
Innovation in Decentralized Markets:

Technology vs. Synthetic Products∗

Marzena Rostek† and Ji Hee Yoon‡

January 30, 2023

Abstract

Advances in market-clearing technology for multiple assets and synthetic products

present alternative ways to leverage complementarities and substitutabilites in asset re-

turns. This paper compares their equilibrium and welfare effects. In competitive markets,

either instrument can mimic the efficient design. When traders have price impact, how-

ever, synthetic products and market-clearing technology provide separate instruments for

impacting markets’ performance and can generate synergies or tradeoffs. Neither instru-

ment can generally reproduce the other’s payoffs state by state. Moreover, innovation in

market clearing renders additional synthetic products nonredundant. Our analysis points

to the advantages of each type of innovation while also exposing potential risks.
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1 Introduction

The success of synthetic financial products like derivatives has transformed the functioning of

markets. Synthetic products now play an important role in portfolio strategy and risk man-

agement. Such products are sought by market participants who wish to improve liquidity and
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enhance traders’ inference about underlying asset prices.1 As technology advances, the design

of multi-asset market-clearing algorithms offers an alternative for impacting market perfor-

mance. Electronic trading platforms for financial assets increasingly allow traders to express

their demands for one asset contingent on the prices of other assets.2 By allowing sophisticated

preference expression over many assets, thereby permitting more flexible diversification of cross-

asset risk, technology has been assuming the traditional role of securities. In this paper, we

ask whether innovation in multi-asset market-clearing algorithms can substitute for synthetic

products in their impact on efficiency and liquidity.

Regulators have scrutinized the effects of each type of innovation.3 Changes to synthetic

financial product availability or changes to the market-clearing rules across assets are often

motivated by the objective to provide market participants with information about other as-

sets, facilitate risk diversification, or reduce participation fees. For large market participants,

however, exogenous transaction fees are only a small part of their trading costs; price impact

continues to be a dominant cost component.4 Our analysis suggests that accounting for price

impact is essential when determining whether changes to synthetic products or market-clearing

rules are more effective for impacting diversification and welfare.

We build on the model of Rostek and Yoon (2021a,b) based on the standard uniform-price

double auction for K > 1 assets that can be cleared jointly or independently and I < ∞
strategic traders privately informed about their asset holdings.5 In the baseline market, traders

submit uncontingent (net) demand schedules for each asset: their quantities are contingent

only on the price of that asset. With uncontingent demands, assets can clear independently;

with demands that are contingent on the prices of all assets, all assets must clear jointly.6 The

1Over $13 trillion notional amounts were outstanding in the global equity-linked derivatives market in 2020;
https://stats.bis.org/statx/toc/DER.html. The daily average turnover of ETF futures and options was
$6.7 trillion in 2020; https://www.bis.org/statistics/extderiv.htm. In the United States, nearly 2500
ETFs were listed in the first quarter of 2021, and the average daily value of US ETF transactions was $151.47
billion in total cash flow; https://www.nyse.com/etf/exchange-traded-funds-quarterly-report.

2Several types of cross-asset conditioning are available in futures and options markets (e.g., multi-leg orders)
and electronic trading platforms, including Active Trader Pro, Etrade, Street Smart, Tradehawk.

3In fact, concerns about these and related effects motivated many sections of Dodd-Frank and MiFID I/II;
see also Focault (2012). To mention a couple of recently revised rules, the SEC relaxed restrictions on ETFs
to allow issuers to bring more flexible custom-designed baskets to market (SEC 2019). On the other hand,
the SEC’s Reg NMS intends for trades submitted to one trading venue to be cleared at prices displayed by
other venues. Updates to these rules aimed to improve traders’ access to information (Final Rule: Regulation
NMS, 2020). However, many transactions involving joint trading of multiple securities (e.g., equities and related
derivatives) are exempt from such price linkages.

4See, e.g., Bollen and Whaley (2004), Garleanu, Pedersen, and Poteshman (2009), Bali, Beckmeyer, Moerke,
and Weigert (2022), Zhang (2022) and references there.

5Analysis of multi-asset markets with multi-unit demands in this framework—competitive and imperfectly
competitive—has focused on markets in which traders’ demands for each asset are contingent on the prices of all
assets (e.g., Wilson (1979), Klemperer and Meyer (1989), Kyle (1989), Vives (2011)). Such schedules, however,
are not yet common in practice. A recently introduced version of this model relaxes the contingent-demands
assumption (Chen and Duffie (2021), Wittwer (2021), and Rostek and Yoon (2021a,b)).

6One might ask whether independence in market clearing across securities matters, given that markets are
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setting is quadratic-Gaussian.

In markets with K underlying assets that clear independently, we compare the equilibrium

and welfare effects of two types of innovation: We consider the introduction of synthetic prod-

ucts, whose returns are defined as bundles of the underlying assets’ returns (derivatives), which

trade along with the underlying assets and clear independently. We also allow changes to the

market-clearing technology of the securities (underlying assets and synthetic products), which

allow multiple securities to clear jointly. Changes to market-clearing technology encompass

the introduction of new exchanges for underlying assets, exchange mergers, and listings of un-

derlying assets in exchanges where they were not traded before. Neither innovation alters the

underlying asset span, traders’ initial asset holdings, or asset supply.

These two innovations affect the game in different ways: Synthetic products change the

joint distribution of securities’ returns, while technology innovations change traders’ strategies.

We show that in markets with arbitrary derivatives and exchanges that clear jointly any subset

of underlying assets and synthetic products they list, the welfare effects of the two types of

innovations can be compared by analyzing how they change the price impact and, equivalently,

the cross-security inference (Theorem 1 and Lemma 1). We report four main results.

First, our results underscore the difference that price impact makes in evaluating the effec-

tiveness of these instruments. In fact, in competitive markets, either instrument can reproduce

the efficient design, which with price-taking traders corresponds to the fully contingent design:

Rostek and Yoon (2021a,b) showed that the outcome of the fully contingent design (where

additional synthetic products or exchanges would be neutral) can be implemented by a market

structure with either sufficiently many derivatives or sufficiently many multi-asset exchanges

that clear independently. In practice, introducing derivatives may be less costly than developing

and implementing multi-asset market-clearing technology, mergers of privately run exchanges,

or asset listings. Nevertheless, in this paper, we show that with imperfect competition, the

effects of these instruments are generally no longer equivalent and need not “substitute” in the

efficient design.

We examine when, in imperfectly competitive markets, synthetic products can reproduce

the equilibrium effects of innovation in market-clearing technology for the corresponding assets

state by state (i.e., for all realizations of traders’ asset holdings), or vice versa. We show that

this is generally not possible, even with multiple derivatives for the same assets or additional

derivatives for other assets (Proposition 1). Both innovations allow traders’ total demands

dynamic and a nontrivial fraction of assets can be traded continuously. By conditioning on past outcomes,
demands with any contingent variables allow information from past shocks to be at least partially incorporated.
Conditioning on contingent variables for current-round outcomes affects the way current-round shocks impact
behavior. These effects continue to impact outcomes with dynamic trading even when trading is continuous,
provided that the relative frequency of shocks to information or liquidity renewing the gains from trade (whose
realization requires multiple rounds) is not too low relative to trading frequency. See also Section 5.2 and Lyu,
Rostek, and Yoon (2021a).
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for underlying assets to condition on additional information (i.e., other securities’ prices in

addition to own prices), thus permitting more flexible cross-asset diversification. Yet, they

induce different inference about the prices of the underlying assets in traders’ demands and,

consequently, imply different equilibrium price impact. Derivatives offer an additional degree

of freedom in the weights that bundle asset returns; however, with derivatives, the underlying

assets must be traded in fixed proportions.

We provide a necessary and sufficient condition for the equivalence: Traders’ cross-asset price

impacts must be symmetric (i.e., λikℓ = λiℓk for all k and ℓ ̸= k; Proposition 1, Examples 4 and 5).

Two results underly this condition: First, innovation in market-clearing technology generally

leads to asymmetric price impact, while in markets for securities that clear independently

the cross-asset price impact is always zero and hence symmetric (Example 4). Second, when

the price impact is symmetric—but not otherwise—adjustments in derivative trade to a price

change of a correlated asset can mimic the adjustment for a corresponding underlying asset

with joint clearing (Proposition 1, Example 3).7

The asymmetry of the cross-asset price impacts arises because traders’ demands for those

assets depend on their inference on other asset prices.8 Cross-asset price impact is asymmetric

when either the asset returns or market structure are asymmetric across assets. In that case,

price changes in the new exchange’s assets induce different inference about those other assets’

prices (Corollary 4).9 Consequently, innovations that let total demands for an underlying asset

be contingent on prices of the same underlying assets need not be equivalent (Proposition 1).

Second, either instrument can dominate in welfare terms, depending on market charac-

teristics (asset covariances and traders’ asset holdings; Example 7). For instance, when the

technology that clears some assets jointly increases welfare, the introduction of derivatives for

the same assets may not be beneficial. Specifically, asymmetric trading costs can be beneficial

when the underlying asset covariances or traders’ desired positions are heterogeneous across

7If a trader could choose which type of demands to submit for those assets, individual optimization would
imply the choice of contingent schedules, as they allow conditioning on the actual realizations of the assets’
prices (and hence trades). Yet, the types of schedules the traders can submit are determined by the providers.
As technology advances, exchanges allow traders to express their demands for an asset as a function of the prices
of other assets. Nevertheless, such cross-asset conditioning is still limited: it applies to only a small number of
assets. Our analysis suggests that a provider generally does not have incentives to allow traders to submit fully
contingent demands. Specifically, the provider’s incentives are aligned with efficiency: the efficiency gains from
suitably designed innovation come from a liquidity improvement and more trading volume.

8When traders cannot condition their demand for an asset on the price realizations of all other assets, they
condition demands on the best estimate of these prices (expected trades).

9In terms of market characteristics, the equilibrium price impact is indeed symmetric in markets with fully
contingent demands (all securities clear jointly) and markets with uncontingent demands (all securities clear
independently). However, in more general market structures, the price impact symmetry requires joint symmetry
assumptions on both the asset returns (i.e., the covariances must be the same for all assets; Example 4) and
the market structure (i.e., a condition that captures how demands for different assets are linked through market
clearing or synthetic products; Example 5). Any asymmetries in market characteristics render cross-asset
inference and hence price impact asymmetric.
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assets. On the other hand, derivatives offer more flexibility for designing security returns (Ex-

ample 7), absent derivative weight regulations (e.g., ETF Rule 2019). While always beneficial

for a trader’s individual optimization problem, synthetic products or exchanges can increase or

lower traders’ equilibrium welfare by changing their endogenous transaction costs.

Third, when traders have price impact, changes to market-clearing can make new synthetic

products nonredundant, but these products would be neutral in markets where securities clear

independently (Proposition 2, Example 6). Intuitively, when the cross-asset price impact is

asymmetric, even if the inference error is zero among some assets, a derivative defined on

these assets’ returns is generally nonredundant as it alters the inference about the prices of

assets not listed in the exchange where it is introduced (Corollary 1). Conversely, a non-zero

inference error among some assets does not imply that a derivative defined on these assets’

returns is nonredundant. When derivatives are cleared independently, inference errors among

their underlying assets remain non-zero, yet additional derivatives on those assets are redundant

given symmetric price impact (Proposition 2).

These results demonstrate that new synthetic products and new trading protocols constitute

distinct instruments in financial market design and that they should be regulated jointly. The

results also clarify whether regulation of market-clearing technology can be partially bypassed

when issuing arbitrary derivatives is allowed. Namely, bypassing is feasible when the underlying

assets and the market structure are symmetric. If trading platforms can be creative about

synthetic products, rules prohibiting mergers, asset listings, or the addition of new trading

protocols may be ineffective.

Fourth, the choice of efficient design may depend on what data on traders’ asset holdings

is available to the regulator. Holding fixed the traders’ initial holdings, derivatives can give

strictly higher welfare relative to the maximal welfare feasible by designing market-clearing

protocols (Example 7), because of the choice of the derivative weights they allow. Likewise,

derivatives can lead to a strictly lower welfare relative to the minimal welfare feasible with

a market-clearing design. Hence, regulation that cannot rely on information about traders’

portfolios may favor innovation in market-clearing technology. It is a less risky option that

offers a greater reduction of the maximal welfare loss from innovations to the uncontingent

market for the underlying assets alone. In turn, with information about traders’ asset holdings,

derivatives have an advantage in design. Increased reporting requirements for asset holdings

can make a difference for determining effective innovation.

Related literature. Our paper belongs to the growing body of literature on financial market

design with large traders.10 Our comparative analysis of multi-asset designs and the identifica-

10e.g., Allen and Wittwer (2021), Du and Zhu (2017a,b) Baisa and Burkett (2018), Antill and Duffie (2021),
Kyle, Obizhaeva, and Wang (2017), Kyle and Lee (2018), Duffie (2018), Zhu (2018a,b), Rostek and Yoon (2019,
2021a,b), Chen and Zhang (2020), Zhang (2022), Babus and Hachem (2021), Cespa and Vives (2021), Chen
and Duffie (2021), Somogyi (2021), Wittwer (2021).
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tion of their joint effects contributes to the study of markets that dispense with the assumption

that demands are contingent (Chen and Duffie (2021), Rostek and Yoon (2021a,b), and Wit-

twer (2021)).11 There is no scope for evaluating these innovations in the standard model based

on fully contingent demands. Dispensing with the assumption that demands are fully contin-

gent opens up a rich language for designing demand conditioning (and hence market-clearing

technology) and synthetic products. The substantive observation is that when demands are

not fully contingent, spanning does not hold. Consequently, various types of innovations that

are neutral to the underlying assets’ span are not neutral to welfare, even when all traders par-

ticipate in all exchanges and trade all securities. Existing work has examined the equilibrium

effects of each innovation separately (Rostek and Yoon (2021a,b)). Our paper shows that there

can be trade-offs in employing either instrument and synergies from employing both.

Additionally, our analysis highlights the welfare and design implications of price inference

across assets. In particular, the effects we report do not rely on the inference about asset

value across traders. Relatively little is known about inference across assets because models

for multiple assets commonly apply the assumption that demands are fully contingent (e.g.,

the survey by Rostek and Yoon (2021c)).12 We explore how information about traders’ asset

holdings carried by the asset prices differs when the design allows synthetic products versus

demand conditioning among the underlying assets, and how it changes when both instruments

are allowed (Corollary 1 and Example 3).

The market structures we analyze are decentralized: not all assets clear jointly. There is a

growing interest in how market fragmentation influences security design (e.g., Allen and Car-

letti (2006), Rahi and Zigrand (2009), Zawadowski (2013), Babus and Hachem (2020, 2021),

Biais, Hombert, and Weill (2021); see also Cabrales, Gale, and Gottardi (2015)). Our results

draw attention to the role that market fragmentation in the sense of limited demand condi-

tioning rather than limited trader participation plays in financial innovation. We explore how

imperfectly competitive fragmented markets motivate innovation in market-clearing technology

vis-a-vis or jointly with security design.

