ∧ i∂/∂x j (dxI );

(iii) For 1 ≤ j ≤ n,

i∂/∂x j (Dkω) = ψw
j (x, D)ωI dxI −

n∑

h=1

ψw
h (x, D)ωI dxh ∧ i∂/∂x j (dxI );

(iv) For 1 ≤ j ≤ n,

D∗
k (dx j ∧ ω) = ψw

j (x, D)∗ωI dxI −
n∑

h=1

ψw
h (x, D)∗ωI dx j ∧ i∂/∂xh (dxI ).

Proof. The proof is based on the following elementary formula

� (dxh ∧ �(dx j ∧ dxI )) = (−1)nki∂/∂xh (dx j ∧ dxI ). (4.1)

Since d(dxJ ) = 0 we have

Dk−1(i∂/∂x j ω) = 1√
2

n∑

h=1

(∂ωI

∂xh
dxh ∧ i∂/∂x j (dxI ) + xhωI dxh ∧ i∂/∂x j (dxI )

)

n∑

h=1

ψw
h (x, D)ωI dxh ∧ i∂/∂x j (dxI ),

and this proves (i).
Next, using once more the fact that dxJ is closed and using (4.1) gives

dx j ∧ D∗
k−1ω = 1√

2

n∑

h=1

(
(−1)n(k−1)+1 ∂ωI

∂xh
dx j ∧ �(dxh ∧ �dxI ) + xhωI dx j ∧ i∂/∂xh (dxI )

)

= 1√
2

n∑

h=1

(
−∂ωI

∂xh
dx j ∧ i∂/∂xh (dxI ) + xhωI dx j ∧ i∂/∂xh (dxI )

)

=
n∑

h=1

ψw
h (x, D)∗ωI dx j ∧ i∂/∂x j (dxI ),

which proves (ii).
To prove (iii), we just note that
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i∂/∂x j (Dkω) =
n∑

h=1

ψw
h (x, D)ωI i∂/∂x j

(
dxh ∧ dxI

)

= ψw
j (x, D)ωI dxI −

n∑

h=1

ψw
h (x, D)ωI dxh ∧ i∂/∂x j (dxI ).

Finally, to prove (iv), we compute

D∗
k (dx j ∧ ω) = 1√

2

n∑

h=1

(
(−1)nk+1

∂ωI

∂xh
� (dxh ∧ �(dx j ∧ dxI )) + xhωI i∂/∂xh (dx j ∧ dxI )

)

(by (4.1))

=
n∑

h=1

ψw
h (x, D)∗ωI

(
δ jhdxI − dx j ∧ i∂/∂xh (dxI )

)
,

which completes the proof of the proposition. ��
Remark 4.2. By convention, if ω is a 0-form then i∂/∂x j ω = 0, for every j .

4.1. The geometric N-level atom in the �-configuration. Next, let N ≥ 2 be a fixed
positive integer and let n = N−1. We define, for α1, . . . , αN−1 ∈ R\{0}, the following
connection D on the trivial bundle R

n × C
N → R

n

D := D ⊗ IN +
N−1∑

j=1

α j (dx j∧ ) ⊗ E j, j+1.

The connection D extends to the following covariant exterior operator and adjoint co-
variant exterior operator

Dk := Dk ⊗ IN +
N−1∑

j=1

α j (dx j∧ ) ⊗ E j, j+1 : �k(Rn;C
N ) −→ �k+1(Rn;C

N ),

D∗
k := D∗

k ⊗ IN +
N−1∑

j=1

α j i∂/∂x j ⊗ E j+1, j : �k+1(Rn;C
N ) −→ �k(Rn;C

N ).

The connection D is non-flat, as the following lemma shows.

Lemma 4.3. For the curvature FD = D2 ∈ �2(Rn;MN ) of the covariant exterior
operator D we have

FD =
N−2∑

j=1

α jα j+1(dx j ∧ dx j+1∧ ) ⊗ E j, j+2.

(We put by definition E j,N+1 = 0, for every j .)
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Proof. We have

D2 = D2 ⊗ IN +
N−1∑

h=1

αh

(
Dk+1(dxh∧ ) + dxh ∧ D

)
⊗ Eh,h+1

+
N−1∑

j,h=1

α jαh(dx j ∧ dxh∧ ) ⊗ E j, j+1Eh,h+1
︸ ︷︷ ︸
=δ j+1,h E j,h+1

= FD,

for the first and second term vanish. In fact, D2 = 0 and for ω = ωI dxI ,

D(dxh ∧ ω) + dxh ∧ Dω =
N−1∑

j=1

ψw
j (x, D)ωI

(
dxh ∧ dx j ∧ dxI + dx j ∧ dxh ∧ dxI

)
= 0.

This concludes the proof. ��
We next consider the associated Laplacian

�(N )
k = D∗

kDk + Dk−1D∗
k−1 : �k(Rn;C

N ) −→ �k(Rn;C
N ).

Lemma 4.4. We have

�(N )
k = (pw

2 (x, D) + k − n

2
)1k ⊗ IN +

N−1∑

j=1

α j

(
ψw
j (x, D)∗ 1k

⊗E j, j+1 + ψw
j (x, D)1k ⊗ E j+1, j

)

+
N−1∑

j=1

α2
j1k ⊗ E j+1, j+1

+
N−1∑

j=1

α2
j dx j ∧ i∂/∂x j 1k ⊗ (E j, j − E j+1, j+1).

Proof. One has

�(N )
k = (D∗

k Dk + Dk−1D
∗
k−1) ⊗ IN

+
N−1∑

j=1

α j D
∗
k (dx j∧ ) ⊗ E j, j+1

+
N−1∑

j=1

α j i∂/∂x j Dk ⊗ E j+1, j

+
N−1∑

j=1

α j Dk−1i∂/∂x j ⊗ E j+1, j

+
N−1∑

j=1

α j dx j ∧ D∗
k−1 ⊗ E j, j+1
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+
N−1∑

h, j=1

α jαh

(
i∂/∂xh (dx j∧ )

⊗Eh+1,h E j, j+1 + dx j ∧ i∂/∂xh ⊗ E j, j+1Eh+1,h

)
,

from which the lemma follows by virtue of the formulae of Proposition 4.1. ��
Corollary 4.5. When k = 0 we have

�(N )
0 = (pw

2 (x, D) − n

2
) ⊗ IN

+
N−1∑

j=1

α j

(
ψw

j (x, D)∗ ⊗ E j, j+1 + ψw
j (x, D)

⊗E j+1, j

)
+

N−1∑

j=1

α2
j 10 ⊗ E j+1, j+1.

Hence the JC-� model is related to the Laplacian �(N )
0 .

Lemma 4.6. The term of order 1 of �(3)
1 can be blockwise-diagonalized with three

blocks.

Proof. Fix the basis {dxi ⊗ e j }i=1,2; j=1,2,3. We have that the semiprincipal symbol

A1(X) of �(3)
1 ,

A1(X) =
2∑

j=1

α j

(
ψw

j (x, D)∗ 1k ⊗ E j, j+1 + ψw
j (x, D)1k ⊗ E j+1, j

)
,

can be rewritten in the above basis as

A1(X) :=
⎡

⎣
02 A11(X) 02

A11(X) 02 A12(X)

02 A12(X) 02

⎤

⎦ ,

where A1 j (X) = α j

[
ψ j (X) 0

0 ψ j (X)

]

, j = 1, 2, and where 02 is the 2×2 zero-matrix.

A computation gives that the characteristic polynomial p(λ; X) = det(λ − A1(X)) of
A1(X) is

p(λ; X) = λ2
(
λ2 − (α2

1 |ψ1(X)|2 + α2
2 |ψ2(X)|2)

)2
.

Hence, the zeros of p(λ; X) are

0, λ±(X) = ±
√

α2
1 |ψ1(X)|2 + α2

2 |ψ2(X)|2,
with multiplicity 2 each (recall that α1, α2 ∈ R \ {0}).

Thus, Theorem 5.3 can be applied with respect to the blockwise diagonalization with
three blocks

λ1,1 = 02 , λ2,1 =
[

λ+ 0
0 λ+

]

and λ3,1 =
[

λ− 0
0 λ−

]

.

��
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4.2. The geometric N-level atom in the
∧
-configuration. Next, let N ≥ 2 be a fixed

positive integer and let n = N−1. We define, for α1, . . . , αN−1 ∈ R\{0}, the following
connection D on the trivial bundle R

n × C
N → R

n

D := D ⊗ IN +
N−1∑

j=1

α j (dx j∧ ) ⊗ E j,N .

The connection D extends to the following covariant exterior operator and adjoint co-
variant exterior operator

Dk := Dk ⊗ IN +
N−1∑

j=1

α j (dx j∧ ) ⊗ E j,N : �k(Rn;C
N ) −→ �k+1(Rn;C

N ),

D∗
k := D∗

k ⊗ IN +
N−1∑

j=1

α j i∂/∂x j ⊗ EN , j : �k+1(Rn;C
N ) −→ �k(Rn;C

N ).

The connection D is flat as the following lemma shows.

Lemma 4.7. The operators Dk form a complex. Hence the curvature of D vanishes.

Proof. We have to to prove that DkDk+1 = 0. We have

Dk+1Dk = Dk+1Dk ⊗ IN +
N−1∑

h=1

αh

(
Dk+1(dxh∧ ) + dxh ∧ Dk

)
⊗ Eh,N

+
N−1∑

j,h=1

α jαh(dx j ∧ dxh∧ ) ⊗ E j,N Eh,N
︸ ︷︷ ︸
=δh,N E j,N=0

= 0,

for the first and second term, as before, vanish. This concludes the proof. ��
We next consider the associated Laplacian

�(N )
k = D∗

kDk + Dk−1D∗
k−1 : �k(Rn;C

N ) −→ �k(Rn;C
N ).

Lemma 4.8. We have

�(N )
k = (pw

2 (x, D) + k − n

2
)1k ⊗ IN

+
N−1∑

j=1

α j

(
ψw

j (x, D)∗ 1k ⊗ E j,N + ψw
j (x, D)1k ⊗ EN , j

)

+
N−1∑

j=1

α2
j1k ⊗ EN ,N −

N−1∑

j=1

α2
j dx j ∧ i∂/∂x j 1k ⊗ EN ,N

+
N−1∑

j,h=1

α jαhdx j ∧ i∂/∂xh1k ⊗ E j,h .
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Proof. One has

�(N )
k = (D∗

k Dk + Dk−1D
∗
k−1) ⊗ IN +

N−1∑

j=1

α j D
∗
k (dx j∧ ) ⊗ E j,N +

N−1∑

j=1

α j i∂/∂x j Dk ⊗ EN , j

+
N−1∑

j=1

α j Dk−1i∂/∂x j ⊗ EN , j +
N−1∑

j=1

α j dx j ∧ D∗
k−1 ⊗ E j,N

+
N−1∑

h, j=1

α jαh

(
i∂/∂xh (dx j∧ ) ⊗ EN ,h E j,N + dx j ∧ i∂/∂xh ⊗ E j,N EN ,h

)
,

from which the lemma follows by virtue of the formulae of Proposition 4.1. ��
Corollary 4.9. When k = 0 we have

�(N )
0 = (pw

2 (x, D) − n

2
) ⊗ IN

+
N−1∑

j=1

α j

(
ψw

j (x, D)∗ ⊗ E j,N + ψw
j (x, D) ⊗ EN , j

)
+

(N−1∑

j=1

α2
j

)
10 ⊗ EN ,N .

Hence the JC-
∧

model is related to the Laplacian �(N )
0 .

4.3. The geometric N-level atom in the
∨
-configuration. Next, let N ≥ 2 be a fixed

positive integer and let n = N−1. We define, for α1, . . . , αN−1 ∈ R\{0}, the following
connection D on the trivial bundle R

n × C
N → R

n

D := D ⊗ IN +
N−1∑

j=1

α j (dx j∧ ) ⊗ E1, j+1.

The connection D extends to the following covariant exterior operator and adjoint co-
variant exterior operator

Dk := Dk ⊗ IN +
N−1∑

j=1

α j (dx j∧ ) ⊗ E1, j+1 : �k(Rn;C
N ) −→ �k+1(Rn;C

N ),

D∗
k := D∗

k ⊗ IN +
N−1∑

j=1

α j i∂/∂x j ⊗ E j+1,1 : �k+1(Rn;C
N ) −→ �k(Rn;C

N ).

The connection D is flat, by the following lemma.

Lemma 4.10. The operators Dk form a complex. Hence the curvature of D vanishes.

Proof. We have to to prove that DkDk+1 = 0. We have

Dk+1Dk = Dk+1Dk ⊗ IN +
N−1∑

h=1

αh

(
Dk+1(dxh∧ ) + dxh ∧ Dk

)
⊗ E1, j+1
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+
N−1∑

j,h=1

α jαh(dx j ∧ dxh∧ ) ⊗ E1, j+1E1,h+1
︸ ︷︷ ︸
=δ j+1,1E1,h+1=0

= 0,

for the first and second term, once more, vanish. This concludes the proof. ��
We next consider the associated Laplacian

�(N )
k = D∗

kDk + Dk−1D∗
k−1 : �k(Rn;C

N ) −→ �k(Rn;C
N ).

Lemma 4.11. We have

�(N )
k = (pw

2 (x, D) + k − n

2
)1k ⊗ IN

+
N−1∑

j=1

α j

(
ψw

j (x, D)∗ 1k ⊗ E1, j+1 + ψw
j (x, D)1k ⊗ E j+1,1

)

+
N−1∑

j=1

α2
j1k ⊗ E j+1, j+1 +

(N−1∑

j=1

α2
j dx j ∧ i∂/∂x j 1k

)
⊗ E1,1

−
N−1∑

j,h=1

α jαhdx j ∧ i∂/∂xh ⊗ Eh+1,h+1.

Proof. In fact,

�(N )
k = (D∗

k Dk + Dk−1D
∗
k−1) ⊗ IN +

N−1∑

j=1

α j D
∗
k (dx j∧ ) ⊗ E1, j+1

+
N−1∑

j=1

α j i∂/∂x j Dk ⊗ E j+1,1

+
N−1∑

j=1

α j Dk−1i∂/∂x j ⊗ E j+1,1 +
N−1∑

j=1

α j dx j ∧ D∗
k−1 ⊗ E1, j+1

+
N−1∑

h, j=1

α jαh

(
i∂/∂xh (dx j∧ ) ⊗ Eh+1,1E1, j+1 + dx j ∧ i∂/∂xh ⊗ E1, j+1Eh+1,1

)
,

from which the lemma follows once more by virtue of the formulae of Proposition 4.1.
��

Corollary 4.12. When k = 0 we have

�(N )
0 = (pw

2 (x, D) − n

2
) ⊗ IN

+
N−1∑

j=1

α j

(
ψw
j (x, D)∗ ⊗ E1, j+1 + ψw

j (x, D) ⊗ E j+1,1

)
+
N−1∑

j=1

α2
j 10 ⊗ E j+1, j+1.

Hence the JC-
∨

model is related to the Laplacian �(N )
0 .
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Remark 4.13. Note that, therefore, the JC models possess extensions to states that are
vector-valued k-forms. Loosely speaking, one may think of this mathematical general-
ization as a transposition to a fermionic, or more generally supersymmetric, picture.

Lemma 4.14. The semiprincipal term of �(3)
1 can be blockwise-diagonalized with three

blocks.

Proof. Fix the basis {dxi⊗e j }i=1,2; j=1,2,3. We have for the semiprincipal symbol A1(X)

of �(3)
1 ,

A1(X) =
2∑

j=1

α j

(
ψ j (X)1k ⊗ E1, j+1 + ψ j (X)1k ⊗ E j+1,1

)
,

that it may be rewritten in the above basis as

A1(X) =
⎡

⎣
02 A11(X) A12(X)

A11(X) 02 02
A12(X) 02 02

⎤

⎦ ,

where A1 j (X) =
[

α jψ j (X) 0
0 α jψ j (X)

]

, j = 1, 2, and where 02 is the 2 × 2 zero-

matrix. A computations gives that the characteristic polynomial p(λ; X) = det(λ −
A1(X)) of A1(X) is

p(λ; X) = λ2
(
λ4 − 2

(
α2

1 |ψ1(X)|2 + α2
2 |ψ2(X)|2)

λ2 +
(
α2

1 |ψ1(X)|2 + α2
2 |ψ2(X)|2)2

)
.

Hence, the zeros of p(λ; X) are given by

0, λ±(X) = ±
√

α2
1 |ψ1(X)|2 + α2

2 |ψ2(X)|2,
each with constant multiplicity 2 (for X �= 0).

Thus, the diagonalization Theorem 5.3 (see the next section) can be applied to obtain
a blockwise diagonalization with three blocks

λ1,1 = 02 , λ2,1 = λ+ I2, and λ3,1 = λ− I2.

��

5. The Decoupling Theorem

In this section we prove a decoupling theorem for classes of semiregular global pseu-
dodifferential systems from our class SMGES (that is, of the Jaynes–Cummings kind).
For future purposes, we prove the theorem in the semiclassical case (hence �h will de-
note the semiclassical composition of symbols in the semiclassical setting, see [14]) and
then state the corresponding version valid for the semiregular case. The proof follows
the lines of the decoupling theorem in [14], but it has a main twist due to the fact that
the terms aμ and aμ−1 may interact in the composition formula due to the conjugation
of the symbol of the diagonalizer, but can be simultaneously blockwise diagonalized.
Recall that S0

0,cl(m
μ, g;MN ) stands for the set of regular semiclassical symbols (see

Point 2 of Definition 9.1.9 of [14]), that is, they are h-dependent symbols that admit an
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asymptotic expansion in half-integer powers of h, with the h j -coefficient which is an
h-independent symbol of order the order of a decreased by 2 j . A semiclassical symbol
A then belongs to S0

0,sreg(m
μ, g;MN ) if it can be written in the form Aμ + h1/2Aμ−1,

where Aμ ∈ S0
0,cl(m

μ, g;MN ) and Aμ−1 ∈ S0
0,cl(m

μ−1, g;MN ).

Theorem 5.1. Let μ > 0 and let A = A∗ = Aμ + h1/2Aμ−1 ∈ S0
0,sreg(m

μ, g;MN )

where

Aμ ∼
∑

j≥0

h j aμ−2 j ∈ S0
0,cl(m

μ, g;MN ), Aμ−1 ∼
∑

j≥0

h j aμ−1−2 j ∈ S0
0,cl(m

μ−1, g;MN ),

witha−k = a∗−k ∈ S(m−k, g,MN ).Moreover, supposeaμ = pμ IN with pμ ∈ S(mμ, g),
and that aμ−1, for some e0 ∈ S(1, g;MN ) such that e0e∗0 = e∗0e0 = IN , can be written
as

aμ−1 = e0bμ−1e
∗
0, where bμ−1 = b∗μ−1 =

[
λμ−1,1 0

0 λμ−1,2

]

,

where the λ j,μ−1 ∈ S(mμ−1, g;MN j ), j = 1, 2 and N = N1 + N2, are such that

dλ1,λ2(X) � m(X)μ−1, ∀X ∈ R
2n, (5.1)

with

dλ1,λ2(X) = inf{|ζ1 − ζ2|; ζ j ∈ Spec(λ j,μ−1(X)), j = 1, 2}.
Then there exists E ∈ S0

0,sreg(1, g;MN ) with E ∼ ∑
j≥0 h

j/2e− j (with e−k ∈ S(m−k,

g,MN )) and principal symbol e0 such that

Ew(x, hD)∗Ew(x, hD) − I, Ew(x, hD)Ew(x, hD)∗ − I ∈ S−∞(m−∞, g;MN ),

(5.2)

and

Ew(x, hD)∗Aw(x, hD)Ew(x, hD) − Bw(x, hD) ∈ S−∞(m−∞, g;MN ), (5.3)

where the symbol B ∼ ∑
j≥0 h

j/2bμ− j ∈ S0
0,sreg(m

μ, g;MN ) is blockwise diagonal,
with

bμ− j (X) =
[
bμ− j,1(X) 0

0 bμ− j,2(X)

]

, ∀X ∈ R
2n,∀ j ≥ 0,

the blocks bμ− j,k being of sizes Nk × Nk, k = 1, 2, with

bμ = aμ = pμ IN , bμ−1 =
[

λμ−1,1 0
0 λμ−1,2

]

.

Remark 5.2. We shall call B an h∞-(blockwise)diagonalization of A. Notice that B
depends on A and e0.
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Proof. We immediately observe that once Ew(x, hD) has been constructed with the
property that

Ew(x, hD)∗Ew(x, hD) = I + rw(x, hD), with r ∈ S−∞(m−∞, g;MN ),

then by the ellipticity of Ew(x, hD)∗ (namely, the existence of a parametrix) we also
get

Ew(x, hD)Ew(x, hD)∗ = I + sw(x, hD), with s ∈ S−∞(m−∞, g;MN ).

Hence it suffices to prove the existence of E and B with the required properties. We
show that for every integer N0 ∈ Z+ there exist

e−k ∈ S(m−k, g;MN ), 0 ≤ k ≤ N0,

and

bμ−k, j ∈ S(mμ−k, g;M j ), j = 1, 2, 0 ≤ k ≤ N0,

such that, with EN0(X) := ∑N0
k=0 h

k/2e−k(X)),

E∗
N0

#h EN0 = I + h(N0+1)/2S0
0 (m−(N0+1), g;MN ),

and

E∗
N0

#h A#h EN0 =
N0∑

k=0

hk/2bμ−k + h(N0+1)/2S0
0 (mμ−(N0+1), g;MN ),

where the bμ−k =
[
bμ−k,1 0

0 bμ−k,2

]

. We shall then take E ∼ ∑
k≥0 h

k/2e−k .

First of all, we have that e0 ∈ S(1, g;MN ) is such that e∗0aμe0 and e∗0aμ−1e0 are
diagonal matrices and e0 satisfies the unitarity condition (note that aμ and aμ−1 commute
since aμ is a scalar matrix).

We proceed by induction on N0, and start by proving that the assertion is true for
N0 = 1 and for N0 = 2. (We will omit the dependence on (x, hD) and write ew

k in place
of ew

k (x, hD).) Hence, we look for e−1 ∈ S(m−1, g;MN ) such that

(e0 + h1/2e−1)
∗#h(e0 + h1/2e−1) − I ∈ hS0

0 (m−2, g;MN ). (5.4)

Now, the coefficient s−1 of h1/2 in e∗0#he0 is zero (because of the step-decrease of the
global calculus), whence for the coefficient of h1/2 in (5.4) we have

s−1 + e∗0e−1 + e∗−1e0 = e∗0e−1 + e∗−1e0 = 0. (5.5)

Equation (5.5) has a general solution

e−1 = e0α−1, (5.6)

where α−1 ∈ S(m−1, g;MN ) and

α∗−1 + α−1 = 0. (5.7)
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We next look for α−1 in such a way that bμ−1 is blockwise diagonal. Hence, we write

(ew
0 + h1/2ew−1)

∗Aw(ew
0 + h1/2ew−1) = (ew

0 )∗Awew
0 + h1/2

(
(ew−1)

∗Awew
0

+ (ew
0 )∗Awew−1

)
+ hrw

μ−2,

where rμ−2 ∈ S0
0 (mμ−2, g,MN ).

Now, recalling the definition of A, we have

(e0 + h1/2e−1)
∗#h A#h(e0 + h1/2e−1)

= e∗0#haμ#he0 + h1/2
(
e∗−1#haμ#he0 + e∗0#haμ#he−1 + e∗0#haμ−1#he0

)
+ hrμ−2,

with rμ−2 ∈ S0
0 (mμ−2, g,MN ).

It follows that, since aμ is a scalar matrix and hence it commutes with every other matrix,
we look for e−1 such that

qμ−1 + aμ(e∗−1e0 + e∗0e−1) + e∗0aμ−1e0 (5.8)

is diagonal, where qμ−1 is the coefficient of h1/2 in e∗0#h Aμ#he0 and in this case qμ−1 =
0. We have that e∗−1e0+e∗0e−1 = 0 and that e∗0aμ−1e0 is already diagonal by the hypothesis
on e0.

Hence (5.8) is blockwise diagonal without any further conditions on α−1, which is
therefore only required to be skew-hermitian. However, further constraints on it will
arise in the next step.

This completes the case N0 = 1.
Next we look for e−2 ∈ S(m−2, g;MN ) such that

(e0 + h1/2e−1 + he−2)
∗#h(e0 + h1/2e−1 + he−2) − I ∈ h3/2S0

0 (m−3, g;MN ).

Hence, since

e∗0#he0 − I = hs−2 + h3/2s′, s−2 = s∗−2 ∈ S(m−2, g;MN ), s′ ∈ S0
0 (m−3, g;MN ),

we require that e−2 be a solution of

s−2 + e∗0e−2 + e∗−2e0 + e∗−1e−1 = 0. (5.9)

Equation (5.9) has as a general solution

e−2 = −1

2
e0

(
s−2 + e∗−1e−1

︸ ︷︷ ︸
=α∗−1α−1

)
+ e0α−2,

where α−2 ∈ S(m−2, g;MN ) and

α∗−2 + α−2 = 0. (5.10)

We next determine α−2 so as to have bμ in blockwise diagonal form with the diagonal
blocks b j,μ, j = 1, 2. Write
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(e0 + h1/2e−1 + he−2)
∗#h A#h(e0 + h1/2e−1 + he−2)

= e∗0#h A#he0 + h1/2
(
e∗−1#h A#he0 + e∗0#h A#he−1

)
+ h

(
e∗0#h Aμ#he−2

+e∗−2#h Aμ#he0 + e∗0#h Aμ−1#he−1 + e∗−1#h Aμ−1#he0 + e∗−1#h Aμ#he−1

)

+h3/2S0
0 (mμ−3, g;MN ).