Our model introduces a new class of package auction designs with a language that allows

two ways of expressing preferences for portfolios with packages (bundles) or combinatorial (con-

tingent) bids. The existing literature on combinatorial allocation problems has largely focused

on indivisible-goods auctions in which bidders have unit demands (e.g., Cramton, Shoham, and

11Chen and Duffie (2021) examine one-asset markets with noise traders, Wittwer (2021) studies two-asset
markets with supply shocks, Rostek and Yoon (2021a) analyze multi-asset markets with exchanges for many
assets, and Rostek and Yoon (2021b) examine uncontingent multi-asset markets with derivatives.

12Cespa (2004) and Chen and Duffie (2021) examine how uncontingent demands affect the inference across
traders. In a competitive market with uncontingent demands, Cespa (2004) shows that the prices can pro-
vide more information about the fundamental values than with fully contingent demands, depending on the
determinants of asset price covariances, such as fundamental values, informed traders’ private information, or
noise. Chen and Duffie (2021) show that the prices of the same asset traded in multiple exchanges are each less
informative relative to a single exchange, but jointly, the prices are more informative.
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Steinberg (2006), Vohra (2011)). Our model encompasses competitive and imperfectly compet-

itive markets, in which traders have multi-unit demands and heterogeneous values about which

they are privately informed, as well as arbitrary substitutabilities and complementarities among

the asset returns. Our analysis indicates that different types of package bids are generally not

equivalent for efficiency or revenue.

2 Model

Our model is based on the uniform-price double auction cast in the quadratic-Gaussian setting

(Definition 1). Unlike the standard multi-asset version of that model, where all assets clear

jointly, we consider markets with K assets that clear independently. In such markets with K

underlying assets, we consider two types of innovation. One innovation is the introduction of

synthetic products (derivatives) whose returns are linear combinations of the underlying assets’

returns, which trade along with the underlying assets and, like the underlying assets, clear

independently. We also consider innovation in market clearing for securities (i.e., underlying

assets and derivatives) that allows demands for some securities to clear jointly rather than inde-

pendently. Neither innovation affects the underlying asset span, traders’ initial asset holdings,

or asset supply.

Traders and assets.13 Consider a market with I ≥ 3 strategic traders who tradeK risky assets

whose returns are jointly normally distributed r = (rk)k ∼ N (δ,Σ) with a vector of expected

returns δ = (δk)k ∈ RK and a positive definite covariance matrix Σ = (σkℓ)k,ℓ ∈ RK×K . There

is also a riskless asset (a numéraire).

Each trader i has a quadratic in the quantity of risky assets (mean-variance) utility:

ui(qi) = δ · (qi + qi
0)−

α

2
(qi + qi

0) ·Σ(qi + qi
0), (1)

where qi = (qik)k ∈ RK is trade, qi
0 = (qi0,k)k ∈ RK is trader i’s initial holding of risky assets, and

α ∈ R+ is traders’ risk aversion. Gains from trade come from risk sharing and diversification:

asset holdings are heterogeneous. Asset holdings {qi
0}i are traders’ private information and

are independent of asset returns r. To ensure that the per capita aggregate asset holdings

(equivalently, price) is random in the limit large market (I → ∞), we allow for the common

value component in traders’ asset holdings (see Eq. (13) in Appendix A.1).

Innovation in synthetic products. We let D ≥ 0 derivatives be traded in addition to

the K assets. Traders’ asset holdings for the derivatives are zero, qi0,d = 0 for all i and d.

The return of derivative d is a linear combination of asset returns rd = w′
dr for some weight

vector wd = (wdk)k ∈ RK , wdk ∈ R for any k ∈ K and d ∈ D. A derivative thus allows

13This section closely follows Rostek and Yoon (2021a).
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long and short positions of the underlying assets.14 Let the weight matrix of all derivatives be

Wd ≡ (w1, · · ·wD) ∈ RK×D and the dth column wd correspond to the dth derivative. Given

the distribution of K assets and derivatives’ weights Wd, the returns of K +D securities are

jointly normally distributed according to N (δ+,Σ+), where the moments are

δ+ ≡

[
δ

W′
dδ

]
∈ RK+D and Σ+ ≡

[
Σ ΣWd

W′
dΣ W′

dΣWd

]
∈ R(K+D)×(K+D). (2)

The utility of trader i depends on his total trades qik +
∑

dwdkq
i
d of each underlying asset

k. Given the vector of trades of the K assets, qi
a ≡ (qik)k ∈ RK and the vector of trades of

D derivatives, qi
d ≡ (qid)d ∈ RD, the vector of total trades is qi

a + Wdq
i
d, and the utility of

trader i in (1) is ui(qi
a +Wdq

i
d) (Eq. (1)). By the definition of δ+ and Σ+ in Eq. (2), we can

equivalently represent utility ui(qi
a +Wdq

i
d) by treating the derivatives as distinct assets:

ui(qi) = δ+ · (qi + qi,+
0 )− α

2
(qi + qi,+

0 ) ·Σ+(qi + qi,+
0 ), (3)

where qi = (qi
a,q

i
d) ∈ RK+D is the vector of trades for all K+D securities, and qi,+

0 = (qi
0,0) ∈

RK+D is the asset holdings vector whose elements corresponding to derivatives are zeros.

Innovation in market-clearing technology. Along with the synthetic products, we ex-

amine innovation in market-clearing technology. Today’s financial markets offer many trading

protocols for the same or distinct assets. Venues for financial securities are cleared indepen-

dently. While the assets traded in each venue are typically cleared independently as well, in

some markets, including electronic trading platforms for financial assets, traders can express

their demands for one asset contingent on the prices of other assets. Advances in technology

have sparked interest in innovation in market-clearing technology across multiple exchanges.15

When available, such contingent orders allow cross-asset conditioning among only a limited

number of assets.

Accordingly, our model allows the K +D securities to trade in exchanges, each defined by

the securities traded (listed) there: there can be multiple securities per exchange, and securities

14Futures, ETFs, and ETPs are examples of derivatives whose returns are in the linear span of the underlying
assets. Although options and exotic derivatives whose returns are non-linear functions of the underlying asset
returns are not modeled in this paper, the qualitative effects underlying the welfare trade-off will carry over.
The first-order conditions for any of the designs we analyze can be written for general utility functions analogous
to those in Wittwer (2021, Appendix F) for the uncontingent model. For derivatives traded over the counter,
transactions tend to occur through protocols that resemble bargaining rather than a uniform-price mechanism.
The effects studied in this paper are not specific to price mechanisms such as the uniform-price auction: The
essence of our results is the inefficiency present with two-sided (buyer and seller) private information among
strategic traders in any (budget-balanced) mechanism, and how changes to the available financial products or
technology affect that inefficiency.

15Electronic trading platforms (e.g., Active Trader Pro, Etrade, Street Smart, Tradehawk) experiment with
and innovate such orders.
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can be traded in multiple exchanges. All traders participate in all exchanges. Each exchange is

organized as the uniform-price double auction (e.g., Kyle (1989), Vives (2011)) in which traders

submit (net) demand schedules. Assets clear jointly within an exchange and independently

across exchanges.

Definition 1 (Double Auction with Multiple Exchanges) Consider a market with M =

K + D securities. An exchange n is defined by the subset of securities traded K(n) ⊆ M . A

market structure N = {K(n)}n is described by N exchanges.

A trader’s demand for security m ∈ K(n) is contingent on the prices of the securities K(n)

traded in exchange n, pK(n) = (pℓ)ℓ∈K(n) ∈ RK(n), qim,n(·) : RK(n) → R for m ∈ K(n). For

qim,n > 0, trader i is a buyer of security m; for qim,n < 0, the trader is a seller.

Exchanges clear independently. The market-clearing price vector pK(n) in exchange n is

determined by
∑

j q
j
m,n(pK(n)) = 0 jointly for all securities m ∈ K(n) traded in this exchange.16

Trader i trades {qim,n}m,n, pays
∑

m,n pm,nq
i
m,n, and receives a payoff of ui(qi)− p · qi.

Example 1 illustrates that demand conditioning determines how the market clears.

Example 1 (Uncontingent and Contingent Markets) Consider a market withM = K+D

securities.

(a) (Contingent market: A single exchange for all securities N = {M}) The standard multi-

asset model is based on contingent schedules. Each trader i submits M demand functions

qi,c(·) ≡ (qi,c1 (p), . . . , qi,cM (p)), with each qi,cm (·) : RM → R specifying the quantity of security

m demanded for any realization of price vector p = (p1, . . . , pM). With contingent demands,

securities must clear jointly : the zero aggregate net demand in all exchanges determines the

equilibrium price vector,
∑

i q
i,c(p1, · · · , pM) = 0 ∈ RM .

(b) (Uncontingent market: M exchanges, each for one security, N = {{m}}m) Each trader

i submits M uncontingent demand schedules qi(·) ≡ (qi1(p1), . . . , q
i
M(pM)), with each qim(·) :

R → R specifying the quantity of security m demanded for any realization of price pm. The

market clears independently across securities: the zero aggregate net demand in exchange m

determines the equilibrium price pm,
∑

i q
i
m(pm) = 0. □

Example 2 illustrates the two types of innovation we consider: derivatives and market-

clearing technology.

Example 2 (Derivatives vs. Innovation in Market Clearing) In the market structure

N = {{1}, {2}, {3}}, consider two types of innovations. First, suppose that a non-replicating

derivative that bundles the returns of assets 1 and 2 is introduced to be traded in a separate

16If prices pK(n) such that
∑

j q
j
m,n(pK(n)) = 0 do not exist or are not unique for some m and n, the market

ends with no trade for all securities.
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exchange; the market structure is N ′ = {{1}, {2}, {3}, {d}}, rd = wd1r1 + wd2r2. Each trader i

submits demands qik(pk) : R → R for the underlying assets k = 1, 2, 3 and qid(pd) : R → R for

the derivative. Traders’ demands for each security clear independently.

Second, suppose instead that assets 1 and 2 are traded in one exchange. In the market

structure N ′′ = {{1, 2}, {3}}, each trader i submits demands qi1(p1, p2) : R2 → R, qi2(p1, p2) :

R2 → R, and qi3(p3) : R → R. Traders’ demands for asset 3 clear independently of those for

assets 1 and 2, which clear jointly. □

These two innovations affect the game in different ways: Security innovations change the

joint distribution of securities’ returns, while technology innovations changes traders’ strategies.

Equilibrium. We study the Bayesian Nash Equilibrium in linear demand schedules (hereafter,

equilibrium); i.e., schedules have the functional form of qi(·) = ai −Biqi
0 −Cip.

Definition 2 (Equilibrium) Consider a market forM = K+D securities with N = {K(n)}n
exchanges, with securities K(n) ⊆M listed in exchange n. A profile of (net) demand schedules

{{qim,n(·)}m,n}i is a linear Bayesian Nash equilibrium if for each i, {qim,n(·)}m,n maximizes the

expected payoff:

max
{qim,n(·)}m,n

E[δ+ · (qi + qi,+
0 )− α

2
(qi + qi,+

0 ) ·Σ+(qi + qi,+
0 )− p · qi|qi

0], (4)

given the schedules of other traders {{qjm,n(·)}m,n}j ̸=i and market clearing
∑

j q
j
m,n(·) = 0 for

all m and n.

We will evaluate the effects of innovation with imperfectly competitive traders against the

competitive-market benchmark.

Definition 3 (Competitive Market, Competitive Equilibrium) Consider a market with

I < ∞ traders. The competitive market is the limit game as I → ∞, holding fixed all other

primitives. Letting {qi,I(·)}i be the equilibrium in the market with I <∞ traders, the compet-

itive equilibrium {qi(·)}i is the limit of equilibria {qi,I(·)}i as I → ∞:

qi(·) = lim
I→∞

qi,I(·) ∀i.

3 Equilibrium

In this section, we characterize equilibrium with M securities (Definition 1), which include K

assets and D derivatives traded in market structure N = {K(n)}n, where K(n) ⊆ M for each

n (Theorem 1 and Corollary 2 in Appendix A.1).
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Optimization problem. Consider the optimization problem (4). The well-known equiva-

lence between individual trader optimization in (net) demand functions contingent on price

realizations (i.e., the optimization problem (4)) and pointwise optimization with respect to the

realizations of p ∈ RM in the contingent model also holds in market structure N = {K(n)}n
(Definition 1) with respect to the realizations of the relevant contingent variables, pK(n) ∈ RK(n):

for each trader i, for each security m in exchange n,

max
qim,n∈R

E[δ+ · (qi+qi,+
0 )− α

2
(qi+qi,+

0 ) ·Σ+(qi+qi,+
0 )−p ·qi|pK(n),q

i
0] ∀pK(n) ∈ RK(n), (5)

given a profile of his residual supply functions {S−i
ℓ,n′(·) ≡ −

∑
j ̸=i q

j
ℓ,n′(·) : RK(n′) → R}ℓ,n′ and

his demands for other securities {qiℓ,n(·)}ℓ̸=m and {qiℓ,n′(·)}ℓ,n′ ̸=n. A profile of a trader’s residual

supply functions is the sufficient statistic of his residual market {{qjm,n(·)}m,n}j ̸=i.
17

The security by security pointwise optimization (5) implies that the first-order conditions

of trader i equalize, for each security m ∈ K(n) in exchange n, his expected marginal utility

with expected marginal payment for all pK(n) ∈ RK(n):

δm − αΣ+
mE[q

i + qi,+
0 |pK(n),q

i
0] = pm + (Λi

K(n))mq
i
K(n) ∀pK(n) ∈ RK(n), (6)

where Λi
K(n) ≡ (dpm

dqiℓ
)ℓ,m ∈ RK(n)×K(n) is the price impact of trader i (i.e., “Kyle’s lambda”) in

exchange n, and the mth row of Λi
K(n) is denoted by (Λi

K(n))m.

Price impact. For each trader i, price impact Λi
K(n) ≡ (

dpK(n)

dqi
K(n)

)′ in every exchange n is

characterized as the transpose of the Jacobian matrix of the inverse residual supply (Eq. (19)):

Λi
K(n) = −

((∑
j ̸=i

∂qj
K(n)(·)

∂pK(n)

)−1)′
. (7)

Since the market clears independently across exchanges, traders’ cross-exchange price impacts

λimℓ ≡
dpℓ
dqim

are zero for m ∈ K(n), ℓ ∈ K(n′), and n ̸= n′. Hence, the traders’ price impacts are

block-diagonal matrices: Λi ≡ diag(Λi
K(n))n ∈ R(

∑
n K(n))×(

∑
n K(n)) for all i. Nevertheless, the

equilibrium outcome is not independent across exchanges due to cross-exchange inference. We

next explore how the cross-exchange inference affects the price impact in each exchange.

Even though each innovation affects the equilibrium price impact differently (Eq. (7))—

technology innovations change the restrictions on which element of the price impact matrix

is zero, and security innovations change the dimension and the basis of the space where the

price impact matrix lies—we can construct a sufficient statistic for comparing welfare across

market structures with either or both innovations, the per-unit price impact, defined for a

17The idea of considering a trader’s pointwise optimization problem, taking as given the trader’s residual
market, goes back to Klemperer and Meyer (1989) and Kyle (1989).
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counterfactual for a single exchange for K assets. See Definition 4 and Lemma 1 below.

Cross-asset inference. When demands are not contingent, traders cannot express the quan-

tity demanded of a security as a function of the price realizations of other securities. Thus, they

rely on expected prices (which are one-to-one with expected trades in Eq. (6)). Consequently,

unlike in the contingent design, traders’ equilibrium price impacts depend on cross-asset in-

ference, as their demands (i.e., the demand Jacobians ∂qi(·)
∂p

) do. Innovation influences how

traders’ private information {qi
0}i is aggregated in the outcome, which impacts diversification

across securities and risk sharing.

To see the cross-exchange inference effect in price impact, consider the counterfactual in

which trader i increases his demand for security m ∈ K(n). Other traders who assume the

optimal behavior of all others interpret the higher price of security m as the result of a lower

average initial holding for securitym and update their posteriors about prices in other exchanges

pK(n′) accordingly (cf. the term
∂E[pK(n′)|pK(n),q

j
0]

∂pK(n)
in Eq. (8) below). This updating by other

traders gives rise to an inference effect in trader i’s price impact Λi
K(n):

18

Λi
K(n) = −

( ∑
j ̸=i

∂qj
K(n)

∂pK(n)︸ ︷︷ ︸
Direct effect

+
∑
j ̸=i

∑
n′ ̸=n

∂qj
K(n)

∂pK(n′)

∂E[pK(n′)|pK(n),q
j
0]

∂pK(n)︸ ︷︷ ︸
Inference effect

)−1

, (8)

Eq. (8) shows that the price impact in each exchange n depends on the joint return distribution

of all securities within and across exchanges. Inference effects in the price impact change the

effect of innovation (Proposition 1 and Example 4) and their welfare implications (Section 4.3).

Although the cross-exchange inference and price impact create a complex fixed-point prob-

lem, we show that price impact is a sufficient statistic for equilibrium (Theorem 1, stated in

Appendix A.1).19 In particular, when characterized as a fixed point in price impacts {Λi}i, the
equilibrium fixed point endogenizes traders’ conditional inference {E[qiℓ|pK(n),q

i
0]}ℓ/∈K(n),n for

all i as functions of price impacts {Λi}i.

Remarks.

1. Traders’ initial asset holdings do not change with the introduction of a derivative or an

exchange. Equilibrium is neutral to an arbitrary split of initial asset holdings for duplicated

assets (Eqs. (16)-(17) of Theorem 1 in Appendix A.1).

18Direct and inference effects in price impact (Eq. (8)) are characterized by differentiating the first-order

condition (6) of trader j ̸= i in exchange n with respect to pK(n) and substituting
∂qj

K(n)
(·)

∂pK(n)
into Eq. (7). As

a result,
∂qj

K(n)

∂pK(n)
≡ −(αΣ+

K(n),K(n) + Λj
K(n)) and

∂qj
K(n)

∂pK(n′)
≡ −(αΣ+

K(n),K(n) + Λj
K(n))αΣ

+
K(n),K(n′)

∂qj

K(n′)(·)
∂pK(n′)

for

each n′ ̸= n.
19Theorem 1 in Appendix A.1 extends the equilibrium characterization for uncontingent markets with secu-

rities (Rostek and Yoon (2021b)) and for exchanges with multiple assets (Rostek and Yoon (2021a)) to market
structures that allow both instruments.
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2. Analyzing price impact directly will help identify the role of imperfect competition. As

I → ∞, then Λ → 0 (Lemma 2 in Appendix A.1). With positive price impact Λ > 0, trader i

demands (or sells) less relative to the schedules he would submit if the market were competitive.

4 Derivatives vs. Market-Clearing Technology

In this section, we address the main question of the paper: How do the equilibrium and welfare

effects of new market-clearing protocols and synthetic products for the corresponding underlying

assets differ?

Relative to opening multi-asset exchanges, derivatives allow the design of the traded secu-

rities’ covariance, i.e., the weights with which asset returns are bundled. Given the additional

degree of freedom in the weights, could innovation of synthetic products substitute for innova-

tion in market-clearing technology state by state (i.e., for all realizations of asset holdings)? We

show that this is generally not true (Proposition 1), because derivatives give rise to symmetric

price impact while the price impact is generally asymmetric with technology innovations (Ex-

ample 3). Conversely, exchanges cannot reproduce the effects of derivatives either (Proposition

1, Example 4 (b)). Taking as an objective the traders’ ex ante total welfare,
∑

iE[u
i(qi)−p ·qi]

(Eq. (25)), we present three results.

First, the market primitives matter for the payoff equivalence between synthetic products

and technology innovations. Any asymmetries in market characteristics—the fundamental asset

covariances or the market structure, which captures how assets are linked through exchanges—

render cross-asset inference and hence price impact asymmetric (Corollary 4 in Appendix A.2,

Examples 4 (a) and 5). Second, innovation in market-clearing technology renders additional

synthetic products nonredundant (Proposition 2, Example 6). Third, either type of innovation

can dominate in welfare terms, given the traders and assets; however, derivatives create a riskier

distribution of welfare across realizations of asset holdings (Example 7).

When comparing the effects of new synthetic products and market-clearing protocols in

this section, we focus on the impact of new securities traded along with underlying assets. In

practice, traders often trade synthetic products because their access to the underlying assets is

restricted. Our results (Propositions 1 and 2) apply to security innovation in markets in which

some or all of the underlying assets are not traded.

Sufficient statistic for equilibrium and welfare ranking. When markets clear indepen-

dently, innovation in market-clearing technology or securities—which are redundant if well-

defined in markets with fully contingent demands—are generally not neutral, as they affect

cross-exchange inference and price impact (Rostek and Yoon (2021a,b)). To compare the equi-

librium and welfare effects of these innovations in subsequent sections, price impact matrices Λ

cannot be ranked directly; not only do their dimensions and the corresponding securities differ

13



across the arbitrary market structures we allow, but the two innovations also change the game

in different ways: Technology innovations change traders’ strategies, while security innovations

change the joint distribution of securities’ returns (covariances).

One can still relate equilibrium outcomes across markets with arbitrary market structures

and arbitrary securities through the per-unit price impact Λ̂ ∈ RK×K (Definition 4 and Lemma

1), as W is defined for a weight matrix or an indicator matrix.

Notation 1. The weight matrix W ≡ (W1, · · · ,WN) ≡ ((wm,n)m∈K(n))n ∈ RK×(
∑

n K(n))

represents the weight vectorwm,n ∈ RK of each securitym in each exchange n for the underlying

assets in each exchange n, given the market structure N = {K(n)}n.

Definition 4 (Per-Unit Price Impact) Suppose q̂i ≡ (q̂ik)k = Wqi ∈ RK is trader i’s

total equilibrium trade in market N = {K(n)}n for securities M . The per-unit price impact

Λ̂ ∈ RK×K is a positive semi-definite matrix, such that

E[q̂i] ≡ E[Wqi] = (αΣ+ Λ̂)−1αΣ(E[q0]− E[qi
0]) ∀i ∀{E[qi

0]}i ∈ RIK . (9)

The per-unit price impact maps traders’ price impacts of any dimension defined by a market

structure with arbitrary exchanges for any subset of underlying assets and synthetic products

onto the smaller space of the underlying assets.20 It matches the moments of each trader’s total

equilibrium trade q̂i ≡ (q̂ik)k = Wqi ∈ RK , as if the market consisted of a single exchange for

the K underlying assets. Then, a change in this single-exchange counterfactual Λ̂ identifies

nonredundant innovation (Lemma 1).

Lemma 1 (Nonredundancy of Innovation) I < ∞ and consider two markets: N =

{K(n)}n with M ≥ 1 securities and N ′ = {K(n′)}n′ with M ′ ≥ 1 securities. The innova-

tion is redundant, i.e.,

ui,N(qi,N)− pN · qi,N = ui,N
′
(qi,N ′

)− pN ′ · qi,N ′ ∀i ∀{qi
0}i ∈ RIK ,

if and only if the per-unit price impacts coincide: Λ̂N = Λ̂N ′
.

Remark.

3. In the standard model, based on fully contingent demands, all innovations—new ex-

changes or new securities—are redundant. Equilibrium is ex post, and price impact is indepen-

dent of inference. Indeed, applied to the contingent market for arbitraryM securities, Theorem

20Although the per-unit price impact is not by itself a sufficient statistic for equilibrium (see Eq. (25)), it
allows a welfare comparison through the counterfactual price impact of dimension K × K for the underlying
assets themselves.
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1 in Appendix A.1 gives the price impact of21

Λc =
α

I − 2
Σ+. (10)

Substituting for the price impact in Eq. (10) into Eq. (23) in Lemma 1 shows that the per-

unit price impact Λ̂c = α
I−2

Σ is invariant to the change in W. Hence, innovation (in synthetic

products or market-clearing) does not change equilibrium outcomes—the underlying asset prices

pc
a = δ − αΣq0 and their total trade qi,c

a +Wdq
i,c
d = I−2

I−1
(q0 − qi

0)—and traders’ payoffs in the

contingent market.

4.1 Derivatives and Technology Innovations Are Not Equivalent

Example 3 illustrates when, given the traders and the underlying assets, an equilibrium in

a market structure with exchanges that clear multiple assets jointly can be mimicked by a

market structure with derivatives whose returns bundle the corresponding assets traded in each

exchange and which clears securities independently.

Example 3 (When Can Derivatives Implement the Contingent Market Outcome?)

Consider a market with K = 2 underlying assets. Holding fixed other traders’ strategies, a

trader wishes to mimic his fully contingent demands in N = {{1, 2}}. When a derivative whose

returns are defined over the two assets is introduced instead, i.e., N ′ = {{1}, {2}, {d}}, a trader

absorbs some units of both assets, thus hedging their correlated risk, which he cannot do with

just the uncontingent demands for the underlying assets. We will show that the symmetry of

price impact—which always holds in two asset markets N and N ′—is crucial for whether the

trader’s total demands for each underlying asset can match the contingent demands.

(a) A trader prefers fully contingent demands, for any residual market. Let trader i’s price

impact matrix be an arbitrary positive definite matrix Λi. Absent restrictions on demand

conditioning, optimization implies that trader i would choose the fully contingent demands for

the two assets qi,c(p1, p2) = (αΣ+Λi)−1(δ−p−αΣqi
0), irrespective of the trader’s price impact

and its symmetry. Suppose that these fully contingent demands are

qi,c1 (p1, p2) = const.− cc11p1 − cc12p2

qi,c2 (p1, p2) = const.− cc21p1 − cc22p2.

On the other hand, in an uncontingent market with a derivative rd = w1r1 + w2r2, trader i

21Theorem 1 in Appendix A.1 applies to fully contingent demands by replacing the matrix operator [M]N
(which captures that demand for each security is contingent only on the prices listed in the same exchange)
with M (which captures that demand for each security is contingent on all securities’ prices) for any matrix
M ∈ RM×M .
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splits his total demand for asset 1 between the underlying asset 1 and the derivative:

qi1(p1) + w1q
i
d(pd) = const.− cc11p1 +

cc12
w2

w1p1 −
cc12
w2

(w1p1 + w2p2)︸ ︷︷ ︸
=pd

= const.− (cc11 −
cc12
w2

w1)p1︸ ︷︷ ︸
=qi1(p1)

+w1−
cc12
w1w2

pd.︸ ︷︷ ︸
=qid(pd)

This split allows the trader to mimic the fully contingent demand for asset 1: trader i hedges

the risks in asset 1 (correlated and asset-specific) perfectly.

(b) The symmetry of price impact Λi is necessary for two market structures to be equivalent.

By an analogous argument, the trader splits his total demand for asset 2 into q̃i2(p2) = const.−
(cc22 −

cc21
w1
w2)p2 and q̃

i
d(pd) = − cc21

w1w2
pd. For the constructed demands (qi1(p1), q

i
d(pd)) that mimic

the fully contingent demand for asset 1 and (q̃i2(p2), q̃
i
d(pd)) that mimic the fully contingent

demand for asset 2 to constitute equilibrium, qid(pd) = q̃id(pd) must hold. Hence, the key step

for two innovations to be substitutable is whether cc12 = cc21, equivalently, λ
c
12 = λc21 holds.

When λc12 = λc21, the equivalence result is invariant to the choice of weights (w1, w2) of

a non-replicating derivative: The total demands for each underlying asset are the same and

mimic the fully contingent demands for the underlying assets. However, if λc12 ̸= λc21,
22 the

total demand in N ′ differs from the contingent one and thus cannot be optimal pointwise with

respect to all realizations of both asset prices, i.e., cannot hedge the trader’s risks in assets 1

and 2. Equivalently, the inference errors between the total trades for assets 1 and 2 are non-zero

(Eq. (8)). Consequently, the derivative cannot mimic equilibrium with contingent demands. □

Example 3 naturally extends to markets with more than two assets: For any K ≥ 2,

derivatives can substitute for merging exchanges state by state (i.e., for all realizations of asset

holdings) if all exchanges merge, thus implementing the contingent market for all assetsK. This

raises the question whether an analogous result holds for innovations that involve joint market

clearing for some but not all underlying assets. As indicated by Example 3 (b), Proposition 1

shows that this is not possible unless the per-unit price impact is symmetric. In fact, its proof

shows that equilibrium with exchanges cannot be reproduced even with multiple derivatives for

these corresponding assets or additional derivatives that include other assets.

Proposition 1 (Derivatives and Technology Innovations Are Generally Not Equiv-

alent) Let I <∞ and N = {K(n)}n. Suppose that a new exchange n′ is introduced in market

22When the cross-asset price impact is symmetric—e.g., it always is when K = 2—the cross-asset demand
substitution is symmetric cc12 = cc21 and linear pricing holds pd = w1p1 + w2p2; thus, additional derivatives are
redundant. However, in markets with K > 2 and an asymmetric price impact (e.g., in the market structure
{1, 2}, {3}), cc12 ̸= cc21 and pd ̸= w1p1+w2p2. Thus, trading additional derivatives cannot allow traders to mimic
the demands in {{1, 2}, {3}}.
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N , i.e., N ′ = N∪{n′}. There exists a set of D derivatives such that traders’ ex ante equilibrium

payoffs in market structure N ′′ = N ∪ {{d} : d ∈ D} are the same as those in market structure

N ′ for all distributions of asset holdings F (qi
0)i if and only if one of the following conditions

holds:

(i) The price impact in exchange n′ is symmetric, i.e., ΛN ′

K(n′) = (ΛN ′

K(n′))
′.