Because of the form of A, we have

(e0 + h1/2e−1 + he−2)
∗#h A#h(e0 + h1/2e−1 + he−2)

= e∗0#haμ#he0 + h1/2
(
e∗−1#haμ#he0 + e∗0#haμ#he−1 + e∗0#haμ−1#he0

)

+h
(
e∗0#haμ#he−2 + e∗0#haμ−1#he−1 + e∗0#haμ−2#he0 + e∗−1#haμ#he−1

+e∗−1#haμ−1#he0 + e∗−2#haμ#he0

)
+ h3/2rμ−3, rμ−3 ∈ S0

0 (mμ−3, g,MN ).

Hence, we look for e−2 such that the coefficient of h in

(e0 + h1/2e−1 + he−2)
∗#h A#h(e0 + h1/2e−1 + he−2),

given by

qμ−2 + e∗0aμe−2 + e∗0aμ−1e−1 + e∗−1aμe−1 + e∗−1aμ−1e0 + e∗−2aμe0, (5.11)

is diagonal. Now, (5.11) can be rewritten, by (5.5), as

qμ−2 + aμ(e∗0e−2 + e∗−2e0) + (e∗0aμ−1e0)α−1 + aμα∗−1α−1 + α∗−1(e
∗
0aμ−1e0).

(5.12)

Since by (5.9) and (5.6)

e∗0e−2 + e∗−2e0 = −s−2 − α∗−1α−1,

we obtain that (5.12) becomes

qμ−2 − aμs−2 + (e∗0aμ−1e0)α−1 + α∗−1(e
∗
0aμ−1e0). (5.13)

We now split (5.13) into two (hermitian) parts (note that qμ−2 = q∗μ−2 and s−2 = s∗−2).
The first part is given by

qμ−2 − aμs−2 =
[
u1 γ

γ ∗ u2

]

, (5.14)

where u j = u∗j are blocks of sizes N j × N j . The second part is given by

(e∗0aμ−1e0)α−1 + α∗−1(e
∗
0aμ−1e0) =

[
e∗0aμ−1e0, α−1

]

(recall that α−1 is skew-hermitian by (5.7)). We therefore look for α−1 in the form

α−1 =
[

0 δ

−δ∗ 0

]

. (5.15)
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Using the fact that e∗0aμ−1e0 is blockwise diagonal with blocks λμ−1,1 and λμ−1,2, in
order to make (5.13) blockwise diagonal, we are led to the equation

λμ−1,1δ − δλμ−1,2 = −γ, (5.16)

which imposes a condition on α−1.

By Lemma 9.2.2 in [14], the equation has a solution and this completes the case N0 = 2.
It is important to note at this point that the only condition that α−2 must satisfy so

far is that it be skew-hermitian, that is α−2 + α∗−2 = 0.
Now, we proceed by induction. So, suppose we have already constructed the sym-

bols e0, e−1, . . . , e−N0 , and bμ, bμ−1, . . . , bμ−N0 , independent of h, with the required
properties. Moreover, suppose that we have constructed

e−N0 = −1

2
e0

(
s−N0 + e∗−1e−(N0−1) + e∗−(N0−1)e−1

)
+ e0α−N0 , (5.17)

where s−N0 = s∗−N0
∈ S(m−N0 , g,MN ) is the coefficient of hN0/2 in EN0−2#h EN0−2,

and the only condition that α−N0 must satisfy is

α−N0 + α∗−N0
= 0. (5.18)

Proceeding as in the case N0 = 2, we look for e−(N0+1) such that

(
EN0 + h

N0+1
2 e−(N0+1)

)∗
#h

(
EN0 + h

N0+1
2 e−(N0+1)

)
= I + h

N0+2
2 S0

0 (m−(N0+2), g;MN ).

Thus, using the symbol-composition formula #h and (part of) the inductive hypothesis,
that is, E∗

N0
#h EN0 = I + h(N0+1)/2S0

0 (m−(N0+1), g;MN ) (the other part of the inductive
hypothesis being relative to the diagonal form of the conjugated operator), we are led to
the equation

s−(N0+1) + e∗0e−(N0+1) + e∗−(N0+1)e0 + e∗−1e−N0 + e∗−N0
e−1 = 0, (5.19)

where s−(N0+1) = s∗−(N0+1) is the coefficient of h(N0+1)/2 in E∗
N0−1#h EN0−1. Since

(
EN0 + h(N0+1)/2e−(N0+1)

)∗
#h A#h

(
EN0 + h(N0+1)/2e−(N0+1)

)

=
N0∑

k=0

hk/2bμ−k + h(N0+1)/2S0
0 (mμ−(N0+1), g;MN ),

with bμ−k diagonal, we next look for e−(N0+1) such that the h(N0+1)/2-coefficient in the
symbol composition E∗

N0+1#h A#h EN0+1, given by

qμ−(N0+1) + e∗0aμe−(N0+1) + e∗−(N0+1)aμe0

+ e∗0aμ−1e−N0 + e∗−N0
aμ−1e0 + e∗−1aμe−N0 + e∗−N0

aμe−1, (5.20)

is diagonal. Now, we rewrite (5.20) as

qμ−(N0+1) + aμe
∗
0e−(N0+1) + aμe

∗
−(N0+1)e0 + (e∗0aμ−1e0)e

∗
0e−N0

+ e∗−N0
e0(e

∗
0aμ−1e0) + aμe

∗−1e−N0 + aμe
∗−N0

e−1, (5.21)
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so that (5.21) becomes (using the fact that aμ is a scalar)

qμ−(N0+1) + aμ(e∗0e−(N0+1) + e∗−(N0+1)e0 + e∗−1e−N0 + e∗−N0
e−1)

︸ ︷︷ ︸
=−s−(N0+1) by (5.19)

+ (e∗0aμ−1e0)e
∗
0e−N0 + e∗−N0

e0(e
∗
0aμ−1e0). (5.22)

Next, using (5.17), we write

{
e∗0e−N0 = − 1

2 s−N0 + α−N0 =: τ + α−N0 ,

e∗−N0
e0 = τ − α−N0 ,

(5.23)

where

τ = −1

2
s−N0 = τ ∗, α−N0 = −α∗−N0

.

Hence (5.22) can be rewritten as

qμ−(N0+1) − aμs−(N0+1) + (e∗0aμ−1e0)τ + τ(e∗0aμ−1e0) + (e∗0aμ−1e0)α−N0

+α∗−N0
(e∗0aμ−1e0).

As before, we next split (5.13) into two (hermitian) parts, where the first part is given
by

qμ−(N0+1) − aμs−(N0+1) + (e∗0aμ−1e0)τ + τ(e∗0aμ−1e0) =
[
ũ1 γ̃

γ̃ ∗ ũ2

]

,

where u j = u∗j are blocks of sizes N j × N j , and the second one by

(e∗0aμ−1e0)α−N0 + α∗−N0
(e∗0aμ−1e0) =

[
e∗0aμ−1e0, α−N0

]

(recall that α−N0 is skew-hermitian by (5.18)). Hence, we look for α−N0 in the form

α−N0 =
[

0 δ̃

−δ̃∗ 0

]

, (5.24)

and, using as before the fact that e∗0aμ−1e0 is blockwise diagonal with blocks λμ−1,1
and λμ−1,2, we are therefore led to the equation

λμ−1,1δ̃ − δ̃λμ−1,2 = −γ̃ . (5.25)

As before, the equation as a solution and we complete the proof by induction. Once
more, it is important to note that the only condition that α−(N0+1) must satisfy in the
N0 + 1-st step of the induction is α−(N0+1) + α∗

−(N0+1) = 0. ��
We state (without proof, since it follows the lines of the foregoing proof) the blockwise

diagonalization theorem in the case of semiregular symbols.
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Theorem 5.3. Let μ > 0, and let A = A∗ ∼ ∑
j≥0 aμ− j ∈ Ssreg(mμ, g;MN ). Suppose

aμ = pμ IN with pμ ∈ C∞(R2n \ {0}) positively homogeneous of degree μ, and that
aμ−1, for some e0 ∈ C∞(R2n \ {0};MN ) positively homogenous of degree 0 and such
that e0e∗0 = e∗0e0 = IN , X �= 0, can be written as

aμ−1 = e0bμ−1e
∗
0, where bμ−1 = b∗μ−1 =

[
λμ−1,1 0

0 λμ−1,2

]

, X �= 0,

where λμ−1, j ∈ C∞(R2n \ {0};MN j ), j = 1, 2 and N = N1 + N2, are positively
homogeneous of degree μ − 1, and are such that

Spec(λμ−1,1(X)) ∩ Spec(λμ−1,2(X)) = ∅, ∀X ∈ R
2n, |X | = 1.

Then there exists E ∈ Ssreg(1, g;MN ) with E ∼ ∑
j≥0 e− j and principal symbol e0

(hence e−k ∈ C∞(R2n \ {0};MN ) is positively homogeneous of degree −k) such that

Ew(x, D)∗Ew(x, D) − I, Ew(x, D)Ew(x, D)∗ − I ∈ S(m−∞, g;MN ), (5.26)

and

Ew(x, D)∗Aw(x, D)Ew(x, D) − Bw(x, D) ∈ S(m−∞, g;MN ), (5.27)

where the symbol B ∼ ∑
j≥0 b2− j ∈ Ssreg(mμ, g;MN ) is blockwise diagonal, with

b2− j (X) =
[
b2− j,1(X) 0

0 b2− j,2(X)

]

,∀X �= 0,∀ j ≥ 0,

the blocks bk,2− j being of sizes Nk × Nk, k = 1, 2, with

bμ = aμ = pμ IN , bμ−1 =
[

λμ−1,1 0
0 λμ−1,2

]

, X �= 0.

6. The Subprincipal Symbol

In spectral asymptotics, the subprincipal symbol plays an important role. We shall in this
section study its structure and the transformation laws under different diagonalizers of the
principal part. From the decoupling theorems (semiclassical case as well as semiregular
one) we obtain the following general form for the subprincipal term of the diagonalized
symbol.

Proposition 6.1. For the subprincipal part bμ−2 of the h∞-diagonalization given in
Theorem 5.1, or in the semiregular case by Theorem 5.3, one has, by (5.21), the formula
(recall that aμ = pμ IN ):

bμ−2 =e∗−2e0bμ + bμe
∗
0e−2 + e∗0aμ−2e0 − i

2

(
e∗0

{
aμ, e0

}
+

{
e∗0, aμe0

})

+ e∗−1aμe−1 + bμ−1e
∗
0e−1 + e∗−1e0bμ−1,

where

e−2 = i

4
e0

{
e∗0, e0

} − 1

2
e0α

∗−1α−1 + e0α−2,

with α∗−2 = −α−2 and α∗−1 = −α−1 determined by (5.24) and (5.25).
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Remark 6.2. It is important to note in e−2 the presence of the term −e0α
∗−1α−1/2 which

depends on the symbol of order μ − 1 (i.e. the semiprincipal part) of our system.

To study the structure of the subprincipal term, for the sake of clarity we will be
considering in the first place the case N = 2 and afterwards the case of a general N .

All of the results below hold also true in the semiregular case of Theorem 5.3 above,
the only change being that where in the case of the h∞-diagonalization we have X ∈ R

2n ,
in the semiregular case we have X �= 0.

6.1. The case N = 2. Suppose hence that N = 2, thataμ = a∗μ = pμ I2, pμ ∈ S(mμ, g)

scalar, and that aμ−1 = a∗μ−1. Let (by slightly changing notation) λ+
μ−1, λ

−
μ−1 ∈

S(mμ−1, g) be the eigenvalues of aμ−1, and suppose that

|λ+
μ−1(X) − λ−μ−1(X)| � m(X)μ−1,∀X ∈ R

2n, (6.1)

whence the existence of a smooth unitary matrix e0 such that

e0(X)∗aμ−1(X)e0(X) =
[

λ+
μ−1(X) 0

0 λ−μ−1(X)

]

, ∀X ∈ R
2n .

We have the following corollary.

Corollary 6.3. Suppose that aμ = a∗μ = pμ I2 is a scalar matrix and that aμ−1 = a∗μ−1

possesses smooth eigenvalues λ±μ−1 satisfying (6.1). Let {w+, w−} be the canonical basis
of C

2, namely w+ =
[

1
0

]

, w− =
[

0
1

]

so that for the semiprincipal symbol bμ−1 of

the (h∞-)diagonalization we have bμ−1(X)w± = λ±μ−1(X)w±, ±-respectively, for all

X ∈ R
2n. Then for the subprincipal symbol bμ−2 =

[
b+
μ−2 0
0 b−μ−2

]

we have with j = ±

b( j)
μ−2 = 〈

bμ−2w j , w j
〉

= 〈
e∗0aμ−2e0w j , w j

〉
+

1

2
Im

(〈{e∗0, pμ}e0w j , w j
〉)

+
1

2
Im

(〈
e∗0{pμ, e0}w j , w j

〉)
.