(ii) The new exchange n′ is redundant, i.e., Λ̂N = Λ̂N ′
.

Remarks.

4. Proposition 1 extends the existence and uniqueness of equilibrium in Rostek and Yoon

(2021b, Proposition 7); see Corollary 3 for a class of symmetric markets in Appendix A.2.

5. The proof of Proposition 1 allows many new exchanges. The proof also shows that

exchanges generally cannot mimic derivatives state by state, given the exchanges’ asymmetric

price impact (as in Proposition 1(i)) and the flexibility of derivatives’ weights on all assets (see

Example 4(b)).

6. Corollary 4 in Appendix A.2 provides a sufficient condition on the primitives for deriva-

tives to substitute for innovations in market-clearing technology: When the market structure

and asset covariances are symmetric for all asset pairs in new exchange n′ (Definition 5 below),

condition (i) in Proposition 1 holds.

Proposition 1 provides a necessary and sufficient condition for derivatives to mimic inno-

vation in market-clearing technology state by state: The equilibrium cross-asset price impacts

must be symmetric,

λN
′

kℓ = λN
′

ℓk ∀k, ℓ ∈ K(n′);

hence the per-unit price impacts must be symmetric. Then, demands for derivatives can repro-

duce the same per-unit price impacts: When asset k’s price changes, a trader’s uncontingent

demand for the correlated assets ℓ ̸= k cannot adjust but the demand for a derivative that

weighs assets k and ℓ can. However, when the demand substitution is not symmetric be-

tween assets, i.e., ∂V i(·;Λ)

∂qik∂q
i
ℓ

̸= ∂V i(·;Λ)

∂qiℓ∂q
i
k
, where V i(·;Λ) is trader i’s expected payoff, equivalently,

when price impact ΛN ′

K(n′) is not symmetric, no derivative—no function of pd alone—can mimic

the asymmetric cross-asset adjustments to asset k’s price changes and those of asset ℓ’s price

changes simultaneously (Example 3).

In which markets can we expect price impacts to be asymmetric? We can recast the con-

dition on the endogenous price impacts (condition (i) in Proposition 1) in terms of the market

primitives (Corollary 4 in Appendix A.2). When all securities clear jointly, the asymmetry does

not arise: In the contingent market, the cross-asset inference is perfect and therefore symmet-

ric. Asymmetry also does not arise when all securities clear independently: In the uncontingent

market, the cross-asset price impact is zero. In more general market structures, however, the
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equilibrium price impact is symmetric only under the condition of joint symmetry among all

the underlying asset covariances (i.e., σkk = σ for all k ∈ K(n) and σkℓ = σρ for all k ∈ K(n)

and ℓ /∈ K(n) for all n) and the market structure across underlying assets (Definition 5). In-

tuitively, a market structure is symmetric if each asset is linked with others—via exchanges or

derivative weights—in the same way.

Definition 5 (Symmetric Market Structure) There are K underlying assets. A market

structure N = {K(n)}n for M securities is symmetric for assets k and ℓ ̸= k if the following

conditions both hold:

(i) (Symmetric exchanges) For any exchange n such that k ∈ K(n), either ℓ ∈ K(n) or there

exists an exchange n′ such that K(n′) \ {ℓ} = K(n) \ {k}; and

(ii) (Symmetric derivatives) For any derivative d with return rd =
∑

k′∈K wdk′rk′, wdk ̸= 0,

there exists a derivative d′ ∈ M whose weights satisfy wdk = wd′ℓ, wdℓ = wd′k, and

wdk′ = wd′k′ for all k′ ̸= k, ℓ.

A market structure N = {K(n)}n for M securities is symmetric if conditions (i) and (ii) hold

for all asset pairs k and ℓ ̸= k.

Example 5 illustrates the role that market asymmetries play in redundancy. Example 4 ex-

plains why price impact is asymmetric and expounds the advantages of each type of innovation.

Example 4 (Derivatives vs. Technology Innovation) Consider the introduction of a

derivative in market structure N ′ and the exchange merger in N ′′ for assets 1 and 2 in Example

2. These innovations do not generally yield the same outcomes state-by-state, because they

induce different cross-asset inference and therefore different cross-asset per-unit price impact

(i.e., the conditions of Proposition 1 are violated).

(a) (Derivatives cannot mimic cross-asset demand conditioning) In the symmetric market struc-

ture N ′′ (Definition 5), assets 1 and 2 clear jointly, and thus involve no mutual inference effects.

When these assets are asymmetrically correlated with asset 3 (i.e., condition (i) in Corollary

4 in Appendix A.2 is violated), the inference effects between each of these assets and asset 3

differ while the direct effects are the same. Therefore, the cross-asset price impacts differ as

well.

For example, if asset 3 is correlated with asset 2 but not with 1 (i.e., σ13 = 0, σ23 ̸= 0), a price

change of asset 2 has no inference effect on the demands for asset 1 (i.e., ασ13E[q
i
3(p3)|p1, p2,qi

0] =

0 in Eq. (6) for asset 1), whereas a price change of asset 1 has a non-zero inference effect on

other traders’ demands for asset 2 due to the imperfect inference about asset 3’s price:

∂qj2(·)
∂p1

=
∂qj2
∂p1︸︷︷︸

Direct effect

+
∂qj2
∂p3

∂E[p3|p1, p2,qi
0]

∂p1︸ ︷︷ ︸
Inference effect ̸=0

. (11)
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Notably, the prices of assets 1 and 3 are not independent, and hence
∂E[p3|p1,p2,qi

0]

∂p1
̸= 0, even

when σ13 = 0. With fully contingent demands, the price of asset k incorporates aggregate

information q0,k for correlated assets alone (Eq. (10) in Remark 4). However, with a restriction

of demand conditioning, the asset price depends on the aggregate information for all assets

(Eq. (20) in Appendix A.1). Consequently, the price covariance between two assets depends

not only on the asset covariance of that pair, but also all other asset covariances. The per-unit

price impact in {{1, 2}, {3}} is symmetric: ΛN ′′

{1,2} = (ΛN ′′

{1,2})
′ (hence, Λ̂N ′′

= (Λ̂N ′′
)′) if and only

if the asset covariances are symmetric between assets 1 and 2 (i.e., σ11 = σ22 and σ13 = σ23).

With the derivative instead, the cross-asset price impacts of ΛN ′
are zero. The per-unit

price impact matrix Λ̂N ′
= (W(ΛN ′

)−1W′)−1)−1 = ((ΛN ′
a )−1+Wd(Λ

N ′

d )−1W′
d)

−1 is symmetric

by the symmetry of ΛN ′
a = diag(λN

′

k )k and ΛN ′

d = diag(λN
′

d )d. It follows from Lemma 1 that the

introduction of an exchange and a derivative for the same underlying assets leads to distinct

equilibrium price impacts and outcomes.

(b) (Cross-asset demand conditioning cannot mimic derivatives) Derivatives can induce cross-

asset per-unit price impact that exchanges cannot. In the market structure of Example 2,

{{1}, {2}, {3}}, suppose that a derivative d whose return bundles all assets is introduced: rd =∑
k wkrk for wk ̸= 0 for all k. Denoting the price impact in this market by Λ = diag((λk)k, λd),

the per-unit price impact is

Λ̂ =


λ2λ3λ2

dλ

(λd+w2
2λ2)(λd+w2

3λ3)
−w1w2λ

λdλ3
−w1w3λ

λdλ2

−w1w2λ
λdλ3

λ1λ3λ2
dλ

(λd+w2
1λ1)(λd+w2

3λ3)
−w2w3λ

λdλ1

−w1w3λ
λdλ2

−w2w3λ
λdλ1

λ1λ2λ2
dλ

(λd+w2
1λ1)(λd+w2

2λ2)

 , (12)

where λ ≡ 1/det(Λ̂−1). The per-unit price impact Λ̂ (Eq. (12)) has non-zero off-diagonal

elements for all k and ℓ ̸= k, which generally differ from those in the contingent market, where

(Λc = α
I−2

Σ).23 This is because when demands are not contingent, the cross-asset price impact

for any asset pair k and ℓ ̸= k depends on all asset covariances and not merely σk,ℓ. Notably,

one derivative cannot generally make equilibrium ex post.24

Consider now designs with exchanges. All cross-asset demand slopes
∂q̂iℓ
∂pk

= 1
I−1

((Λ̂N ′′
)−1)′kℓ

can be non-zero if and only if each pair of assets k, ℓ ̸= k clears jointly in some exchange.

However, with exchanges, this would imply that either equilibrium outcome coincides with that

in a single exchange for all assets or the equilibrium price impact matrix must be asymmetric.25

Neither case can mimic the per-unit price impact in the market {{1}, {2}, {3}, {d}}.
Market {{1}, {2}, {3}, {d}} is not locally contingent for assets 1, 2, and 3 (i.e., condition

23This can be shown using the proof of Corollary 3 in Rostek and Yoon (2021b).
24The exception occurs in markets where asset covariances and derivative weights are symmetric among all

assets (i.e., σkk = σ for all k, σkℓ = σρ for all k, ℓ ̸= k, and wk = wℓ for all k, ℓ ̸= k).
25This can be shown using Corollary 2 in Rostek and Yoon (2021a).
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Proposition 2 (i) does not hold) while technology innovation cannot link all pairs of these

assets without introducing the locally contingent exchange {1, 2, 3}. Thus, derivatives allow

more flexible designs than technology innovation even with symmetric market primitives (i.e.,

symmetric price impact). □

Thus, joint market clearing of some assets can (i) create asymmetries in cross-asset price

impacts (Example 4(a)). Λ̂ is symmetric if and only if Λ is symmetric, which holds only when

Σ and the market structure are both symmetric (Definition 5). However, in uncontingent

markets, derivatives do not induce such asymmetric cross-asset price impacts, irrespectively of

the heterogeneity in asset covariance Σ and derivative weights W. As we will show in the next

section, price impact asymmetry further implies that exchanges, but not derivatives, (ii) make

additional synthetic products nonredundant. Derivatives, on the other hand, can induce welfare

levels that are not feasible with exchanges. Essentially, this is possible because apart from (iii)

offering flexibility in weighing the returns, (iv) with a derivative whose return weighs L ⊆ K

assets’ returns, the number of (linearly independent) contingent variables in the total demand

for each underlying asset can be less than L, whereas with exchanges for the same listed assets,

that number is, by design, at least L. In Sections 4.2 and 4.3, we explore the implications of

these effects for nonredundancy and welfare.

Example 5 underscores the role of asymmetry in market structure (Definition 5).

Example 5 (Market Structure and Redundancy) Consider N = {{1}, {2, 3}, {4}} (as in

Proposition 2 (i)) and suppose ΛN
{2,3} is symmetric (as in (Proposition 2 (ii), which requires

symmetric covariances of assets 2 and 3 (Corollary 4 (i) in Appendix A.2). Introducing a

derivative that weighs assets 2 and 3 is redundant (Proposition 2 below). Such a derivative

mimics the equilibrium effects of an exchange {2, 3} (Proposition 1).

Suppose now that asset 2 is listed in the venue for asset 1 so the market structure becomes

N ′ = {{1, 2}, {2, 3}, {4}} (condition (ii) in Corollary 4, Appendix A.2, is violated). Now, ΛN ′

{2,3}

is generally not symmetric, even if all pairwise asset covariances are the same, because the

market structure is not symmetric for assets 2 and 3. Consequently, introducing a derivative

that weighs assets 2 and 3 in the market structure N ′ is not redundant. □

4.2 Innovation in Market Clearing Makes Additional Derivatives

Nonredundant

Per Proposition 1, because exchanges can induce asymmetric cross-asset price impacts, deriva-

tives cannot mimic such price impacts. In this section, Proposition 2 points to other implications

of the asymmetry: innovation in market clearing (i.e., exchanges) can make additional deriva-

tives nonredundant. Corollary 1 provides the reasoning behind this result by showing that the

underlying asset prices cannot price those derivatives linearly.
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With contingent trading, any security—traded or new—whose return lies in the span of

the traded assets can be priced via a linear combination of the traded asset prices, i.e., p+d =

pd = w′
dpa holds for a derivative whose return is created synthetically as rd = w′

dr. Rostek

and Yoon (2021b, Corollary 4) observed that with uncontingent demands, linear pricing does

not generally hold for new securities to be introduced, i.e., p+d ̸= w′
dpa, yet it holds for traded

securities, i.e., pd = w′
dpa (Corollary 2 in Appendix A.1 and Proposition 2). This result

holds in competitive and imperfectly competitive markets regardless of whether price impact is

symmetric or asymmetric, because the introduction of the new securities changes the underlying

assets’ equilibrium prices, i.e., p+
a ̸= pa.

Corollary 1 shows a stronger result in markets where technology allows for exchanges that

clear multiple assets: linear pricing does not hold, even for traded securities whose return lies

in the span of the traded assets.

Corollary 1 (Linear Pricing Does Not Hold) Let I < ∞. Consider a market structure

N = {K(n)}n with K traded assets and D securities. For the traded securities D with returns

rd = w′
dr for each d ∈ D, linear pricing pd = w′

dpa holds if and only if the equilibrium price

impact Λ is symmetric.

The fact that when technology allows exchanges that clear multiple assets traded securi-

ties cannot be priced linearly comes from the securities’ ability to change traders’ inference

among the traded assets across exchanges (Lemma 1). When an asset is traded jointly with

heterogeneously correlated assets, the inference about the prices of assets from other venues

differs across the exchanges. Hence, the prices of the same asset traded in different venues carry

different information (Eq. (20)).

Unlike the case of nontraded securities, the failure of linear pricing for traded derivatives

is an imperfectly competitive phenomenon: In the competitive market, linear pricing always

holds for traded assets, regardless of the market structure or security returns. In imperfectly

competitive markets, decentralized trading motivates new types of financial innovation that are

based on spanning as well as new types of innovation that are not based on spanning. Yet, there

are no arbitrage opportunities from the failure of the law of one price because trades induce

price impact.

Our key example, Example 6, illustrates the implications of the failure of linear pricing. It

shows that innovations that let total demands for an underlying asset be contingent on prices

of the same underlying assets need not be equivalent.

Example 6 (Innovation in Market Clearing Makes New Derivatives Nonredundant)

Let N = {{1}, {2}, {3}}. Suppose a derivative d that weighs the underlying assets 1 and 2 is

introduced, i.e., N ′ = N ∪ {{d}}. Then, another derivative d′ whose returns weigh assets 1, 2

is redundant in N ′.
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However, in market structure N ′′ = {{1, 2}, {3}}, the derivative d′ is generally not redun-

dant. Unless ΛN ′′

{1,2} is symmetric (i.e., assets 1 and 2 are symmetrically correlated with asset

3; Corollary 4 (i) in Appendix A.2), the price of the derivative pd′ becomes a new contingent

variable in traders’ demands for the underlying assets 1, 2 that is linearly independent of those

asset prices p1, p2 (Corollary 1):

pd′ ̸= wd′1p1 + wd′2p2.

The new conditioning variable pd′ changes the cross-asset inference in the total demands for all

assets, and thus, price impact.

In contrast, in the market structure N ′, the inference effects about the price of asset 3 are

the same in traders’ uncontingent demands. Consequently, derivative d′ is linearly priced by

the underlying asset prices (Corollary 1), and the cross-asset inference and price impact does

not change the equilibrium total trades and payoffs. □

Example 6 indicates more general observations about the nonneutrality of new securities

or exchanges. First, allowing some assets to clear jointly can make nonredundant additional

synthetic products defined for some of these assets, which were redundant in uncontingent

markets (Proposition 2), because it can alter cross-asset inference about the prices of assets

that are not part of the innovation. Since the prices of the assets underlying the derivative carry

different information about the prices of other assets, the security cannot be priced linearly.

Second, zero inference error among some assets does not imply that synthetic products

whose returns weigh those assets are redundant. Market structure N ′′ in Example 6 provides

a counterexample. Even though the demands for assets 1 and 2 are contingent in N ′′—thus,

there is no inference error among them—synthetic products on these assets are generally not

redundant, because they change the price impact, as seen in the example. At most one such

synthetic product can be nonredundant (Proposition 2 (i) below).

Third, conversely, a non-zero inference error among some assets does not imply that a

derivative or an exchange defined on these assets’ returns is nonredundant. In N ′, derivative

d′ on assets 1 and 2 is redundant, even though there is an inference error in demands for

each assets 1 and 2, and derivative d, due to imperfect inference about the price of the other

asset 3. Similarly, due to imperfect inference about the price of asset 3, the introduction of

exchange {1, 2} in N ′ is not redundant unless ΛN ′

{1,2} is symmetric.To reiterate, what matters

for nonredundancy of innovation is whether it alters inferences about the prices of other assets,

which derivative d′ does not alter in N ′ but does in N ′′.26

Fourth, in markets in which some but not all assets clear jointly, there are two types of nonre-

26When the price inference in demands for assets 1 and 2 in market structures N ′ and N ′′ is symmetric
with respect to asset 3 (so that Λ̂N ′

{1,2} and ΛN ′′

{1,2} are symmetric), innovation on assets 1 and 2 does not affect
cross-asset inference, and hence price impact in either market structure. Proposition 1 then gives an equivalence
(i.e., symmetric market; Corollary 4 in Appendix A.2).
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dundant derivatives: those that weigh the returns of multiple assets and those that replicate the

returns of one of the underlying assets. For example, in market structure N ′′ = {{1, 2}, {3}},
introducing a replicating security (e.g., {1}) and a derivative with underlying assets 1, 2 are

both nonredundant except when ΛN ′′′

{1,2} is symmetric.

All the observations due to price impact asymmetries are imperfectly competitive phenom-

ena: if the market were competitive (i..e, if the price impact were zero), none would hold.

Proposition 2 characterizes when a new exchange is neutral.

Proposition 2 (Nonredundancy of Innovations) Let I <∞ and N = {K(n)}n. Suppose
that equilibrium in the market structure N is not ex post. Introducing an exchange n′ with

L ⊂ K assets that does not replicate an existing exchange or a derivative d with underlying

assets L is redundant if and only if the following conditions hold:

(i) (Locally contingent market) There exists a set of exchanges N ′′ ⊂ N such that, for each

pair of assets in L, these assets or a derivative that bundles their returns is traded in an

exchange in N ′′; there must be a separate such derivative, but not an exchange, per pair

of assets in L.27

(ii) (Symmetric price impact) The per-unit price impact submatrix corresponding to ex-

changes N ′′ in condition (i), Λ̂K(N ′′) ≡ (WK(N ′′)diag(Λ
−1
K(n′′))n′′∈N ′′W′

K(N ′′))
−1, and the

price impact of the new exchange ΛK(n′) are symmetric.

As Example 6 illustrates, the relevant asymmetry of the price impact matrix for identifying

nonredundant innovation in condition (ii) is of the submatrix of the assets over which innovation

is defined. This asymmetry is due to the inference effects about other assets (see Eq. (8) and

Example 4).

Locally contingent market. In some market settings, it is of interest to ensure that the infer-

ence error across some assets L ⊂ K is minimal (e.g., in benchmarking). Does the elimination

of inference error among some assets require the schedules for these assets to be contingent?

We highlight Proposition 1’s implications.

In markets with assets and derivatives that all clear independently, the introduction of L(L−1)
2

linearly independent derivatives for L < K assets implements a locally contingent market, i.e.

condition (i) of Proposition 2. A locally contingent market does not imply zero inference error:

as long as the prices of assets L and K \ L are correlated, the inference about the prices of

assets K \ L is imperfect. Inference errors are zero in the locally contingent market only when

27For example, market {{1, 2, 3}, {4}} is locally contingent for assets 1, 2, and 3. In market {{1}, {2}, {3}, {4}},
the introduction of a single derivative for assets 1, 2, 3 (e.g., Example 4 (b)) would not induce a locally contingent
market for assets 1, 2, and 3; instead, three linearly independent derivatives for assets 1, 2, 3 would induce a
locally contingent market. However, introducing a single exchange {1, 2, 3} makes the market locally contingent
for assets 1, 2, and 3.
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an exchange for all L assets is introduced (i.e., N ′′ = {L} in condition (i) of Proposition 2)

or the per-unit price impact in the locally contingent market is symmetric (condition (ii) of

Proposition 2). As we discussed below Example 6, the elimination of inference error among

some assets is neither necessary nor sufficient for the redundancy of additional derivatives on

those assets.28 By Proposition 2, a locally contingent market is not sufficient for the redundancy

of additional innovations.29

Notably, with either type of innovation, the per-unit price impact for the L assets still differs

from that in the contingent market. For example, with either a derivative {d} or exchange {1, 2}
introduced in N , the price impact submatrix for assets 1 and 2 is different than it would be

in the contingent market. This follows from the non-separability of price impact across asset

pairs when demands are not contingent, as we explained in Example 4. The inference effects

about the prices of assets K \ L affect traders’ demands for assets L.

Role of imperfect competition. One takeaway from our analysis is that imperfect competi-

tion is crucial for comparing the effects of new securities and technology. When some assets are

allowed to clear jointly in markets with large traders who have price impact, derivatives that

would be neutral in competitive markets become nonredundant (Corollary 5 in Appendix A.2).

Consider market structure N ′′ in Example 6. If the market was competitive, the inclusion

of any derivatives on assets 1 and 2 would be redundant even with asymmetric inference about

the price of asset 3.30 In the competitive market, price impact is a zero matrix, and thus, it

is symmetric irrespective of the symmetry in asset covariances Σ and market structure N ′′.

Essentially, asymmetric cross-asset inference leads to nonredundancy only insofar it impacts

prices; with price taking traders, it does not.

If the derivative is introduced for assets traded in a locally contingent market (e.g., the

introduction of an exchange {1} in {{1, 2}, {3}}), the traders would split their total demands

28The lack of equivalence between zero inference error and the redundancy of additional innovation gives rise to
a difference in the maximal number of nonredundant securities versus exchanges: In markets with uncontingent

demands, there exist at most K(K−1)
2 nonredundant derivatives. On the other hand, technology innovation for

the underlying assets K allows the introduction of max{3 · 2K−2 − K − 1, K(K−1)
2 } nonredundant exchanges.

The corresponding bound in markets with derivatives and exchanges is (3 · 2K−2 −K − 1) + (K(K−1)
2 − 1). In

the competitive market, the maximal number is K(K−1)
2 .

29A locally contingent market does not imply innovation redundancy: The introduction of L(L−1)
2 exchanges

for pairs of the L assets, which implements a locally contingent market, makes additional exchanges on these
L assets redundant when the market is competitive but not when traders have price impact, except when the
per-unit price impact submatrix for the L assets is symmetric (e.g., in N ′′ in Example 6, K = 3 and L = 3).

On the other hand, the introduction of L(L−1)
2 derivatives for pairs of the L assets, which also implements a

locally contingent market, makes additional derivatives on these L assets redundant in both competitive and
imperfectly competitive markets, even though the inference error is generally not zero among assets L.

30An exchange that does not increase the number of contingent variables in any asset’s demand would be
redundant as well (e.g., the introduction of an exchange {1} in {{1, 2}, {3}}). Adding exchange {1, 2} to market
structure {{1}, {2}, {3}, {d}} where the derivative has return rd = w1r1 + w2r2 would still be nonredundant

with asymmetric demand slope Ĉ = WCW′, as it would increase the number of contingent variables in assets’
demand (condition (iii) in Corollary 5 in Appendix A.2), and change cross-asset inference.
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for an asset traded among the exchanges while preserving their total demands. Then, the

price of the same asset would carry the same information about the random variables in the

competitive market (but not in the imperfectly competitive market; Corollary 1).31

Our results revealed three implications regarding the irrelevance of asymmetric cross-asset

inference in the competitive market: (1) innovation in market clearing does not make additional

derivatives nonredundant, (2) innovation is redundant if there is no inference error among

its underlying assets, and (3) derivatives that replicate the returns of a listed security are

redundant. None of these results are applicable in markets with large traders.

Table 1 summarizes the results in this section.

A. Imperfectly competitive market (I < ∞) B. Competitive market (I → ∞) Imperfectly

Market structure with Market structure with

Innovation Exchanges Derivatives Innovation Exchanges Derivatives

Exchanges ✓∗ ✓ Exchanges × ✓

Derivatives ✓∗ × Derivatives × ×

Table 1: This table shows when innovations (exchanges or derivatives) for assets L ⊊ K that satisfy condition (i)
of Proposition 2 (i.e., define a locally contingent market) are nonredundant. Each row (“Exchanges” or “Deriva-
tives”) represents a type of innovation; each column corresponds to the market structure where innovation is
introduced; “×”=redundant, “✓”=nonredundant, ∗= nonredundant if price impact is asymmetric.

4.3 Welfare: New Securities vs. New Market-Clearing Technology

As Example 7 illustrates, no particular derivative or exchange design dominates in welfare terms

for all realizations of asset holdings.32 The payoff distribution induced by synthetic products is

weakly riskier. In fact, Example 7 shows that derivatives can give strictly higher welfare relative

to the maximal welfare feasible with exchange design. This holds because of the derivatives’

degree of freedom in weighing returns. Likewise, derivatives can give a strictly lower welfare

relative to the minimal welfare feasible with exchange design. Thus, whereas derivatives have

an advantage in markets where the designer has information about the traders’ asset holdings, a

design that cannot rely on that information may favor innovation in market-clearing technology.

Example 7 (Derivatives vs. Innovation in Market-Clearing Technology: Welfare)

Consider a market with three assets, two of which (assets 2 and 3) have symmetric asset

31In imperfectly competitive markets with asymmetric market structures, the splitting of total demands for
asset 1 distorts the cross-asset price impact in exchange {1, 2}: When p2 changes, a trader’s total demand
changes with an adjustment of qj1,{1,2}(p1, p2) but not qj1,{1}(p1). Consequently, the introduction of exchange

{1} changes price impact λ12,{1,2} (Eq. (7)) and hence the per-unit price impact λ̂12 (Eq. (23)). See ft. 38.
32Clearly, given covariance Σ and a realization of (qi

0)i, the level of ex post welfare in a market with exchanges
for multiple assets can be reproduced by a market with derivatives, even though the per-unit price impact cannot.
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covariances and symmetric ex ante trading needs for all traders (i.e., E[q0]−E[qi
0] = xjE[q0]−

E[qj
0] for some xj ∈ R for any i, j):

Σ =

 1 ρk ρk

ρk 1 ρℓ

ρk ρℓ 1

 and E[q0]− E[qi
0] =

 E[q0,k]− E[q0,k]

E[q0,ℓ]− E[q0,ℓ]

E[q0,ℓ]− E[q0,ℓ]

 .
With K = 3 underlying assets, there are thirteen possible designs with exchanges {K(n)}n,
including the uncontingent market {{1}, {2}, {3}} and the contingent market {{1, 2, 3}}.

Consider the uncontingent market and suppose that a derivative with return rd = wkr1 +

wℓr2 + wℓr3 is introduced: N = {{1}, {2}, {3}, {d}}. We compare the ex ante welfare in the

market structure N for any weight vector (wk, wℓ, wℓ) relative to that with arbitrary exchange

design. This market structure is not locally contingent (i.e., condition (i) in Proposition 2 is

violated) and cannot be equivalent to any market structure with technology innovation state

by state (Proposition 1 and Example 4 (b)).

Figure 1: Welfare in an Uncontingent Market with Derivative (wk, wℓ, wℓ) ∈ R3

(A) (B) (C)

Notes. In Panel (A), asset covariances and ex ante trading needs are symmetric (ρk = ρℓ = −0.1
and E[q0,k] − E[qi0,k] = E[q0,ℓ] − E[qi0,ℓ] = 10). In Panel (B), asset covariances are heterogeneous. In

Panel (C), ex ante trading needs are heterogeneous. Trading venues for multiple underlying assets
create bounds on the ex ante welfare: the blue line represents the most efficient design with multiple
venues, and the red line represents the least efficient one. The ex ante welfare with the derivative
varies depending on the weights wk (x-axis) and wℓ parameterized by wk = cos(θ) and wℓ = sin(θ)
for θ ∈ [0, π] to make the variance of the derivative return constant.

(i) Symmetric covariance and trading needs. In markets with symmetric asset covariances

and trading needs for all assets (i.e., ρk = ρℓ and E[q0,k]−E[qi0,k] = E[q0,ℓ]−E[qi0,ℓ]; Fig.

1A), the ex ante welfare with the welfare-maximizing derivative is the same as the ex ante

welfare that can be attained with the welfare-maximizing exchange design.