In addition, as for the term δ determined by equation (5.16) one has

δ = − 1

λ+
μ−1 − λ−μ−1

〈(e∗0aμ−2e0 − ie∗0{pμ, e0})w−, w+〉 (6.2)

Proof. Recall that bμ = aμ = pμ I2. We write the subprincipal term bμ−2 as

bμ−2 = b′μ−2 + b′′μ−2,

where

b′μ−2 := e∗−2e0bμ + bμe
∗
0e−2 + e∗0aμ−2e0 − i

2

(
e∗0

{
pμ, e0

}
+

{
e∗0, pμe0

})
,

and

b′′μ−2 := e∗−1aμe−1 + bμ−1e
∗
0e−1 + e∗−1e0bμ−1.
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As for b′μ−2 we have, by Corollary 9.2.6 in [14] (used to deal with the terms coming
from the “regular” step in the order of the symbols), that for j = ±, respectively,

〈b′μ−2w j , w j 〉 =
〈
e∗0aμ−2e0w j , w j

〉
+

1

2
Im

(〈{e∗0, pμ}e0w j , w j
〉)

+
1

2
Im

(〈
e∗0{pμ, e0}w j , w j

〉) − pμ〈α∗−1α−1w j , w j 〉
(the last term in the above expression is due to the form of e−2, see Remark 6.2).

As for b′′μ−2, on the other hand, we have (since e−1 = e0α−1)

〈
e∗−1aμe−1w j , w j

〉 = 〈
α∗−1bμα−1w j , w j

〉 = pμ

〈
α−1w j , α−1w j

〉 = 〈
pμα∗−1α−1w j , w j

〉
,

and
〈(
bμ−1e

∗
0e−1 + e∗−1e0bμ−1

)
w j , w j

〉 = 〈(
bμ−1α−1 + α∗−1bμ−1

)
w j , w j

〉 = 0

because bμ−1α−1w± = rw∓ with r ∈ C∞(R2n;C) (the same happens for α∗−1bμ−1 for
a different r ) and 〈w∓, w±〉 = 0 (±-respectively). It follows that

〈b′′μ−2w j , w j 〉 = pμ〈α∗−1α−1w j , w j 〉, j = ±.

Therefore, adding the expressions for 〈b′μ−2w j , w j 〉 and for 〈b′′μ−2w j , w j 〉, we obtain
the formula for the subprincipal part bμ−2.

We finally prove (6.2). By (5.16) we have that δ = −γ /(λ+
μ−1−λ−μ−1). Therefore we

have to compute γ by means of equation (5.14). Hence, recalling that α−1 =
[

0 δ

−δ∗ 0

]

and that e−1 = e0α−1, we have

γ =
〈(
e∗0aμ−2e0 − i

2

(
e∗0

{
aμ, e0

}
+

{
e∗0, aμe0

}) − pμ

(− i

2
{e∗0, e0}

)
w−, w+

〉

= 〈(e∗0aμ−2e0 − ie∗0{pμ, e0})w−, w+〉,
which gives (6.2) and concludes the proof. ��

We must now study (still remaining in the 2×2 case) the transformation properties of
the subprincipal term depending on the choice of e0. We have the following proposition.

Proposition 6.4. Suppose that aμ = a∗μ = pμ I2 is a scalar matrix and that aμ−1 =
a∗μ−1 possesses smooth eigenvalues λ+

μ−1 and λ−μ−1 satisfying (6.1). Let e0 and ẽ0 be
smooth, unitary 2 × 2 matrices in S(1, g;M2) such that

e∗0aμ−1e0 = ẽ∗0aμ−1ẽ0 = bμ−1 =
[

λ+
μ−1 0
0 λ−μ−1

]

.

Denote by bμ−2 and b̃μ−2, respectively, the subprincipal terms given in Corollary 6.3,
associated respectively with e0 and ẽ0. Let hence f ∈ S(1, g;M2) be the unitary matrix
such that e0 = ẽ0 f , so that (since λ+

μ−1 �= λ−μ−1)

f =
[
f+ 0
0 f−

]
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with the f j ∈ S(1, g) and | f j (X)| = 1, for all X ∈ R
2n, j = ±. Then, with {w+, w−}

the canonical basis of C
2 as before,

b( j)
μ−2 = 〈

bμ−2w j , w j
〉 =

〈
b̃μ−2w j , w j

〉
+ Im

(
f j

{
f̄ j , pμ

})
, j = ±. (6.3)

Moreover, one has

δ = f̄+ f−δ̃ (6.4)

where δ̃ is determined by equation (5.16) with ẽ0 in place of e0.

Proof. By Corollary 6.3 and by the proof of Proposition 9.2.7 in [14] we have (6.3).
Hence, we only need to show that δ = f̄+ f−δ̃.
On the one hand,

〈
e∗0{aμ, e0}w−, w+

〉 = f̄+
〈{aμ, ẽ0 f }w−, ẽ0w+

〉

= f̄+ f−
〈{
pμ, ẽ0

}
w−, ẽ0w+

〉
+ f̄+

〈{
pμ, f−

}
ẽ0w−, ẽ0w+

〉
(6.5)

= f̄+ f−
〈
ẽ∗0

{
pμ, ẽ0

}
w−, w+

〉
+ f̄+

〈{
pμ, f−

}
ẽ0w−, ẽ0w+

〉
.

On the other hand,

f̄+
〈{
pμ, f−

}
ẽ0w−, ẽ0w+

〉 = f̄+{pμ, f−} 〈ẽ0w−, ẽ0w+〉 = 0. (6.6)

Now, (6.5) and (6.6) give

δ = − 1

λ+
μ−1 − λ−μ−1

〈(e∗0aμ−2e0 − ie∗0{pμ, e0})w−, w+〉

= − f̄+ f−
λ+

μ−1 − λ−μ−1

〈(ẽ∗0aμ−2ẽ0 − i ẽ∗0{pμ, ẽ0})w−, w+〉

= f̄+ f−δ̃,

which concludes the proof. ��

6.2. The case of blockwise matrices. We pass in this subsection to the study of the
subprincipal symbol in the more general case of a diagonalization into 2 blocks, with
N > 2.

Suppose now that:

(i) aμ = a∗μ = pμ IN is a scalar matrix with μ > 0, pμ ∈ S(mμ, g);
(ii) aμ−1 = a∗μ−1 is such that (as in Theorem 5.1) there exists a smooth unitary matrix

e0 ∈ S(1, g;MN ) such that

e0(X)∗aμ−1(X)e0(X) =
[

λ+
μ−1(X) 0

0 λ−μ−1(X)

]

, ∀X ∈ R
2n, (6.7)

where, writing N = N+ + N−, we have that ±-respectively λ±μ−1 ∈ S(mμ−1,

g,MN±), with

inf
{
|ζ1 − ζ2|; ζ1 ∈ Spec(λ+

μ−1), ζ2 ∈ Spec(λ−μ−1)
}

� m(X)μ−1,∀X ∈ R
2n .

(6.8)
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We have the following corollary.

Corollary 6.5. Suppose that aμ and aμ−1 satisfy the conditions (i) and (ii) above. Con-
sider, ±-respectively, the orthogonal projectors π± : C

N −→ C
N = C

N+ ⊕ C
N−

onto C
N+ ⊕ {0} and {0} ⊕ C

N− respectively (that is, π+ = [IN+ |0N−] and π− =
[0N−|IN+]), so that for the semiprincipal symbol bμ−1 of the h∞-diagonalization we
have π±bμ−1(X)π∗± = λ±μ−1(X), ±-respectively, for all X ∈ R

2n. Then for the sub-

principal symbol bμ−2 =
[
b+
μ−2 0
0 b−μ−2

]

we have, with j = ±,

b( j)
μ−2 = π j bμ−2π

∗
j

= π j e
∗
0aμ−2e0π

∗
j −

i

2
π j {e∗0, aμ}e0π

∗
j −

i

2
π j e

∗
0{aμ, e0}π∗

j

= π j e
∗
0aμ−2e0π

∗
j − iπ j e

∗
0{pμ, e0}π∗

j .

In addition, for δ (see (5.16)) one has λ+
μ−1δ − δλ−μ−1 = −γ where

γ = π+
(
e∗0aμ−2e0 − ie∗0{pμ, e0}

)
π∗−. (6.9)

Proof. By Proposition 6.1, the terms in π j bμ−2π
∗
j for j = ± are given by (recall that

bμ = aμ = pμ IN )

π j
(
e∗−2e0bμ + bμe

∗
0e−2

)
π∗
j

= i

4
π j

(
bμ{e∗0, e0} − {e∗0, e0}∗bμ

)
π∗
j (1st)

+π j

(

−1

2
α∗−1α−1 + α∗−2

)

bμπ∗
j + π j bμ

(

−1

2
α∗−1α−1 + α−2

)

π∗
j

(since {e∗0, e0}∗ = −{e∗0, e0} and α∗−2 = −α−2)

= i

2
π j

(
bμ{e∗0, e0}

)
π∗
j − bμπ jα

∗−1α−1π
∗
j ,

π j {e∗0, aμe0}π∗
j = π j {e∗0, e0}pμπ∗

j + π j {e∗0, pμ}e0π
∗
j , (2nd)

π j e
∗−1aμe−1π

∗
j = pμπ jα

∗−1α−1π
∗
j , (3rd)

and finally

π j
(
bμ−1e

∗
0e−1 + e−1e0bμ−1

)
π∗
j = π j bμ−1α−1π

∗
j + π jα

∗−1bμ−1π
∗
j = 0, (4th)

since bμ−1α−1 is blockwise anti-diagonal. Summing the above terms gives the expres-

sion of b( j)
μ−2.

We next show (6.9). By (5.16) we have that λ+
μ−1δ−δλ−μ−1 = −γ . Therefore, we just

need to compute γ by means of equation (5.14). Hence, recalling that α−1 =
[

0 δ

−δ∗ 0

]

and that e−1 = e0α−1, we have

γ = π+

(

e∗0aμ−2e0 − i

2

(
e∗0

{
aμ, e0

}
+

{
e∗0, aμe0

}) − aμ

(− i

2
{e∗0, e0}

)
)

π∗−

= π+
(
e∗0aμ−2e0 − ie∗0{pμ, e0})π∗−.

which gives (6.9) and concludes the proof. ��
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As before, we must now study (still remaining in the N × N case, N > 2, with 2
blocks) the transformation properties of the subprincipal terms depending on the choice
of e0. We have the following proposition.

Proposition 6.6. Suppose that aμ and aμ−1 satisfy the above conditions (i) and (ii). Let
e0 and ẽ0 be smooth, unitary N × N matrices in S(1, g;MN ) such that

e∗0aμ−1e0 = ẽ∗0aμ−1ẽ0 = bμ−1 =
[

λ+
μ−1 0
0 λ−μ−1

]

,

with the blocks λ±μ−1 satisfying (6.7). Denote by bμ−2 and b̃μ−2, respectively, the sub-
principal terms given in Corollary 6.3, associated respectively with e0 and ẽ0. Let hence
f ∈ S(1, g;MN ) be the unitary matrix such that e0 = ẽ0 f , so that (by the spacing
property of the spectra of λ±μ−1)

f =
[
f+ 0
0 f−

]

with the f± ∈ S(1, g;MN±) being themselves unitary matrices. As before, consider π±
the projectors of C

N = C
N+ ⊕C

N− respectively onto C
N+ ⊕ {0} and {0} ⊕C

N− . Then,
for j = ±,

b( j)
μ−2 = π j bμ−2π

∗
j = f ∗j π j b̃μ−2π

∗
j f j −

i

2

(
f ∗j {pμ, f j } − {pμ, f j }∗ f j

)
(6.10)

= f ∗j π j b̃μ−2π
∗
j f j + Im( f ∗j {pμ, f j })

(where, for a matrix A, we put 2i Im(A) = A − A∗ for its skew-Hermitian part).
Moreover,

λ+
μ−1δ̃ − δ̃λ−μ−1 = f+

(
λ+

μ−1δ − δλ−μ−1

)
f ∗− (6.11)

where δ̃ is determined by equation (5.16) with ẽ0 in place of e0.

Proof. We prove (6.10) by following the scheme of proof of Corollary 9.2.6 in [14].
One has

π j e
∗
0aμ−2e0π

∗
j = π j f

∗
︸ ︷︷ ︸
= f ∗j π j

ẽ∗0aμ−2ẽ0 f π∗
j

︸︷︷︸
=π∗

j f j

= f ∗j π j ẽ
∗
0aμ−2ẽ0π

∗
j f j ,

π j {e∗0, aμ}e0π
∗
j = π j { f ∗ẽ∗0, pμ}ẽ0 f π

∗
j

= f ∗j π j {ẽ∗0, pμ}ẽ0π
∗
j f j + { f ∗j , pμ}

︸ ︷︷ ︸
=−{pμ, f j }∗

π j ẽ
∗
0 ẽ0π

∗
j

︸ ︷︷ ︸
IN j

f j

= f ∗j π j {ẽ∗0, pμ}ẽ0π
∗
j f j − {pμ, f j }∗ f j ,

π j e
∗
0{aμ, e0}π∗

j = π j f
∗ẽ∗0{pμ, ẽ0 f }π∗

j
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= f ∗j π j ẽ
∗
0{pμ, ẽ0}π∗

j f j + f ∗j π j ẽ
∗
0 ẽ0π

∗
j

︸ ︷︷ ︸
IN j

{pμ, f j }

= f ∗j π j ẽ
∗
0{pμ, ẽ0}π∗

j f j + f ∗j {pμ, f j }.