Moreover, the ex ante welfare for any derivatives and any exchange design is bounded

between the market for securities equivalent to the contingent and uncontingent markets

for the underlying assets (Fig. 1A).
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(ii) Heterogeneous covariance or trading needs. When either covariances or trading needs are

heterogeneous across assets (i.e., ρℓ/ρk ̸= 1 or |E[q0,k] − E[q0,k]| ̸= |E[q0,ℓ] − E[q0,ℓ]|),
there exists a derivative (i.e., N = {{1}, {2}, {3}, {d}}) with which the ex ante welfare in

N is higher than the maximal welfare feasible with exchange design (thus also with the

contingent and uncontingent markets) and a derivative with which the ex ante welfare is

lower than the minimal welfare feasible with exchange design (Figs. 1B and 1C).

Depending on market characteristics, the same derivative can be welfare-maximizing or

welfare-minimizing, and the welfare induced by the derivative is more volatile than with

exchange design. □

Either derivatives or exchanges can dominate in welfare terms, depending on market char-

acteristics and derivative weights. Consider a derivative with arbitrary weights on L underlying

assets. When asset covariances and trading needs are sufficiently symmetric, an exchange de-

sign tends to be more efficient due to the zero inference error among assets L (which does not

hold with the derivative). When the market characteristics are heterogeneous, the derivative

tends to be more efficient due to the symmetric per-unit price impact matrix. Furthermore,

the welfare-maximizing derivative assigns a higher weight to the asset that is more strongly

correlated with other assets or the asset with a larger trading need.

5 Discussion

Our results show that in imperfectly competitive markets, changes to market-clearing tech-

nology can make synthetic products that were previously redundant nonredundnat and affect

efficient derivatives and vice versa. These results thus suggest when the growing complexity

of the financial instruments may be justified on efficiency grounds. Joint design of synthetic

products and market-clearing technology can further improve welfare. Our results imply that

the effects of changes to the market structure implied by market-clearing technology innovation

such as the introduction of a new exchange for the traded assets, a merger among exchanges,

and a listing of an asset in exchanges where it was not listed before differ from those of, respec-

tively, the introduction of a new synthetic product, listing a synthetic product while delisting

the underlying assets, and including a new asset in a synthetic product. Analysis of the joint

design of these instruments would be worthwhile.

In markets with bilateral transactions (I = 2) for multiple assets (K > 1), the nonneutrality

of innovations will continue to apply, as will the welfare tradeoff due to the strategic interac-

tion between the traders with two-sided private information. An exploration of how efficient

innovation is shaped by the market structure is an exciting research direction.

In studies of decentralized trading, several authors have investigated the derivatives’ effects

on financial stability (Allen and Carletti (2006)) and hedging counterparty exposures in a
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financial network (Zawadowski (2013)). It would be worth exploring how the joint design of

market-clearing technology and synthetic products can facilitate these objectives.

Budish, Cramton, Kyle, Lee, and Malec (2021) introduce a new design in which traders

submit demands for trader-specific portfolios, which is defined by the weighted averages of assets

instead of demands for individual assets. Understanding how such trader-specific portfolios alter

the design trade-offs outlined in our study is an exciting research direction.

We conclude with a discussion of additional implications of our results.

5.1 Security Pricing

By Corollary 1, factor prices are generally not useful for either non-traded or traded derivatives

in markets that clear securities independently. The implied representation of risk depends not

only on Σ, but also on the endogenous price impact.

5.2 Dynamic Trading

Demand conditioning on past prices of securities induces asymmetric conditioning across se-

curities’ demands.33 Lyu, Rostek, and Yoon (2021a) examine efficient design with asymmetric

demand conditioning, which corresponds to the problem of the design of market clearing with

different disclosure rules that is outside of the current paper’s framework. Lyu, Rostek, and

Yoon (2021b) explore new financial products that are well-defined only in dynamic markets—

their returns and prices are determined in different rounds (e.g., futures, repo contracts)—and

demonstrate their nonredundancy with asymmetric demand conditioning in imperfectly com-

petitive (but not competitive) markets. These papers show that the design of dynamic market

clearing, transparency, and dynamic securities can improve efficiency relative to welfare achieved

by innovations in static markets.

5.3 Markets Where Underlying Assets Cannot Be Traded

We have considered markets in which derivatives are traded along with underlying assets.

Derivatives are often traded because the trade of the underlying assets is restricted. Suppose

traders can trade synthetic products but not the underlying assets. In light of the results

reported in this paper and in Rostek and Yoon (2021b), one can show that then, the bounds

on welfare feasible with exchanges for the underlying assets are strictly tighter than those with

derivatives, even in symmetric markets.

33For example, when asset 1 is traded in round 1 and asset 2 is traded in round 2, demand for asset 2 conditions
on past price p1; i.e., q

i
2(p1, p2) but demand for asset 1 cannot condition on future price p2, i.e., q

i
1(p1). Demand

conditioning is asymmetric between assets 1 and 2 in the sense that one demand can be contingent on the
other’s asset price, but not vice versa.
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A Appendix

Equilibrium characterization (Theorem 1, Corollary 2, Eqs. (23)-(25)) follows Rostek and Yoon

(2021a) by setting the initial asset holdings of L derivatives to zero and defining W as a weight

matrix rather than an indicator matrix.34 The appendices reference the relevant proofs from

that paper and only present arguments that pertain to the current paper.

34With exchanges for multiple assets, but no derivatives, the weight matrix W becomes an indicator matrix
W ∈ {0, 1}K×(

∑
n K(n)), given that the same asset traded in different exchanges can be treated as a replica of

that asset, i.e., wmk = 1 and wmℓ = 0 for all ℓ ̸= k. The fact that indicator matrices are special cases of the
weight matrix allows us to characterize the equilibrium in a unified framework (Theorem 1) and analyze the
effects of innovations through the same sufficient statistics (Lemma 1).
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A.1 Equilibrium Characterization

This section presents the characterization of the main equilibrium objects.

We allow heterogeneous risk preferences {αi}i, an arbitrary set of M ≤ K + D securities,

which may or may not include all K underlying assets, and an arbitrary market structure

N = {K(n)}n (Definition 1, K(n) ⊆ M for each n). By treating the same securities traded in

multiple exchanges as different securities, the distribution of security returns is jointly Normal,

N (δ+,Σ+), where δ+ ∈ R
∑

n K(n) and Σ+ ∈ R(
∑

n K(n))×(
∑

n K(n)). The weight matrix W ≡
((wm,k,n)k,m∈K(n)

)
n
∈ RK×(

∑
n K(n)) represents the securities’ weights and the market structure;

δ+ = W′δ and Σ+ = W′ΣW (Notation 1 in Section 4).

To ensure that the per capita aggregate asset holdings (equivalently, price) is random in the

limit large market (I → ∞), we allow for the common value component qcv
0 = (qcv0,k)k ∈ RK in

traders’ asset holdings. For each asset k, asset holdings {qi0,k}i are correlated among traders

through qcv0,k ∼ N (E[qcv0,k], σ
2
cv): for each i,

qi0,k = qcv0,k + qi,pv0,k , qi,pv0,k ∼ N (E[qi,pv0,k ], σ
2
pv), (13)

where qi,pv0,k are independent across i and k.35 Trader i knows his asset holdings qi
0, but not its

components qcv
0 or qi,pv

0 = (qi,pv0,k )k ∈ RK . The asset holdings {qi0,k}i and the common value qcv0,k
are independent across assets k.

Equilibrium: (Net) demands and price impacts. Theorem 1 characterizes equilibrium in

demand schedules as a fixed point in price impacts {Λi}i. In particular, it endogenizes expected

trades {E[qiℓ|pK(n),q
i
0]}ℓ/∈K(n),n for all i (Eq. (6)) as functions of price impacts {Λi}i.

To write the fixed-point problem in matrix form, we parameterize the best response demand

(6) of trader i for security m as

qi(p) ≡ ai −Biqi
0 −Cip ∀p ∈ R

∑
n K(n) ∀qi

0 ∈ RK , (14)

with the demand intercept ai ∈ R
∑

n K(n), the demand matrix coefficient Bi ∈ R(
∑

n K(n))×K ,

and the demand slope Ci = diag(Ci
K(n))n ∈ R(

∑
n K(n))×(

∑
n K(n)), where Ci

K(n) ∈ RK(n)×K(n) is

the demand slope in each exchange n.

Notation 2. The operator [·]N : R(
∑

n K(n))×(
∑

n K(n)) → R(
∑

n K(n))×(
∑

n K(n)) maps a matrix M

to a block-diagonal matrix [M]N with ([M]N)K(n),K(n′) ≡ 0 for n ̸= n′ and ([M]N)K(n),K(n) ≡
MK(n),K(n) for any n.

Theorem 1 (Equilibrium: Fixed Point in Demand Schedules) I < ∞ and consider a

market structure N = {K(n)}n for M securities. A profile of (net) demand schedules, defined

35The common value component in {qi
0}i does not affect any results qualitatively and only impacts the

magnitude of inference coefficients.
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by matrix coefficients {ai},B,C, and price impact Λ are an equilibrium if and only if the

following conditions hold for each trader i:36

(i) (Optimization, given price impact) Given price impact matrix Λ, the coefficients of (net)

demands ai,B, and C are characterized by

ai = C
(
δ+ − (αΣ+ −C−1B)E[q0]

)︸ ︷︷ ︸
=p−C−1Bq0

+
(
(αΣ+ +Λ)−1W′αΣ−B

)
(E[q0]− E[qi

0])︸ ︷︷ ︸
Adjustment due to cross-asset inference

,(15)

B =
(
(1− σ0)(αΣ

+ +Λ) + σ0C
−1︸ ︷︷ ︸

Adjustment due to

cross-asset inference

)−1
W′αΣ, (16)

C =
[
(αΣ+ +Λ) (BV ar[q0]B

′)[BV ar[q0]B
′]−1
N︸ ︷︷ ︸

Inference coefficient

V ar[s−i|qi
0][V ar[s−i|qi

0]]
−1
N

]−1

N
, (17)

where q0 ≡ 1
I

∑
j q

j
0 ∈ RK is the aggregate asset holdings and σ0 ≡

σ2
cv+

1
I
σ2
pv

σ2
cv+σ2

pv
∈ R+.

(ii) (Correct price impact) Price impact Λ equals the transpose of the Jacobian matrix of the

trader’s inverse residual supply function:

Λ =
(∂S−i(·)

∂p

)′
=

(
(
∑
j ̸=i

Cj)−1
)′
=

1

I − 1
(C−1)′. (18)

Remarks.

7. Pointwise optimization for each security m ∈ K(n) in all exchanges n, with respect to

pK(n) ∈ RK(n) (i.e., optimization problem (5)), is necessary and sufficient for optimization in

demand functions (i.e., optimization problem (4)) because for each security m, price realization

pK(n) maps one-to-one to the realization of residual supply intercept s−i
K(n):

S−i
K(n)(pK(n)) ≡ s−i

K(n) + ((Λi
K(n))

′)−1pK(n) ∀pK(n) ∈ RK(n). (19)

8. Security by security optimization is without loss of generality by the Fréchet differentiabil-

ity of expected payoff (4) with respect to the profile of demands {qim,n(·)}m,n. The second-order

condition (−αΣ − Λi − (Λi)′ < 0) holds with downward-sloping demands, i.e., the Jacobian

matrix ∂qi(·)
∂p

of demands is negative definite, equivalently, Λi
K(n) > 0 for all i and n.

36The numerical iteration that solves the equilibrium fixed-point equation in Theorem 1 converges to the same
equilibrium in extensive simulations including random initial values, different forms of the fixed-point equation,
fixed points with respect to Λ or B.
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Corollary 2 (Equilibrium Prices and Allocations) Given the equilibrium demand coeffi-

cients {ai}i,B,C, and price impact Λ in Theorem 1, equilibrium prices and trades are

p = δ+ − (W′αΣ−C−1B)E[q0]−C−1Bq0, (20)

qi =
(
(αΣ+ +Λ)−1W′αΣ−B

)
(E[q0]− E[qi

0]) +B(q0 − qi
0). (21)

Lemma 2 in Appendix A.1 shows that equilibrium price impact Λi converges to 0 for all i

in the competitive market (i.e., I → ∞). Its proof is analogous to the proof of Lemma 3 in

Rostek and Yoon (2021a).

Lemma 2 (Price Impact in Competitive Markets) Consider market structure N =

{K(n)}n for M securities and let {αi}i be the profile of traders’ risk aversions. Suppose {Λi,I}i
is a profile of the equilibrium price impacts for all I < ∞ and in the limit market as I → ∞.

The equilibrium price impact becomes zero as I → ∞ if αi,I = αiγI ∈ R+ increases slower than

linearly by a common factor γI ∼ o(I1−ε) for some ε > 0: for each i, Λi = limI→∞Λi,I = 0.

The proof of Lemma 1 shows that by considering a single-exchange counterfactual for the K

underlying assets, one can characterize the equilibrium outcomes for arbitrary market structures

and arbitrary securities in terms of the per-unit price impact Λ̂ ∈ RK×K (Definition 4) and cross-

asset inference B̂ ∈ RK×K (Definition 6 below), which match the moments of each trader’s total

equilibrium trade q̂i ≡ (q̂ik)k = Wqi ∈ RK (Eq. (25)).

Definition 6 (Cross-Asset Inference) Suppose q̂i ∈ RK is trader i’s total equilibrium trade

in market N = {K(n)}n for securities M . The cross-asset inference B̂ ∈ RK×K is a positive

semi-definite matrix, such that

V ar[q̂i] ≡ V ar
[
Wqi

]
= B̂V ar[q0 − qi

0]B̂
′ =

I − 1

I
σ2
pvB̂B̂′ ∀i. (22)

The cross-asset inference B̂ is the coefficient on the privately known asset holdings qi
0 in a

trader’s total demand that matches the variance of the equilibrium total trade (Eq. (22)).

From Eq. (22), (B̂B̂′)kℓ(B̂B̂′)−1
kk is the cross-asset inference coefficient in the expected total

trade E[q̂iℓ|q̂ik,qi
0] (see Eq. (21)).37

Although both per unit price impact Λ̂ and cross-asset inference B̂ are needed to compute

a trader’s equilibrium payoff, the per unit price impact Λ̂ suffices to compare payoffs across

market structures: the per unit price impact Λ̂ changes if and only if cross-asset inference B̂

does.38 Step 2 in the proof of Lemma 1 prove this result.

37Λ̂ and B̂ are not defined as equilibrium variables in a single-exchange game.
38In the competitive market, Ĉ is sufficient for both payoff characterization and cross-market payoff compar-

ison. This also implies that, unlike with large traders, the asymmetries in the asset covariance or the market
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A.2 Proofs

Proof of Lemma 1 (Innovation and Sufficient Statistics).