Corollary 6.5 gives the formula.
We next prove (6.11). By (5.16) we have that λ+

μ−1δ − δλ−μ−1 = −γ and by (6.9) that

γ = π+
(
e∗0aμ−2e0 − ie∗0{pμ, e0}

)
π∗−.

We have therefore to study the transformation properties of γ . One has

γ = π+
(
f ∗ẽ∗0aμ−2ẽ0 f − i f ∗ẽ∗0{pμ, ẽ0 f }

)
π∗−

= f ∗+ π+
(
ẽ∗0aμ−2ẽ0 − i ẽ∗0{pμ, ẽ0}

)
π∗− f− − i f ∗+ π+ẽ

∗
0 ẽ0π

∗−︸ ︷︷ ︸
=0

{pμ, f−} = f ∗+ γ̃ f−,

whence (6.11). This concludes the proof. ��

7. The Weyl Law

In this section, we prove for a system A ∈ Ssreg(m2, g;MN ), a semiregular metric
globally elliptic system of the kind introduced in Definition 2.4 (i.e., an SMGES), a
“classical Weyl-Law” and a “refined Weyl-Law” result of the kind proved for scalar
semiregular operators, respectively, by Helffer and Robert [6] and by Doll, Gannot and
Wunsch [4]. We follow the approach in [4] for both the results. As is classical, the
approach is based on the construction of an FIO (Fourier integral operator) parametrix
of the Schrödinger unitary group generated by Aw. We will hence have to exploit our
diagonalization result (in the semiregular setting) developed earlier in the paper. In fact,
we construct a parametrix for the diagonalized system and thus obtain a parametrix
by conjugating with the operator Ew(x, D) constructed in Sect. 5. However, because
of that conjugation we need to have a better control on the compositions occurring in
conjugations. Hence, it will be convenient to construct a parametrix following the idea
of Doll and Zelditch in [5], that is, by exploiting the fact that the parametrix FIO can
in fact be written as a Weyl-quantization. Having the parametrix for e−i t Aw

, we then
follow the classical approach, in that we will be able to consider the trace of its Schwartz
distribution kernel and obtain our results through the asymptotics of the convolution of
the counting function with a suitable scalar function (with compactly supported Fourier
transform) and classical Tauberian arguments.

Throughout the section ds denotes the Riemannian metric induced on {p2 = 1} or
on {p2 = λ} (it will be clear from the context) by the Euclidean one with λ > 0, and
ds/|∇ p2| denotes the associated Leray-Liouville measure.

In the proofs of Proposition 7.2 and of Theorem 7.8 it will be fundamental that the
angular gradients of the X-ray transform of the eigenvalues of the semiprincipal symbol
vanish to infinite order exactly on a subset of measure zero of S

2n−1. Namely, if we
denote by ∂α

ω , α ∈ N
2n−1, the tangential derivatives to S

2n−1 and by λ1, j (1 ≤ j ≤ r )
the eigenvalues of the semiprincipal symbol a1 of the SMGES under study, we require
that for all 1 ≤ j ≤ r (recall that r is the number of distinct eigenvalues of a1)
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• Condition DGW:

�2π, j : =
{

ω ∈ S
2n−1; ∂α

ω

∫ 2π

0
(λ1, j ◦ exp t Hp2)(ω)dt = 0, ∀α ∈ N

2n−1 \ {0}
}

has measure zero. (7.1)

Remark 7.1. Note that to impose Condition DGW (7.1) we need a certain kind of
knowledge of the eigenvalues of the semiprincipal symbol a1 of the SMGES we are
considering. By definition of that class, we already know that the eigenvalues are smooth
functions, whose graphs never cross. However, we may think of Condition DGW (7.1)
as a condition on the logarithmic derivative of the characteristic polynomial P of the
semiprincipal symbol, and, for that, Rouché’s Theorem is very useful. In fact, by the
Definition 2.4 of SMGES, for all ω0 ∈ S

2n−1 and all 1 ≤ j ≤ r , there is a closed disk
in the complex plane Bω0, j centered at λ j (ω0) and containing no other λ j ′(ω0) with
j ′ �= j . In particular, Bω0, j ∩ Bω0, j ′ = ∅ for j �= j ′. Hence, by Rouché’s Theorem there
is an open neighborhood Uω0 of ω0 on the sphere S

2n−1 such that

λ j (ω) = 1

2π i N j

∫

∂Bω0, j

λ
∂λP(ω; λ)

P(ω; λ)
dλ, ∀ω ∈ Uω0 , j = 1, . . . , r, (7.2)

where N j is the multiplicity of λ j and P(ω; λ) := det(a1(ω)−λIN ). Thus, we can give
a local representation of λ j around every ω ∈ S

2n−1 and, therefore, by the compactness
of S

2n−1 there is a finite open covering {Uωk }k=1,...,k̄ of S
2n−1 such that on each open set

of the cover the identity (7.2) holds. Finally, a partition of unity argument subordinated to
the covering {Uωk }k=1,...,k̄ gives the function S

2n−1 ! ω "→ λ j (ω) for all j . Therefore
Condition DGW (7.1) may be described in terms of derivatives of the logarithmic
derivative of the characteristic polynomial P of the semiprincipal symbol.

For clarity of exposition, we first prove a result in the fully diagonal case which serves
as a guide to guess what the result should look like in the more general, nondiagonal
case.

Proposition 7.2. Let B = B∗ ∼ ∑
j≥0 b2− j ∈ Ssreg(m2, g;MN ) be a diagonal SMGES

symbol. Hence, in particular, b2 = p2 IN with p2 ∈ S(m2, g) the scalar harmonic
oscillator. Let R ! λ "−→ N(λ) denote the spectral counting function associated with
Bw. We have the following asymptotics

N(λ) =
(

N

(2π)n

∫

p2≤1
dX

)

λn −
(

(2π)−n
∫

p2=1
Tr (b1)

ds

|∇ p2|
)

λn−1/2 + O(λn−1), λ → +∞.

(7.3)

Furthermore, if Condition DGW (7.1) is satisfied, then (7.3) can be refined to

N(λ) = (2π)−n

⎛

⎝
N∑

j=1

(∫

p2+b1, j≤λ
dX

)

−
∫

p2=λ
Tr (b0)

ds

|∇ p2|

⎞

⎠ + o(λn−1), λ → +∞,

(7.4)

where b1, j is the j-th term of the diagonal of b1 with j = 1, . . . , N.
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Proof. Of course, we may write the counting function as

R ! λ "−→ N(λ) =
N∑

j=1

N j (λ),

where N j is the counting function given by the j th diagonal term of Bw. Applying then
the scalar results by Doll, Gannot and Wunsch [4] to get the asymptotics of each of
the contributions in the two cases of the statement, we sum up the asymptotics of all
contributions to get the asymptotics of N(λ).

To obtain (7.3) for each 1 ≤ j ≤ N , let ρ ∈ S (R) such that ρ̂ has compact support
in (−ε, ε) for a sufficiently small ε > 0 and ρ = 1 on a neighborhood of 0. We have

(N j ∗ ρ)(λ) = (2π)−n

(∫

p2+b1, j≤λ
dX −

∫

p2=λ
Tr (b0)

ds

|∇ p2|

)

+ O(λn−3/2), λ → +∞,

(7.5)

by [4], Proposition 6.1. Since

Vol({p2 + b1, j ≤ λ}) = λnVol({p2 + λ−1/2b1, j ≤ 1}),

a Taylor-expansion in powers of λ−1/2 and Lemma IV.7 of [6] give the asymptotics

N j (λ) = (2π)−n
((∫

p2≤1
dX

)
λn −

(∫

p2=1
b1, j

ds

|∇ p2|
)
λn−1/2

)

+ O(λn−1), λ → +∞.

Therefore, as λ → +∞,

N(λ) =
N∑

j=1

N j (λ)

=
N∑

j=1

((

(2π)−n
∫

p2≤1
dX

)

λn −
(

(2π)−n
∫

p2=1
b1, j

ds

|∇ p2|
)

λn−1/2
)

+ O(λn−1)

=
(

N

(2π)n

∫

p2≤1
dX

)

λn −
(

(2π)−n
∫

p2=1
Tr(b1)

ds

|∇ p2|
)

λn−1/2 + O(λn−1),

which gives (7.3).

We next prove (7.4). In fact, by virtue of Condition DGW (7.1) we are in a position
to apply Theorem 1.2 of [4] to each diagonal term of B and obtain that

N j (λ) = (2π)−n

((∫

p2+b1, j≤λ

dX

)

−
∫

p2=λ

b0, j
ds

|∇ p2|

)

+ o(λn−1), λ → +∞,

for all 1 ≤ j ≤ N , whence
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N(λ) =
N∑

j=1

N j (λ)

=(2π)−n

⎛

⎝
N∑

j=1

∫

p2+b1, j≤λ

dX −
∫

p2=λ

Tr (b0)
ds

|∇ p2|

⎞

⎠ + o(λn−1), λ → +∞,

which concludes the proof. ��
As already mentioned, the fundamental tool to obtain the Weyl law for the class

of semiregular ψdo systems we are interested in, is a parametrix of the unitary group
t "→ e−i t Aw

. In our vector-valued situation, by the diagonalization result Theorem 5.3
this goes through the construction of the parametrix in the case of a semiregular system
with scalar principal part, blockwise scalar semiprincipal part, and a full blockwise
subprincipal part.

For the parametrix construction in the diagonal case, we will first construct a parametrix
of the reduced propagator (see Lemma 7.3 below) and will then compose the latter with
the unitary group of the harmonic oscillator (which is the Weyl-quantization of an expo-
nential, see Hörmander in [11]). The main advantage of such a construction is that, fol-
lowing the approach of Doll and Zelditch [5], the parametrix is a Weyl-quantitation. This
is crucial, for we have to compose the FIOs by the diagonalizers to obtain a parametrix
for t "→ e−i t Aw

, and this is a delicate point.
We next follow the approach as in the scalar case by Doll, Gannot and Wunsch [4] (which
is in turn inspired by Hörmander [10]), which gives a result that generalizes their Propo-
sition 6.1, hence yielding an asymptotics for N ∗ ρ for a suitable localizing function ρ

(belonging to S (R) such that ρ̂ has compact support in (−ε, ε) for a sufficiently small
ε > 0 and ρ̂ = 1 in a neighborhood of 0). The refined Weyl-Law estimate will then
follow from that by a Tauberian argument.

We consider at first the construction of the reduced propagator in the case of a system
B with scalar principal and semiprincipal symbols (note that we allow a matrix-valued
subprincipal symbol and lower order terms).

Note that we will have to consider Weyl-quantizations of the kind (eiφ1α)w, where
α ∈ Ssreg(1, g;MN ) and φ1 is an isotropic symbol of order 1. This is done according to
the Weyl-Hörmander calculus with metric |dX |2 whose Planck constant is 1.

Lemma 7.3. Let B = B∗ ∼ ∑
j≥0 b2− j ∈ Ssreg(m2, g;MN ), where the b j = b∗j

are positively homogeneous of degree j and b2 and b1 are scalar: b2 = p2 IN and
b1 = p1 IN , where p2 is the harmonic oscillator and p1 is homogeneous of degree 1.
For t ∈ R consider

P(t) := eitp
w
2 (Bw − pw

2 )e−i tpw
2 .

Let Hp2 be the Hamilton field of p2 and t "→ exp
(
t Hp2

)
(X) be its bicharacteristic flow.

Consider the phase-function

Rt × R
2n
X ! (t, X) "→ φ̃1(t, X) := −

∫ t

0
p1 ◦ exp

(
sHp2

)
(X) ds. (7.6)

Then there is α̃ ∈ C∞(Rt ; Ssreg(1, g;MN )) such that R ! t "→ F̃(t) := (ei φ̃1(t)α̃(t))w

solves

(i∂t − P)F̃ ∈ C∞(Rt ;L (S
′
,S ) ⊗MN ), F̃ |t=0 = IN + R,
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where R is smoothing.

Proof. As usual, we make a WKB construction, the main point being that the eikonal
equation and the transport equations are globally solvable in time. Note that in the
transport equations we have a matrix term of order zero (generated by the in general
non-scalar subprincipal part b0), but this is harmless in solving them.

Observe that since Hp2 is linear, X "→ exp(t Hp2)(X) is a global linear diffeomor-
phism for all t , so that by Egorov’s Theorem (or Hörmander’s theorem on the invariance
of the Weyl calculus through linear symplectomorphisms) we have that the Weyl symbol
of P(t) is given by (B − p2) ◦ exp

(
t Hp2

)
. Therefore the principal term of P(t) is

p̃1(t) := p1 ◦ exp(t Hp2), t ∈ R,

and the semiprincipal one is

b̃0(t) := b0 ◦ exp(t Hp2), t ∈ R.

The eikonal equation is
{

∂t φ̃1 + p̃1 = 0,

φ̃1|t=0 = 0,

and it is solved for all t and X by φ̃1 given in (7.6).
As for the terms of the WKB expansion of α̃ ∼

∑

j≥0

α̃− j we have a sequence of

transport equations, the first of which has the form
{

∂t α̃0 = (b̃0 − 1
2 { p̃1, φ̃1}IN )α̃0,

α̃0|t=0 = IN .

Since the characteristics are straight lines, the solution exists for all times, the matrix-
valued term b̃0 being, as already mentioned, harmless. One proceeds similarly for the
other transport equations (which have the same structure, with initial condition the zero-
matrix and source terms depending on the α̃− j s already constructed, as usual). Observe
that b̃0− 1

2 { p̃1, φ̃1}IN is homogeneous of degree 0 and that the higher transport equations
for α̃− j preserve homogeneity (α̃− j is homogeneous of degree − j). The characteristics

being straight lines, the α̃− j (t) exist for all times. Taking α̃ ∼
∑

j≥0
α̃− j concludes the

proof. ��
Next, we need a composition result for quadratic phase functions (analogous to Propo-

sition 4.2 in [5]).

Proposition 7.4. Let A ∈ M2n be a real symmetric matrix and a, b ∈ S (R2n). We have

(ei〈A·,·〉a#b)(X) = π−4nei〈AX,X〉
∫

R4n
e−i〈QY,Y 〉a(X + Y1)b(X + J AX + Y2) dY1 dY2,

where Y :=
[
Y1
Y2

]

∈ R
4n, X ∈ R

2n, the 4n × 4n matrix Q given by

Q :=
[−A −J

J 0

]

, (7.7)
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and where J =
[

0 I
−I 0

]

is the standard 2n × 2n symplectic matrix, # being the com-

position operator in the Weyl calculus.

Proof. The proof follows by the integral representation for the composition of Schwartz
symbols (see Zworski [23]) and a change of coordinates in the integral. In fact, by [23]
Theorem 4.11,

(ei〈A·,·〉a#b)(X)

=π−4nei〈AX,X〉
∫

R4n
e−2iσ(Y1,Y2)+i〈A(X+Y1),X+Y1〉a(X + Y1)b(X + Y2) dY1 dY2,

(7.8)

where

σ(Y1,Y2) = 1

2

〈[
0 −J
J 0

] [
Y1
Y2

]

,

[
Y1
Y2

]〉

.

Now, the change of coordinates in (7.8)

Y1 = Ỹ1, Y2 = Ỹ2 + J AX,

leads to (using Y1, Y2 again)

(ei〈A·,·〉a#b)(X)

=π−4nei〈AX,X〉
∫

R4n
e−i〈QY,Y 〉a(X + Y1)b(X + J AX + Y2) dY1 dY2.

In fact,

2σ(Y1,Y2) =
〈[

0 −J
J 0

]

Ỹ , Ỹ

〉

+
〈
AX, Ỹ1

〉
+

〈
AỸ1, X

〉
,

where Ỹ :=
[
Ỹ1

Ỹ2

]

∈ R
4n . Hence, −2σ(Y1,Y2) + 〈A(X + Y1), X + Y1〉 = − 〈QY,Y 〉

and the proof is complete. ��
By Proposition 7.4 we may compute how quadratic exponentials act on oscillating

functions.

Proposition 7.5. Let φ1 be real, homogeneous of degree 1 and smooth on R
2n \ {0}.

Let a ∈ S(mμ1 , g;MN ), and b ∈ S(mμ2 , g;MN ). For any given real symmetric and
positive-definite (resp. negative-definite) matrix A ∈ M2n we have

(ei〈A·,·〉a#eiφ1b)(X) = ei〈AX,X〉+iφ1(X+J AX)c,

where X ∈ R
2n and c ∈ S(mμ1+μ2 , g;MN )
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Proof. Since the linear map defined by Q (see (7.7)) is injective we may use the usual
approximation argument and a non-stationary phase argument to extend the previous
approach to semiregular symbols. We may hence consider

(ei〈A·,·〉a�eiφ1b)(X) = π−4nei〈AX,X〉+iφ1(X+J AX) ×
×

∫

R4n
e−i〈QY,Y 〉a(X + Y1)e

i(φ1(X+J AX+Y2)−φ1(X+J AX))b(X + J AX + Y2)dY1dY2.

(7.9)

We show that the integral in the right-hand side of (7.9) is a symbol c ∈ S(mμ1+μ2 , g;MN ).
Note that when A > 0 (resp. A < 0), then I2n + J A is invertible. We next define, for
λ > 0,

cλ(X) := π−4n
∫

R4n
e−i〈QY,Y 〉a(

√
λX + Y1)e

i(φ1(
√

λ(I2n+J A)X+Y2)−φ1(
√

λ(I2n+J A)X)

×b(
√

λ(I2n + J A)X + Y2)dY1dY2,

X ∈ R
2n . In order to prove that c is a symbol it suffices to show that there is λ0 ≥ 1

such that for all λ ≥ λ0 and all 1 ≤ |X | ≤ 2 we have

|∂α
Xcλ(X)| ≤ Cαλ(μ1+μ2)/2, (7.10)

whereCα is independent of λ (and X ). In fact, if (7.10) holds, then for any given X ∈ R
2n

with |X | ≥ λ0 we may find λ ≥ λ0 for which
√

λ ≤ |X | ≤ 2
√

λ and hence may find a
unique X̃ with 1 ≤ |X̃ | ≤ 2 such that X = √

λ X̃ . Therefore

|∂α
Xc(X)| = λ−|α|/2|∂X̃ cλ(X̃)| ≤ C ′

αλ(μ1+μ2−|α|)/2,

for λ ≥ λ0 and with C ′
α ≥ Cα . Since 1

2 |X | ≤
√

λ ≤ |X |, we hence have that

|∂α
Xc(X)| ≤ C ′′

α 〈X〉μ1+μ2−|α| ,

for |X | ≥ λ0 and with C ′′
α ≥ C ′

α , that is, c ∈ S(mμ1+μ2 , g;MN ).
Now, for λ ≥ λ0, let

fλ : R
2n
X × R

4n
Y ! (X,Y ) "−→ a(

√
λ(X + Y1))b(

√
λ((I2n + J A)X + Y2)).

Note that, for any fixed constant C with 0 < C < Cmin := min
1≤|X |≤2

|(I2n + J A)X |, one

has

|∂α
X fλ(X,Y )| ≤ Cαλ(μ1+μ2)/2, (7.11)

uniformly in 1 ≤ |X | ≤ 2 and |Y | ≤ C , because a and b are symbols.
For μ ∈ R define

�μ(X,Y ) := − 〈QY,Y 〉 + μφ1((I2n + J A)X + Y2) − μφ1((I2n + J A)X),

and

cλ,μ(X) = π−4nλ2n
∫

eiλ�μ(X,Y ) fλ(X,Y )dY. (7.12)
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By using the homogeneity of the phase and the dilation Y "→ Y/
√

λ, we have that

cλ = cλ,λ−1/2 .

We next study cλ,μ as λ → +∞ and μ in a neighborhood of zero (1 ≤ |X | ≤ 2 and
|Y | ≤ C). Let Cμ = {Y �= 0; dY�μ = 0} denote the set of stationary points. Thus
Y ∈ Cμ iff

{
−AY1 − JY2 = 0,

JY1 + μ∇φ1((I2n + J A)X + Y2) = 0.

By the Implicit Function Theorem, we may parametrize Y by (μ, X) near any fixed X0
with 1 ≤ |X0| ≤ 2 for |μ| sufficiently small. In fact, the Jacobian of dY�μwith respect
to Y is

[−A −J
J μ(∂Y2∇φ1((I2n + J A)X + Y2))

]

,

which is invertible when μ = 0. Hence, we obtain that |Y (μ, X)| ≤ C ′|μ|. In particular,
|Y (μ, X)| ≤ C < Cmin for |μ| sufficiently small, and 1 ≤ |X | ≤ 2, whence the bounds
(7.11) for fλ. Moreover, note that (I2n + J A)X + Y2 �= 0 by taking C small enough,
since |Y (μ, X)| ≤ C if 1 ≤ |X | ≤ 2 when μ is sufficiently small.

Next, without loss of generality we may assume that fλ vanishes on the complement of
{(X,Y ); 1 ≤ |X | ≤ 2, |Y | ≤ C/2}. In fact, we wish to prove (7.10) for 1 ≤ |X | ≤ 2 and
�μ is stationary only if |Y | ≤ C/2 (by taking |μ| even smaller), so that the contribution
to the integral cλ,μ(X) when |Y | > C/2 (and 1 ≤ |X | ≤ 2) is O(λ−∞) (uniformly in μ

in a neighborhood of zero) by a non-stationary phase argument.
We may now estimate integral (7.12) and its derivatives. Consider ∂

γ

Xcλ,μ. It is a sum
of terms, where those with � ≤ |γ | derivatives landing on the exponential factor can be
written as

π−4nλ2n(λμ)�
∫

eiλ�μ(X,Y )
(
∂

γ ′
z fλ(X,Y )

) ∑

|β|=�

Y β
2 hβ(X,Y, μ)dY, (7.13)

for some smooth functions hβ and |γ ′| = |γ |− �. In fact, expanding φ1 at (I2n + J A)X ,
with |Y | ≤ C/2 and 1 ≤ |X | ≤ 2, we have

φ1((I2n + J A)X + Y2) = φ1((I2n + J A)X) + 〈Y2,∇φ1((I2n + J A)X)〉 +
∑

|α|=2

Yα
2 ψα(X,Y2),

for some smooth functions ψα . Hence, for any given μ ∈ R,

�μ(X,Y ) := − 〈QY,Y 〉 + μφ1((I2n + J A)X + Y2) − μφ1((I2n + J A)X)

=− 〈QY,Y 〉 + μ(〈Y2,∇φ1((I2n + J A)X)〉 + μ
∑

|α|=2

Y α
2 ψα(X,Y2)).

Now, by the stationary-phase method, recalling the bounds (7.11), we have that at the
critical set Cμ each term Y β

2 hβ(X,Y, μ) in (7.13) gives an additional factor of order
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O(|μ|�), since Y (μ, X) = O(|μ|). The stationary-phase formula eliminates the prefac-
tor λ2n , and setting μ = λ−1/2 gives

|∂α
Xcλ(X)| ≤ Cαλ(μ1+μ2)/2,

in a neighborhood of X0 (for λ large). Since {X ∈ R
2n; 1 ≤ |X | ≤ 2} is compact, this

implies the symbol estimates (7.10), and the proof is complete. ��
We are now ready to use the preceding results to obtain a parametrix of the unitary

group of Bw (still in the case where the principal and semiprincipal parts are scalar) by
composing the parametrix of the unitary group of the harmonic oscillator obtained by
Hörmander with that of the reduced propagator.

Lemma 7.6. Let B = B∗ be as in Lemma 7.3. Then, for all k ∈ Z and for ε > 0
sufficiently small, putting Iε(k) := (2kπ − ε, 2kπ + ε) ⊂ Rt , there are functions

φ j ∈ C∞(Iε(k) × Ṙ
2n;R), j = 1, 2,

homogeneous of degree j in X �= 0 and

α ∈ C∞(Rt ; S(1, g;MN )),

such that

U − Ũ ∈ C∞(Iε(k);L (S
′
,S ) ⊗MN ),

whereU is the unitary groupof Bw and (recallingProposition7.5) Ũ := (ei(φ2+φ1)α)w =
U0 F̃ , with

U0(t) := cos(t/2)−n(eiφ2(t))w

the unitary groupof the harmonic oscillatorwith t /∈ π+2πZandφ2(t) := −2 tan(t/2)p2,
and F̃ = (ei φ̃1 α̃)w the reduced parametrix obtained in Lemma 7.3. In addition,

φ2 : Iε(k) × R
2n
X ! (t, X) "−→ −2 tan(t/2)p2(X),

φ1 : Iε(k) × R
2n
X ! (t, X) "−→ φ̃1(t, (I2n − 2 tan(t/2)J )(X)).

Proof. One has that Ũ := U0 F̃ is a parametrix on Iε(k) because

(i∂t − Bw)U0 F̃ = ((i∂t − pw
2 )U0)

︸ ︷︷ ︸
∈C∞(Iε(k);L (S ′

,S ))

F̃ + U0(i∂t F̃) − (Bw − pw
2 )U0 F̃,

and

U0(i∂t F̃) − (Bw − pw
2 )U0 F̃ = U0(i∂t F̃ −U−1

0 (Bw − pw
2 )U0 F̃).