(Step 1. Λ̂ and B̂ characterize the equilibrium payoffs) The per-unit price impact

Λ̂ ∈ RK×K , defined in Eq. (9), is characterized by

Λ̂ =
(
WΛ−1W′)−1

. (23)

The cross-asset inference B̂ ∈ RK×K , defined in Eq. (22), is characterized by

B̂ ≡ W
(
(1− σ0)(αΣ

+ +Λ) + σ0(I − 1)Λ′)−1
W′αΣ. (24)

The expected equilibrium payoff of trader i is characterized as a function of Λ̂ and B̂:39

E[ui(qi)− p · qi] = E[δ · qi
0 −

1

2
qi
0 · αΣqi

0]︸ ︷︷ ︸
Payoff without trade

+(E[q0]− E[qi
0]) ·Υ(Λ̂)(E[q0]− E[qi

0])︸ ︷︷ ︸
Equilibrium surplus from trade

+
1

2

I − 2

I − 1
σ2
pvtr

(
αΣ

)
︸ ︷︷ ︸

Payoff term due to V ar[q0|qi
0] > 0

− I − 1

I
σ2
pvtr

(
(Bc − B̂)′αΣ(Bc − B̂) +

2

I − 1
αΣ(Bc − B̂)

)
︸ ︷︷ ︸

Information loss

, (25)

where Bc = I−2
I−1

Id and Υ(Λ̂) ≡ 1
2
αΣ(αΣ+ Λ̂′)−1(αΣ+ Λ̂+ Λ̂′)(αΣ+ Λ̂)−1αΣ ∈ RK×K . The

derivation of Eqs. (23)-(25) is analogous to that in Rostek and Yoon (2021a).

We next rewrite the equilibrium fixed point (17)-(18) to identify a term that is a function of

Λ̂ and B̂ and a term that is a function of Λ but not Λ̂ or B̂. Applying the Woodbury Matrix

Identity to B in Eq. (16) gives

B =
(
(1− σ0)Λ+ σ0Λ

′)−1
W′αΣ(Id− B̂). (26)

Substituting Eq. (26) into Eq. (18) simplifies the equilibrium fixed-point equation to

[
W′Ψ1(B̂)W

]
N
+Λ

(
(1− σ0)Λ+ σ0Λ

′)−1[
W′Ψ2(B̂)W

]
N
= 0, (27)

structure do not lead to innovation nonredundancy. Mathematically, this is because with zero (hence, symmet-

ric) price impact matrix, the per-unit cross-asset inference B̂ and demand Jacobian Ĉ are one-to-one irrespective
of whether C is a symmetric matrix: As I → ∞, the counterpart of Eq. (24) becomes

B̂ = W((1− σ0)(αΣ
+ +Λ) + σ0C

−1)−1W′αΣ → ((1− σ0)αΣ+ σ0Ĉ
−1)−1αΣ.

Intuitively, the liquidity risk due to imperfect competition (Λ) distorts how equilibrium prices incorporate the
fundamental asset risks, which are represented by Σ. B determines how prices aggregate traders’ initial holdings
(price distribution) and depends on traders’ total demand adjustment (Ĉ) and the resulting change in the per-

unit price impact (Λ̂) differently, as seen in Eq. (24). In the competitive market, the additional effect due to
the change in price impact disappears.

39In the contingent market, the information loss in Eq. (25) is zero (i.e., equilibrium is ex post).
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where Ψ1(·) : RK×K → RK×K and Ψ2(·) : RK×K → RK×K are matrix functions of B̂:

Ψ1(B̂) ≡ (1− (I − 2)σ0)
−1αΣ

(
σ0(Id− B̂)−1B̂− Id)(Id− B̂)(Id− B̂)′αΣ,

Ψ2(B̂) ≡ αΣ(Id− B̂)(Id− B̂)′αΣ.

The terms
[
W′Ψ1(B̂)W

]
N
and

[
W′Ψ2(B̂)W

]
N
in Eq. (27) are functions of B̂ alone, while the

term Λ
(
(1− σ0)Λ+ σ0Λ

′)−1
cannot be written as a function of Λ̂ or B̂ unless Λ is symmetric.

For each marketN , we define a matrix operator [·]N̂ : RK×K → RK×K as follows: ([X]N̂)k,ℓ ≡
Xk,ℓ if there exists an exchange n ∈ N such that {k, ℓ} ⊆ N or a derivative d such that wdk ̸= 0

and wdℓ ̸= 0; ([X]N̂)k,ℓ ≡ 0, otherwise. We remark that the matrix operator [·]N is defined

in the space of the (
∑

nK(n)) traded securities, while [·]N̂ is defined in the space of the K

underlying assets.

(Step 2. An innovation changes Λ̂ if and only if it changes B̂) Consider a market

structure N = {K(n)}n for M securities. Suppose an innovation in technology or derivatives

is introduced, and the new market structure is N ′. The innovation changes the per-unit price

impact (Λ̂N ̸= Λ̂N ′
) if and only if it changes the per-unit cross-asset inference (B̂N ̸= B̂N ′

).

To prove this result, it suffices to consider innovations in market-clearing technology or secu-

rities that do not create additional cross-asset demand conditioning, i.e., an exchangeK(n′) ∈ K

or a security K(n′) = {d} such that all asset pairs k and ℓ ̸= k in K(n′) are traded together in

some existing exchanges n′′ ∈ N . Otherwise, the innovation changes both Λ̂ and B̂, because

the (k, ℓ)th elements of Λ̂ and W
(
(1−σ0)Λ+σ0Λ

′)−1
W′ (Eqs. (23) and (26))—that were zeros

in N—are nonzero with the innovation.

Consider an innovation that does not create new cross-asset demand conditioning that

defines a new market structure N ′ = N ∪ {n′}. The innovation applies to the assets in an

existing exchange n′′ ∈ N . The equilibrium price impacts in markets N and N ′ are ΛN and

ΛN ′
, respectively.

(Only if) We prove the contrapositive: Suppose B̂N = B̂N ′
. Substituting Eq. (26) to B̂ =

WB, we have that B̂N = B̂N ′
if and only if

WN
(
(1− σ0)Λ

N + σ0(Λ
N)′

)−1
(WN)′ = WN ′(

(1− σ0)Λ
N ′

+ σ0(Λ
N ′
)′
)−1

(WN ′
)′. (28)

Combined with Eq. (27), Eq. (28) shows that the per-unit price impacts coincide in markets

N and N ′:

WN(ΛN)−1(WN)′ = −WN
(
(1− σ0)Λ

N + σ0(Λ
N)′

)−1
(WN)′

[
Ψ2(B̂)

]
N̂

[
Ψ1(B̂)

]−1

N̂
(29)

= −WN ′(
(1− σ0)Λ

N ′
+ σ0(Λ

N ′
)′
)−1

(WN ′
)′
[
Ψ2(B̂)

]
N̂ ′

[
Ψ1(B̂)

]−1

N̂ ′ = WN ′
(ΛN ′

)−1(WN ′
)′.

The first and third equalities hold by the equilibrium fixed point (28) and the property of matrix

35



operators that [W′ΨW]N = W′[Ψ]N̂W for any matrix Ψ ∈ RK×K . The second equality holds

by Eq. (28) and the assumption that the new exchange n′ does not create additional cross-

asset demand conditioning (i.e., [·]N̂ = [·]N̂ ′). From the per-unit price impact equation (23), we

conclude that Λ̂N = Λ̂N ′
when B̂N = B̂N ′

.

(If) Suppose that Λ̂N = Λ̂N ′
. We show that B̂N = B̂N ′

holds (part (a) below) or Λ̂N ′
cannot

be an equilibrium per-unit price impact in N ′ (part (b) below). Namely, we first construct a

block-diagonal matrix ΛN ′
= diag(ΛN ′

n )n∈N ′ ∈ R(
∑

n∈N′ K(n))×(
∑

n∈N′ K(n)) such that Λ̂N ′
= Λ̂N .

By Eq. (18), this construction of ΛN ′
is equivalent to constructing a block-diagonal matrix

CN ′
= diag(CN ′

n )n∈N ′ ∈ R(
∑

n∈N′ K(n))×(
∑

n∈N′ K(n)) such that WN ′
CN ′

(WN ′
)′ = WNCN(WN)′.

Second, we show that such matrix CN ′
cannot be an equilibrium demand Jacobian matrix in

market N ′ if B̂N ′ ̸= B̂N .

Construction of demand Jacobian CN ′
in N ′. To construct CN ′

= diag(CN ′

K(n))n∈N ′ such that

ĈN ′
= ĈN , we define CN ′

K(n) = CN
K(n) for exchanges n ̸= n′′, n ∈ N . We pick an arbitrary

positive semi-definite matrix CN ′

K(n′) ∈ RK(n′)×K(n′) in the new exchange n′. Then, because the

new exchange n′ does not create a new cross-asset demand conditioning relative to exchange

n′′, it suffices to find a matrix CN ′

K(n′′) ∈ RK(n′′)×K(n′′) that satisfies

WK(n′)C
N ′

K(n′)W
′
K(n′) +WNCN ′

K(N)(W
N)′ = WNCN

K(N)(W
N)′. (30)

Here, CN ′

K(N) = diag(CN ′

K(n))n∈N is a submatrix ofCN ′
that corresponds to the existing exchanges

in N including n′′. Such matrix CN ′

K(n′′) exists because matrix equation (30) is equivalent to
|K(n′′)|(|K(n′′)|+1)

2
linear equations for non-zero elements of CN ′

K(n′′), whose number is equal to
|K(n′′)|(|K(n′′)|+1)

2
. The matrix CN ′

constructed in Eq. (30) satisfies ĈN ′
= ĈN or, equivalently,

Λ̂N ′
= Λ̂N by Eq. (23).

Part (a): When CN
K(n′′) is symmetric, there exists CN ′′

such that B̂N = B̂N ′
holds. We now

show that the constructed CN ′
satisfies B̂N ′

= B̂N when CN
K(n′′) is symmetric and we pick a

symmetric matrix CN ′

K(n′′). The characterization of the cross-asset inference (Eq. (24)) shows

that B̂N ′
= B̂N if and only if Eq. (28) holds, so we prove the equivalent equation (28). Let

ξ ≡ σ0(I−1)
(1−σ0)

. Given the symmetry of CN ′

K(n′,n′′) = diag(CN ′

K(n′),C
N ′

K(n′′)), we can write Eq. (30) as

WN ′

{n′,n′′}
(
CN ′

K(n′,n′′) + ξ(CN ′

K(n′,n′′))
′)−1

(WN ′

{n′,n′′})
′ = WN

n′′

(
CN

K(n′′) + ξ(CN
K(n′′))

′)−1
(WN

n′′)′. (31)

Furthermore, since CN ′

K(n) = CN
K(n) and WN ′

n = WN
n for all exchanges n ̸= n′, n ∈ N , we have

WN ′

n

(
CN ′

K(n) + ξ(CN ′

K(n))
′)−1

(WN ′

n )′ = WN
n

(
CN

K(n) + ξ(CN
K(n))

′)−1
(WN

n )
′ ∀n /∈ N ′. (32)

Eqs. (31)-(32) imply that Eq. (28) holds; equivalently B̂N ′
= B̂N holds.

Part (b): When CN
K(n′′) is asymmetric, the constructed CN ′

cannot be an equilibrium demand
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coefficient. The proof is by contradiction: Given the equilibrium fixed point (18) and (27), the

system of matrix equations (27) and (30) gives

W′
n′′

(
(CN

K(n′′))
′−CN

K(n′′)

)
Wn′′ = W′

n′′

(
(CN ′

K(n′′))
′−CN ′

K(n′′)

)
Wn′′ +W′

n′

(
(CN ′

K(n′))
′−CN ′

K(n′)

)
Wn′ .

(33)

However, there exists a block-diagonal matrix diag(CN ′′

K(n))n that satisfies Eq. (33) only if either

CN
K(n′′) is symmetric or the (k, ℓ)th element of CN ′

K(n′) is zero for any (k, ℓ) such that the (k, ℓ)th

element of CN ′

K(n′′) is zero. In the latter case, the new exchange n′ is redundant, which implies

that CN
K(n′′) is symmetric (Theorem 4 in Rostek and Yoon (2021a)). It follows that a matrix

CN ′′
such that Λ̂N ′′

= Λ̂N ′
is an equilibrium only if CN

K(n′′) is symmetric.

Proof of Proposition 1 (Derivatives and Technology Innovations Are Generally Not

Equivalent).

(Part (1): Necessary and Sufficient Conditions for Derivatives to Mimic Exchange

Innovations) Suppose that new exchanges {K(n′)}n′ are introduced and ΛN ′
satisfies Eq. (27)

in N ′ = N ∪ {K(n′)}n′ , i.e., it is an equilibrium price impact in N ′. If the new exchanges are

redundant (condition (ii)), the result is trivial by setting D = 0. In what follows, we assume

that new exchanges {K(n′)}n′ are not redundant (condition (ii) does not hold), and show that

there exist D derivatives such that equilibrium payoffs (25) are the same in markets N ′ and

N ′′ = N ∪{{d}}d∈D if and only if the equilibrium price impact in the new exchanges in market

N ′ is symmetric, i.e., ΛN ′

K(n′) = (ΛN ′

K(n′))
′ for all n′ (condition (i)).

(If) Suppose that price impact in new exchanges ΛN ′

K(n′) is symmetric. The proof is constructive:

We construct D derivatives with which the per-unit price impact Λ̂N ′′
and the cross-asset

inference B̂N ′′
in N ′′ coincide with Λ̂N ′

and B̂N ′
in N ′. Then, we show that a positive definite

block-diagonal matrix ΛN ′′ ∈ R(
∑

n K(n)+D)×(
∑

n K(n)+D) such that Λ̂N ′′
= Λ̂N ′

and B̂N ′′
= B̂N ′

is an equilibrium price impact in N ′′ ≡ N ∪ {{d}}d∈D. Let WN ′ ∈ RK×(
∑

n K(n)+
∑

n′ K(n′)) and

WN ′′ ∈ RK×(
∑

n K(n)+D) be weight matrices in N ′ and N ′′, respectively.

Construction of D derivatives. ConsiderD derivatives, each of which is a linear combination

of two assets that are traded in a new exchange n′:

D ≡ {d|d = k or rd = wdkrk + wdmrm if {k,m} ∈ K(n′) for a new exchange n′}. (34)

For each d ∈ D, (wdk, wdm) ∈ R2 are non-zero weights, wdk ̸= 0 and wdm ̸= 0. Derivative d ∈ D

maps to each pair of assets k and m that are cleared jointly in some new exchanges {K(n′)}n′ .