With P the reduced propagator, as

P −U−1
0 (Bw − pw

2 )U0 ∈ C∞(Iε(k);L (S
′
,S ) ⊗MN ),

we have

i∂t F̃ −U−1
0 (Bw − pw

2 )U0 F̃ ∈ C∞(Iε(k);L (S
′
,S ) ⊗MN ),

and (U0 F̃)|t=0 = IN + R, which shows that Ũ is a parametrix of e−i t Bw
on Iε(k). By

Proposition 7.5 we finally have φ1(t) = φ̃1 ◦ (I2n − 2 tan(t/2)J ). ��
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We next consider a general ψdo system Aw whose symbol belongs to the class
SMGES (see Definition 2.4). As already anticipated, we determine an asymptotic ex-
pansion of N ∗ ρ with a suitable ρ ∈ S (R), which leads immediately to the Weyl
law (see (7.15) below). We exploit the construction of the parametrix in the blockwise
diagonal case to obtain a parametrix of the Schrödinger group e−i t Aw

.
In the sequel it will be useful to have the following elementary lemma.

Lemma 7.7. Let p1 ∈ C∞(R2n \ {0};R) be positively homogeneous of degree 1. Recall
that p2 is the standard harmonic oscillator. For λ ≥ 0 consider the volume of the set
{X ∈ R

2n; p2(X) + p1(X) ≤ λ}. We have, as λ → +∞,
∫

p2+p1≤λ

dX = λn
(∫

p2≤1
dX −

∫

p2=1
p1

ds

|∇ p2| λ−1/2 +
n

2

∫

p2=1
p2

1
ds

|∇ p2| λ−1 + o(λ−1)
)
.

Proof. In the first place
∫

p2+p1≤λ

dX = λn
∫

p2+λ−1/2 p1≤1
dX.

Using polar coordinates X = ρω, ρ ≥ 0 and ω ∈ S
2n−1 write

∫

p2+λ−1/2 p1≤1
dX =

∫

S2n−1

(∫ q+(ω,λ)

0
ρ2n−1dρ

)
dσ(ω),

where dσ(ω) is the Riemannian measure induced by R
2n on the unit sphere and

q+(ω, λ) = 1

2p2(ω)

(√

4p2(ω) + λ−1 p1(ω)2 − λ−1/2 p1(ω)
)
.

A first-order Taylor expansion of q2n
+ as λ → +∞ gives the result. ��

We may proceed to the Weyl law.

Theorem 7.8. [Weyl law]. Let A = A∗, with A ∼ ∑
j≥0 a2− j ∈ Ssreg(m2, g;MN ), be

a second-order SMGES, with principal symbol p2 IN , p2 being the harmonic oscillator.
Adopting the notation used in Definition 2.4, we hence denote by λ1, j (with multiplicity
N j ), 1 ≤ j ≤ r , the eigenvalues of the semiprincipal part. Then, if ρ ∈ S (R) is chosen
such that ρ̂ has compact support in (−ε, ε) for a sufficiently small ε > 0 and ρ̂ = 1 on
a neighborhood of 0

(N ∗ ρ)(λ) =
⎛

⎝
r∑

j=1

(
N j

(2π)n

∫

p2+λ1, j≤λ

dX

)

− (2π)−n
∫

p2=λ

Tr (a0)
ds

|∇ p2|

⎞

⎠ + O(λn−3/2),

(7.14)

as λ → +∞ (recall that Tr is the matrix trace).
Therefore

N(λ) =
(

N

(2π)n

∫

p2≤1
dX

)

λn −
(

(2π)−n
∫

p2=1
Tr (a1)

ds

|∇ p2|
)

λn−1/2

+O(λn−1), λ → +∞ (7.15)
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Proof. In the first place we obtain a parametrix UA(t) of the unitary group t "→ e−i t Aw

of Aw by a parametrix of the unitary group of its diagonalization Bw. Then we study
the distribution ρ̂Tr(UA) where Tr(UA) = Tr�Tr(UA) denotes the trace of the Schwartz
kernel of UA (where Tr� denotes the restriction to the diagonal). Since N ′ ∗ ρ =
F−1{ρ̂Tr(UA)}, modulo a rapidly decreasing term, we finally get the result.

• The parametrixUA. Recall that the decoupling Theorem 5.3 of Sect. 5 diagonalizes
Aw (modulo smoothing operators), so that the principal symbol b2 of the blockwise
diagonal operator Bw is p2 while the semiprincipal symbol b1 = diag(λ1, j IN j ; 1 ≤
j ≤ r) is blockwise scalar. Hence, there is an operator S with Schwartz kernel
KS ∈ C∞(Rt ;S (R2n

x,y)) such that

e−i t Aw = Ewe−i t Bw
(Ew)∗ + S(t), ∀t ∈ R

(see, for instance, Lemma 5.2 of [12]).
For notational simplicity, we suppose that the number r of blocks is 2 (the proof
extends to the case r ≥ 3 with no difficulties). Hence, consider the symbols in
blockwise form

B =:
[
B1 0
0 B2

]

,

where Bj is an N j × N j block ( j = 1, 2), and

E =:
[
E11 E12
E21 E22

]

,

where Ekj is an Nk × N j block ( j, k = 1, 2).
Since for j = 1, 2 the semiprincipal term λ1, j of Bj is scalar we obtain a parametrix
UBj of the unitary group of Bw

j by Lemma 7.6. Thus

UA(t) := Ew
[
UB1(t) 0

0 UB2(t)

]

(Ew)∗

is a parametrix of the unitary group UA, and its entries on the principal diagonal are
given by

Ew
11UB1(t)(E

w
11)∗ + Ew

12UB2 (t)(E
w
12)∗ and Ew

21UB1(t)(E
w
21)∗ + Ew

22UB2 (t)(E
w
22)∗.

• Use of the parametrix. Recall that

(Fλ→tN′)(t) = Tr(e−i t Aw
),

where Tr(e−i t Aw
) is well defined as a tempered distribution. Hence,

Fλ→t {N′ ∗ ρ}(t) = ρ̂(t)Tr(e−i t Aw
),

and we may consider the distribution

K (t) = ρ̂(t)Tr(UA)(t) = ρ̂(t)Tr
(
Ew

11UB1(t)(E
w
11)

∗ + Ew
12UB2(t)(E

w
12)

∗

+Ew
21UB1(t)(E

w
21)

∗ + Ew
22UB2(t)(E

w
22)

∗)
,
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for t ∈ (−ε, ε). Next, for j, k = 1, 2 let

Kkj (t) := ρ̂(t)Tr
(
Ew
k jUBj (t)(E

w
k j )

∗)
= ρ̂(t)Tr�Tr

(
Ew
k jUBj (t)(E

w
k j )

∗)
.

Denote by φ̃1, j , α̃ j , α j and φ1, j , j = 1, 2, respectively, the φ̃1, α̃, α and φ1 constructed
in Lemmas 7.3 and 7.6 when B = Bj . Now,

Ew
k jUBj (t)(E

w
k j )

∗ := Ew
k jU0(t)Fj (t)(E

w
k j )

∗,

where Fj (t) is the parametrix of the reduced propagator eitp
w
2 (Bw

j − pw
2 )e−i tpw

2 .
Hence,

Ew
k jUBj (t)(E

w
k j )

∗ = U0(t)(Ekj ◦ exp(t Hp2))
w(

Ew
k j Fj (t)

∗)∗
,

where Fj (t)∗ = (e−i φ̃1, j (t)α̃ j (t)∗)w. By Proposition 4.1 of [5] and Lemma 7.6, we
have

Kkj (t) := (2π)−n ρ̂(t)
∫

ei(φ2(t,X)+φ1, j (t,X))ck j (t, X) dX

(which makes sense since ρ̂ has support on the interval where UBj is well defined).
Now, by construction of φ2 and φ1, j , we have φ2(0, X) + φ1, j (0, X) = 0, which
yields by a Taylor’s expansion

φ2(t, ·) + φ1, j (t, ·) = tψ j (t, ·),
where ψ j is given to leading order in t by

ψ j (t, ·) = −(p2 + λ1, j ) +
t

2

(−Hp2λ1, j
)

+ t2r j (t, ·).
Following Hörmander [10], Lemma 29.1.3, we define

Qkj (t, λ) := (2π)−n
∫

{−ψ j (t,·)≤λ}
ck j (t, X)ρ̂(t) dX.

For sufficiently small |t |, the function ψ j (t, ·) is elliptic in Ssreg(m2, g;MN ), and by
the above lemma by Hörmander, Qkj is a Kohn-Nirenberg symbol in Sn(Rλ) for |t |
sufficiently small, and, furthermore,

Kkj (t) =
∫

R

e−i tλ∂λQkj (t, λ) dλ.

Thus Kkj (t) is a conormal distribution, which can be written as the Fourier transform
of a symbol independent of t (see [9], Lemma 18.2.1). Defining

Q̃k j (λ) := eiDt DλQkj (0, λ) (7.16)

and recalling the definition of Kkj (t),

F−1
t→λ

(
ρ̂(t)Tr(Ew

k jUBj (t)(E
w
k j )

∗)
)
(λ) = ∂λ Q̃k j (λ).

From (7.16) we have

Q̃k j (λ) = Qkj (0, λ) − i∂t∂λQkj (0, λ) + Rkj (λ), Rkj ∈ Sn−2(Rλ). (7.17)
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• The expansion (7.17). For the first term in the above expansion we have

Qkj (0, λ) = (2π)−n
∫

{p2+λ1, j≤λ}
ck j (0, X) dX.

Now,

ck j (t, X) = Tr
(
e−i(φ2+φ1, j )(Ekj#(ei(φ2+φ1, j )α j )#E

∗
k j )

)
(t, X)

where t ∈ (−ε, ε), whence

ck j (0, X) = Tr
(
Ekj#E

∗
k j

)
(X), (7.18)

since U0(0) = I and Fj (0) = IN j by construction.
As for the next term in the expansion (7.17), with 〈·|·〉 denoting the distributional
duality in the X variables and recalling that

Qkj (t, λ) = (2π)−n〈H(ψ j (t, ·) + λ)|c jk(t, ·)ρ̂(t)〉,
we have

−i(∂t Qk j )(0, λ) = (2π)−n 〈
H(ψ j + λ)| − i∂t ck j

〉∣
∣
t=0 − i(2π)−n 〈

δ(ψ j + λ)|ck j ∂tψ j
〉∣
∣
t=0

= −(2π)−n 〈
H(λ − p2)|i∂t ck j

〉∣
∣
t=0 + r̃k j (λ) (7.19)

where r̃k j ∈ Sn−1/2(Rλ) (and H and δ are the Heaviside and Delta distributions).
Therefore, we need to compute ∂t ck j (0, ·). Put h0(t, ·) for the (Weyl) symbol of
U0(t), and for j = 1, 2 denote by h j (t, ·) and by f j (t, ·) those of UBj (t) and of
Fj (t), respectively. Recall that h0(0, ·) = 1 and that h j (0, ·) = IN j , j = 1, 2. We
then have

∂t ck j (0, ·) = ∂tTr
(
e−i(φ2(t)+φ1, j (t))Ekj#h j#E

∗
k j

) ∣
∣
∣
t=0

=Tr
(
(∂t e

−i(φ2(t)+φ1, j (t)))Ekj#h j#E
∗
k j

) ∣
∣
∣
t=0

+Tr
(
e−i(φ2(t)+φ1, j (t))Ekj#∂t h0# f j#E

∗
k j

)∣
∣
∣
t=0

+ Tr
(
e−i(φ2(t)+φ1, j (t))Ekj#h0#∂t f j#E

∗
k j

) ∣
∣
∣
t=0

=Tr
(
i p2Ekj#E

∗
k j

)
+ Tr

(
iλ1, j Ek j#E

∗
k j

)
+ Tr

(
−i Ek j#p2#E∗

k j

)

+ Tr
(
−i Ek j#λ1, j#E

∗
k j

)
+ Tr

(
−i Ek j#b0, j#E

∗
k j

)
.

Recalling that b0, j is the subprincipal term of Bw
j and denoting by e0,k j the principal

symbol of Ew
k j , we therefore have (note that at t = 0 all the symbols involved are

nice isotropic symbols)

∂t ck j (0, ·) = −1

2
Tr

(
e0,k j {p2, e

∗
0,k j } + {e0,k j , p2}e∗0,k j

)
− iTr(e0,k j b0, j e

∗
0,k j ) + sk j ,

(7.20)

where sk j ∈ S(m−1, g). By taking ∂λ of (∂t Qk j )(0, ·) in (7.19) we hence have

− i(∂λ∂t Qk j )(0, λ) = −i(2π)−n 〈
δ(λ − p2)|∂t ck j

〉∣
∣
t=0 + O(λn−3/2), λ → +∞.

(7.21)
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• The asymptotics of N′ ∗ ρ. To obtain the result we have to integrate the following
equation, which holds for any given real exponent γ > 0 (see [6], Lemma IV.1)

(N′ ∗ ρ)(λ) = F−1
t→λ

(
ρ̂Tr(e−i t Aw

)
)
(λ)

= F−1
t→λ

(
ρ̂Tr

(
Ew

11UB1(E
w
11)

∗ + Ew
12UB2(E

w
12)

∗

+Ew
21UB1(E

w
21)

∗ + Ew
22UB2(E

w
22)

∗))
(λ)

+O(λ−γ ) =
2∑

k, j=1

∂λ Q̃k j (λ) + O(λ−γ ).

Hence, to obtain (7.14) we need to compute
∑2

k, j=1
∂λ Q̃k j (λ). In the first place we

note that by (7.18) one has

c1 j (0, ·) + c2 j (0, ·) = Tr
(
E1 j#E

∗
1 j + E2 j#E

∗
2 j

)
, j = 1, 2.

Hence, with e−1,k j denoting the semiprincipal symbol of Ew
k j , for r̃ a suitable symbol

in Ssreg(m−2, g), we have

(c1 j + c2 j )(0, ·) =
2∑

k=1

Tr
(
e0,k j e

∗
0,k j + e−1,k j e

∗
0,k j + e0,k j e

∗−1,k j

)
+ r̃

=
2∑

k=1

Tr
(
e∗0,k j e0,k j + e∗0,k j e−1,k j + e∗−1,k j ek j,0

)
+ r̃

= Tr
(
IN j

)
+ r̃ = N j + r̃ , (7.22)

where the third equality follows from the symbolic identity E∗#E = IN . Hence, by
(7.21) we get

2∑

k=1

−i(∂λ∂t Qk j )(0, λ) = −i(2π)−n
〈
δ(λ − p2)

∣
∣
∣

2∑

k=1

∂t ck j
〉∣
∣
∣
t=0

+O(λn−3/2),

(7.23)

as λ → +∞. By (7.22) and (7.23), we have

2∑

j=1

2∑

k=1

Q̃k j (λ) =
2∑

j=1

2∑

k=1

∂λQkj (0, λ) − i∂t∂λQkj (0, λ) + Rkj (λ)

= (2π)−n
2∑

j=1

N j

∫

{p2+λ1, j≤λ}
dX − i(2π)−n

〈
δ(λ − p2)

∣
∣
∣

2∑

k, j=1

∂t ck j
〉∣
∣
∣
t=0

+O(λn−3/2), (7.24)



Spectral Asymptotic Properties of Semiregular Non-commutative Page 45 of 49    46 

as λ → +∞, and by (7.20)

−i
2∑

k, j=1

∂t ck j (0) =− Tr
(
e0b0e

∗
0 − i

2
(e0{p2, e

∗
0} + {e0, p2}e∗0)

)
+

2∑

k, j=1

sk j (7.25)

=− Tr
(
b0 +

i

2
(e∗0{p2, e0} + {e∗0, p2}e0)

)
+

2∑

k, j=1

sk j

=− Tr(a0) +
2∑

k, j=1

sk j ,

where the third equality follows from Corollary 6.5.
Hence (7.14) is obtained by substituting (7.25) into (7.24) and by recalling that
δ(λ − p2) = ds/|∇ p2|

∣
∣
p2=λ

.
From (7.14) one immediately gets (using the polynomial growth of N, as is well-
known) the asymptotics (7.15) by using Lemma 7.7 and grouping the O(λn−1) terms.

��
We finally prove the refined asymptotics of N(λ) for a positive ψdo system Aw

satisfying the hypotheses of Theorem 7.8 and the Condition DGW (7.1).

Theorem 7.9 [Refined Weyl law]. Let A = A∗ ∈ Ssreg(m2, g;MN ) be a second-order
SMGES satisfying the hypotheses of Theorem 7.8. If Condition DGW (7.1) is satisfied,
then

N(λ) = (2π)−n

⎛

⎝
r∑

j=1

(

N j

∫

p2+λ1, j≤λ

dX

)

−
∫

p2=λ

Tr (a0)
ds

|∇ p2|
)

+ o(λn−1), λ → +∞. (7.26)

In particular, as λ → +∞

N(λ) = (2π)−n
(
Nλn

∫

p2≤1
dX − λn−1/2

∫

p2=1
Tr(a1)

ds

|∇ p2|
+λn−1

∫

p2=1

(n

2
Tr(a2

1) − Tr(a0)
) ds

|∇ p2|
)

+ o(λn−1). (7.27)

Proof. Fix an even and positive cutoff function ρ ∈ S (R2n) in the time variable such
that ρ̂ = 1 on (−ε, ε) for some ε ∈ (0, π/2) and supp ρ̂ ⊂ (−π/2, π/2).
We have to show that, under our assumptions, (N∗ρ)(λ) = N(λ) modulo an error which
is o(λn−1), so that the result follows from the asymptotics (7.14) by using the following
Tauberian theorem (see [20], Theorem B.5.1) which allows the required comparison
between N and N ∗ ρ.

Lemma 7.10. Let ρ be fixed as above. If there is a real number γ such that (N′ ∗ρ)(λ) =
O(λγ ) and (N′ ∗ χ)(λ) = o(λγ ) for all χ satisfying χ̂ ∈ C∞

c (R), supp χ̂ ⊂ (0, +∞),
then N(λ) = (N ∗ ρ)(λ) + o(λγ ) as λ → +∞.
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We have therefore to prove that

F−1
t→λ

(
χ(t)Tr e−i t Aw)

(λ) = o(λn−1), (7.28)

for any given χ ∈ C∞
c (R) with supp χ ⊂ (0,∞) (here χ is playing the role of χ̂ in

Lemma 7.10). Since Theorem 7.8 in particular shows that

(N′ ∗ ρ)(λ) = O(λn−1),

it follows that if we have (7.28) then the hypotheses of Lemma 7.10 are fulfilled. Now,
by Proposition 1.1 and Sect. 3 in [4] we have that sing supp Tr U (t) ⊂ 2πZ, whence
we need to check (7.28) only for χ ∈ C∞

c (R) with supp χ ⊂ (2πk − ε, 2πk + ε) where
k ∈ Z \ {0} and ε ∈ (0, π/2). Now, for all real γ (again, we suppose without loss of
generality r = 2) we have

F−1
t→λ

(
χ(t)Tr e−i t Aw)

(λ) = F−1
t→λ

(
χTr

(
Ew

11UB1(E
w
11)

∗ + Ew
12UB2(E

w
12)

∗

+Ew
21UB1(E

w
21)

∗ + Ew
22B2(E

w
22)

∗))
(λ) + O(λ−γ )

(see Lemma 4.7 in [4]) and for all j, k

F−1
t→λ

(
χTr

(
Ew
k jUBj (E

w
k j )

∗))
(λ) =

∫

eitλei(φ2(t,X)+φ1, j (t,X))χ(t)c(t, X) dt dX,

where c is a suitable amplitude and φ2, φ1, j are given as in the proof of Theorem 7.8.
Hence, we are in a position to use Proposition 5.1 of [4], with ψ2 := φ2 and ψ1 := φ1, j .
Since φ2 := −2 tan(t/2)p2 and χ is supported close to 2πk, the hypotheses of that
proposition for the phases ψ2, ψ1 and amplitude c are satisfied (in the notation of that
proposition, we take t0 = 2πk and r0 = √

2).

Now, since φ1, j (2kπ, X) = −k
∫ 2π

0
(λ1, j ◦ exp t Hp2)(X)dt ,ConditionDGW (7.1)

yields that the set of the ω ∈ S
2n−1 at which ∂α

ωφ1, j (2kπ,ω), |α| = 1, vanish to infinite
order ( j = 1, . . . , r ) has measure zero for all k ∈ Z \ {0}. Thus, Proposition 5.1 in [4]
shows that

F−1
t→λ

(
χTr

(
Ew
k jUBj (E

w
k j )

∗))
= o(λn−1),

for all j, k = 1,…, r .
The final formula (7.27) is obtained by Taylor-expanding the volume term in (7.26)

using once more Lemma 7.7.
The proof is complete. ��

8. Some Examples

8.1. Weyl-asymptotics for the JC-model 3.1 (n = 1, N = 2). In this case we have that

λ±(X) = ±|α||ψ(X)|, and a0(X) = γ

[
1 0
0 −1

]

, where α �= 0 and γ are real numbers.

Since the eigenvalues of a1 are constant on the level sets of p2(X) = |X |2/2, Condition
DGW does not hold and we may only have the classical Weyl-law:

N(λ) = (2π)−12λ

∫

p2≤1
dX + O(1) = 2λ + O(1),
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as λ → +∞.
In fact, that is the same for all the JC models in the various configurations along

with the geometric realization �(3)
1 (see Sects. 3 and 4), because of the presence of the

0 eigenvalue.
Because of that limitation in case of the JC models, it is interesting to give an example

of a deformation of a JC-model which indeed satisfies the hypotheses for a refined Weyl
law. This is done in the next subsection.

8.2. RefinedWeyl-asymptotics for bigger size systems. Recall that in the JC-models with
n = N − 1 atom levels (and their geometric generalizations) we have that an eigenvalue
of the semiprincipal term is 0 with a fixed multiplicity. In this case �2π = S

2n−1 for
the 0-eigenvalue and we cannot conclude a refined Weyl-law. However, let us consider
the following deformation of the JC-model in the �-configuration 3.2. Let n = 2 and
N = 3. Recall that ψ j (X) = (x j + iξ j )/

√
2 is the symbol of the annihilation operator in

the x j variable, j = 1, 2. For α1, α2 �= 0 real, we put αψ := (α1ψ1, α2ψ2) and consider
the functions f j (X) = α jψ j (X)/|αψ(X)|, X �= 0, which are homogeneous of degree
0, j = 1, 2. Let

λ+, λ−, μ ∈ C∞(Ṙ2n;R)

be homogeneous of degree 1, such that

λ−(X) < λ+(X), λ+(X) − λ−(X) ≈ |X |, |λ±(X) − μ(X)| ≈ |X |, X �= 0,

with

either μ(X) ∈ (λ−(X), λ+(X)), or μ(X) �∈ (λ−(X), λ+(X)), ∀X �= 0.

We consider then

A1,μ =
⎡

⎢
⎣

μ| f2|2 + λ++λ−
2 | f1|2 λ+−λ−

2 f̄1 (−μ + λ++λ−
2 ) f̄1 f̄2

λ+−λ−
2 f1

λ++λ−
2

λ+−λ−
2 f̄2

(−μ + λ++λ−
2 ) f1 f2

λ+−λ−
2 f2 μ| f1|2 + λ++λ−

2 | f2|2

⎤

⎥
⎦ = e0

⎡

⎣
μ 0 0
0 λ+ 0
0 0 λ−

⎤

⎦ e∗0,

where

e0(X) =
⎡

⎣
− f2(X) f1(X)/

√
2 f1(X)/

√
2

0 1/
√

2 −1/
√

2
f1(X) f2(X)/

√
2 f2(X)/

√
2

⎤

⎦ ,

is smooth and unitary for X ∈ R
4, X �= 0, and homogeneous of degree 0. Then, if we

require that the sets

{ω ∈ S
3; ∂α

ωμ(ω) = 0, ∀α ∈ N
2n−1 \ {0}}, {ω ∈ S

3; ∂α
ωλ±(ω) = 0, ∀α ∈ N

2n−1 \ {0}}

have measure zero, we have a refined Weyl-law

N(λ) = (2π)−2
(

3|S3|λ2 − λ3/2
∫

p2=1
(λ+ + λ− + μ)

ds

|∇ p2|
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+λ

∫

p2=1

(
λ2

+ + λ2− + μ2 − (γ1 + γ2)
) ds

|∇ p2| + o(1)
)
, λ → +∞.

In particular, in the case of Sect. 3.2 we have λ± = ±|αψ |, and a computation shows
that in coordinates ω = (sin θ3 sin θ2 cos θ1, sin θ3 cos θ2, sin θ3 sin θ2 sin θ1, cos θ3),

with θ1 ∈ [0, 2π ] and θ2, θ3 ∈ [0, π ],

λ+(ω)2 = 1

2

(
α2

2 + sin2 θ3 sin2 θ2(α
2
1 − α2

2)
)
.

Therefore when α2
1 �= α2

2, the sets �2π,± have measure zero. Hence, considering

μ(X) = κλ+(X) + (1 − κ)λ−(X), for some κ ∈ (0, 1),

yields that for α2
1 �= α2

2 and κ �= 1/2, the system with the semiprincipal part

A1,μ =
⎡

⎢
⎣

μ| f2|2 λ+−λ−
2 f̄1 −μ f̄1 f̄2

λ+−λ−
2 f1 0 λ+−λ−

2 f̄2
−μ f1 f2

λ+−λ−
2 f2 μ| f1|2

⎤

⎥
⎦

satisfies the hypotheses of the refined Weyl-law and we therefore have

N(λ) = (2π)−2
(

3|S3|λ2 − λ3/2
∫

p2=1
μ

ds

|∇ p2| +

+λ

∫

p2=1

(
λ2

+ + λ2− + μ2 − (γ1 + γ2)
) ds

|∇ p2| + o(1)
)
, λ → +∞.

By tensorizing the symbols with I2, one readily obtains in the same hypotheses on μ the
refined Weyl-law for the 6 × 6 Laplacian �(3)

1 (see Sect. 4.1) with semiprincipal term
A1,μ ⊗ I2.
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