Given the D derivatives in Eq. (34), we show that there exists a block-diagonal matrix

ΛN ′′
= diag((ΛN ′′

K(n))n∈N , (λ
N ′′

d )d∈D) ∈ R(
∑

n K(n)+D)×(
∑

n K(n)+D) such that Λ̂N ′′
= Λ̂N ′

and

B̂N ′′
= B̂N ′

: We define ΛN ′′

K(n) = ΛN ′

K(n) for n ∈ N and {(λN ′′

d )−1}d∈D as the solution to linear
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equations ∑
d∈D

(λN
′′

d )−1wdw
′
d =

∑
n′

Wn′(ΛN ′

K(n′))
−1W′

n′ . (35)

Matrix equation (35) is a system of linear equations for D variables {(λN ′′

d )−1}d∈D, one equation
for each non-zero element of matrix

∑
n′ Wn′(ΛN ′

K(n′))
−1W′

n′ . Because (ΛN ′

K(n′))
−1 is symmetric

for all new exchanges n′, Eq. (35) gives D equations that are linearly independent when Σ is

not singular. Hence, a solution {(λN ′′

d )−1}d∈D to Eq. (35) exists. The matrix ΛN ′′
constructed

by Eq. (35) satisfies Λ̂N ′′
= Λ̂N ′

and B̂N ′′
= B̂N ′

by Eqs. (23)-(24).

The constructed ΛN ′′
is an equilibrium price impact in N ′′. We show that ΛN ′′

such

that Λ̂N ′′
= Λ̂N ′

and B̂N ′′
= B̂N ′

is an equilibrium price impact in market N ′′ with derivatives

(34).

We first show that, for any matrix Ψ ∈ RK×K , if
(
[(WN ′

)′ΨWN ′
]N ′

)
{k,m} = 0, then(

[(WN ′′
)′ΨWN ′′

]N ′′
)
dd

= 0, where rd = wdkrk + wdmrm. By the definition of derivatives (34),

there exists a new exchange n′ in market N ′ such that k,m ∈ K(n′) and in that exchange,

(
[(WN ′

)′ΨWN ′
]N ′

)
kk

= ((WN ′
)′ΨWN ′

)kk = ψkk = 0 ∀k ∈ K(n′), (36)(
[(WN ′

)′ΨWN ′
]N ′

)
km

= ((WN ′
)′ΨWN ′

)km = ψkm = 0 ∀k,m ∈ K(n′) m ̸= k. (37)

Eqs. (36)-(37) show that
(
[(WN ′′

)′ΨWN ′′
]
)
dd

= 0 holds for all d ∈ D:

(
[(WN ′′

)′ΨWN ′′
]N ′′

)
dd

= (wdk, wdm)

[
ψkk ψkm

ψmk ψmm

]
(wdk, wdm)

′ = 0. (38)

This result (Eq. (38)) implies that ΛN ′′
defined in Eq. (35) is an equilibrium price impact

in N ′′, given the equilibrium price impact ΛN ′
in N ′. This can be seen from the equilibrium

fixed point (27) in N ′′: For each existing exchange n ∈ N ,([
(WN ′′

)′Ψ1(B̂
N ′′

)WN ′′]
N ′′ +ΛN ′′(

(1− σ0)Λ
N ′′

+ σ0(Λ
N ′′

)′
)−1[

(WN ′′
)′Ψ2(B̂

N ′′
)WN ′′]

N ′′

)
K(n)

(39)

= W′
nΨ1(B̂

N ′′
)Wn +ΛN ′′

K(n)

(
(1− σ0)Λ

N ′′

K(n) + σ0(Λ
N ′′

K(n))
′)−1

W′
nΨ2(B̂

N ′′
)Wn

=
([

(WN ′
)′Ψ1(B̂

N ′
)WN ′]

N ′ +ΛN ′(
(1− σ0)Λ

N ′
+ σ0(Λ

N ′
)′
)−1[

(WN ′
)′Ψ2(B̂

N ′
)WN ′]

N ′

)
K(n)

= 0.

The first equality follows from N ⊂ N ′ and N ⊂ N ′′; the second equality holds because

ΛN ′′

K(n) = ΛN ′

K(n) for all n ∈ N and B̂N ′′
= B̂N ′

by Eqs. (24) and (35); and the third equality

holds because ΛN ′
is an equilibrium price impact in N ′.

On the other hand, for each derivative d ∈ D defined in Eq. (34), we have
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([
(WN ′′

)′Ψ1(B̂
N ′′

)WN ′′]
N ′′ +ΛN ′′(

(1− σ0)Λ
N ′′

+ σ0(Λ
N ′′

)′
)−1[

(WN ′′
)′Ψ2(B̂

N ′′
)WN ′′]

N ′′

)
dd

(40)

= w′
dΨ1(B̂

N ′′
)wd +w′

dΨ2(B̂
N ′′

)wd

=
(
(WN ′

K(n′))
′Ψ1(B̂

N ′
)WN ′

K(n′) + (WN ′

K(n′))
′Ψ2(B̂

N ′
)WN ′

K(n′)

)
{k,m}

=
(
(WN ′

K(n′))
′Ψ1(B̂

N ′
)WN ′

K(n′) +ΛN ′

K(n′)

(
(1− σ0)Λ

N ′

K(n′) + σ0(Λ
N ′

K(n′))
′)−1

(WN ′

K(n′))
′Ψ2(B̂

N ′
)WN ′

K(n′)

)
{k,m}

= 0.

The first equality follows from λN
′′

d ((1−σ0)λN
′′

d +σ0λ
N ′′

d )−1 = 1; the second equality holds by the

argument around Eq. (38); the third equality holds by ΛN ′

K(n′)

(
(1−σ0)ΛN ′

K(n′)+σ0(Λ
N ′

K(n′))
′)−1

=

Id (condition (i)); and the fourth equality is satisfied because ΛN ′
is an equilibrium price impact

in N ′.

Eqs. (39)-(40) imply that ΛN ′′
such that Λ̂N ′′

= Λ̂N ′
and B̂N ′′

= B̂N ′
(Eq. (35)) is an

equilibrium price impact in N ′′. Lemma 1 completes the proof.

(Only if) Suppose there exist derivatives with which equilibrium payoffs in N ′′ = N∪{{d}}d∈D
coincide with those in N ′, or equivalently, Λ̂N ′′

= Λ̂N ′
and B̂N ′′

= B̂N ′
(Lemma 1). The

arguments in parts (a) and (b) of the proof of Lemma 1 apply to the comparison between two

innovations (markets N ′ and N ′′) and show that one of the conditions (i) and (ii) is necessary

for Λ̂N ′′
= Λ̂N ′

and B̂N ′′
= B̂N ′

to hold.

(Part (2): Necessary and Sufficient Conditions for Exchange Innovations to Mimic

Derivatives) Suppose that I < ∞, K > 1, and N = {K(n)}n. D ≥ 1 derivatives are

introduced, i.e., N ′′ = N ∪ {{d}}d∈D. We show that there exists a market structure N ′ =

N ∪ {K(n′)}n′ such that equilibrium payoffs in N ′ are the same as those in N ′′ if and only if

the following conditions hold:

(i) There exists D′ = |K(n′)|(|K(n′)|+1)/2 derivatives, each with at most two underlying as-

sets (i.e., rd′ = wd′krk+wd′mrm for all d′, for all pairs k,m ∈ K(n′)), such that equilibrium

payoffs in N ′′′ = N ∪ {{d′}}d′∈D′ coincide with those in N ′′; and

(ii) Price impact ΛN ′

K(n′) is symmetric for all n′.

(If) The proof is constructive. We introduce new exchanges {K(n′)}n′ such that each n′

corresponds to one derivative d′ ∈ D′ in condition (i):

K(n′) ≡ {k,m}, where rd′ = wd′krk + wd′mrm for some d′ ∈ D′.

If ΛN ′

K(n′) for all n
′ (condition (ii) holds), the same argument as in Part (1) applies. Part “If”

shows that equilibrium payoffs in N ′ = N ∪{K(n′)}n′ and N ′′′ = N ∪{{d′}}d′∈D′ are the same,

and, by condition (i), also coincide with those in N ′′.
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(Only if) We prove the necessity of conditions (i)-(ii) by contradiction: if either condition (i)

or (ii) fails, then there is no market structure N ′ that gives the same equilibrium payoffs as N ′′;

i.e., there is no market structure N ′ such that Λ̂N ′
= Λ̂N ′′

and B̂N ′
= B̂N ′′

.

Suppose that condition (ii) does not hold: ΛN ′

K(n′) is asymmetric for all n′. It is immediate

that Λ̂N ′ ̸= Λ̂N ′′
, because Λ̂N ′′

is symmetric by Eq. (23) but Λ̂N ′
is asymmetric.

Suppose that condition (i) does not hold, while condition (ii) does: A nonredundant deriva-

tive d ∈ D with more than two underlying assets (i.e., K(d) ≡ {k ∈ K|wdk ̸= 0} satis-

fies |K(d)| > 2) is traded. Then, we can pick three imperfectly correlated underlying assets

{k1, k2, k3} ⊆ K(d) such that for at least one pair {k1, k2}, {k2, k3}, and {k1, k3}, d is the only

derivative whose return is a linear combination of that pair’s assets, e.g., {k1, k2} /∈ K(d′) for

all d′ ̸= d, d′ ∈ D. This is because, if such a triple {k1, k2, k3} does not exist, then derivative d

is redundant (by Proposition 2).

From Eq. (23), the inverse of the per-unit price impact (Λ̂N ′′
)−1 = (I−1)WN ′′

(CN ′′
)′(WN ′′

)′

in marketN ′′ has a non-zero off diagonal element (Λ̂N ′′
)−1
k1k2

̸= 0, (Λ̂N ′′
)−1
k1k3

̸= 0, and (Λ̂N ′′
)−1
k2k3

̸=
0. Because (Λ̂N ′

)−1 = (Λ̂N ′′
)−1, the corresponding off diagonal elements of (Λ̂N ′

)−1 = (I −
1)WN ′

(CN ′
)′(WN ′

)′ are also non-zero. Hence, by the definition of demand coefficient CN ′
(Eq.

(14)), there exists an exchange in market N in which each pair of assets {k1, k2}, {k1, k3}, and
{k2, k3} is cleared jointly.

However, equilibrium price impact of market N ′ in which each pair {k1, k2}, {k1, k3}, and
{k2, k3} is cleared jointly in an exchange cannot satisfy Λ̂N ′

= Λ̂N ′′
and B̂N ′

= B̂N ′′
. This can

be seen in equilibrium fixed point (27) in market N ′:

[
(WN ′

)′(Ψ1(B̂
N ′
) +Ψ1(B̂

N ′
))WN ′]

N ′ = 0. (41)

Given B̂N ′
= B̂N ′′

, equivalently Λ̂N ′
= Λ̂N ′′

, price impacts λN
′′

k1
, λN

′′

k2
, λN

′′

k3
, and λN

′′

d must be

a solution to the matrix equation
(
Ψ1(B̂

N ′′
) +Ψ1(B̂

N ′′
)
)
{k1,k2,k3}

= 0, i.e., all elements of the

LHS in Eq. (41) that correspond to {k1, k2, k3} are zero. The matrix equation
(
Ψ1(B̂

N ′′
) +

Ψ1(B̂
N ′′

)
)
{k1,k2,k3}

= 0 is the system of six linearly independent equations for four variables

λN
′′

k1
, λN

′′

k2
, λN

′′

k3
, and λN

′′

d . Because the number of equations exceeds the number of variables,

(generically) there exists no solution λN
′′

k1
, λN

′′

k2
, λN

′′

k3
, and λN

′′

d . It follows that Λ̂N ′
= Λ̂N ′′

and

B̂N ′
= B̂N ′′

cannot hold in market N ′ when condition (i) does not hold.

Corollary 4 provides a sufficient condition on the primitives for derivatives to substitute for

innovation in market-clearing technology. Corollary 3 shows that a unique equilibrium exists

and induces a symmetric price impact in a subclass of symmetric markets (Definition 5). The

proofs of Corollaries 3 and 4 are immediate from Rostek and Yoon (2021b, Proposition 7) and

Proposition 1.

Corollary 3 (Equilibrium Existence and Uniqueness: Sufficient Conditions) LetK =
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DL > 1, L ≥ 1, D ≥ 1, and suppose that asset covariances are symmetric, i.e., σkk = σ2 for

all k and σkℓ = σ2ρ for all k and ℓ ̸= k. Apart from the K assets, for each disjoint set of L

underlying assets, either a derivative whose return is defined by the unweighted average of L

assets, i.e., rd =
1
L

∑L
m=1 rL(d−1)+m, or an exchange {L(d−1)+m : m = 1, · · · , L} is introduced.

Equilibrium exists and is unique.

Corollary 4 (Derivatives and Innovation in Market-Clearing Technology Are Gen-

erally Not Equivalent) Let I < ∞ and N = {K(n)}n. Suppose that a new exchange n′ is

introduced in market N , i.e., N ′ = N ∪ {n′}. There exists a set of D derivatives such that

traders’ ex ante equilibrium payoffs in market structure N ′′ = N ∪ {{d} : d ∈ D} are the

same as those in market structure N for all distributions of asset holdings F (qi
0)i if one of the

following conditions holds:

(i) The market structure N ′ is symmetric for any asset pair k and ℓ ̸= k in the new exchange

n′ and for any asset pair k′ and ℓ′ ̸= k′ not in n′. Furthermore, the asset covariances are

symmetric for any asset pair k and ℓ ̸= k in the new exchange n′ (i.e., σkk′′ = σℓk′′ for all

k′′) and for any asset pair k′ and ℓ′ ̸= k′ not in n′ (i.e., σk′k′′ = σℓ′k′′ for all k
′′).

(ii) An existing exchange n′′ ∈ N lists the same assets as the new exchange n′, i.e., there

exists n′′ ∈ N such that K(n′′) = K(n′).

Condition (i) in Corollary 4 induces a symmetric price impact ΛN ′

K(n′) in the new exchange n′

(i.e., condition (i) in Proposition 1). Condition (ii) in Corollary 4 makes the new exchange n′

redundant (i.e., condition (ii) in Proposition 1).

Proof of Proposition 2 (Nonredundancy of Innovations). Suppose that we introduce

an exchange n′′ with L securities and let N ′′ = N ∪ {K(n′′)}. We show that the introduction

of exchange n′′ is redundant if and only if conditions (i)-(ii) hold.

(If) Suppose conditions (i)-(ii) hold. The proof of Lemma 1 constructs a block-diagonal matrix

ΛN ′′
= diag(ΛN ′′

n )n∈N ′′ ∈ R(
∑

n∈N′′ K(n))×(
∑

n∈N′′ K(n)) such that Λ̂N ′′
= Λ̂N , and shows that

such ΛN ′′
satisfies B̂N ′′

= B̂N if conditions (i)-(ii) hold. Lastly, we now show that ΛN ′′
is an

equilibrium price impact in market N ′′.

The constructed ΛN ′′
is an equilibrium price impact. We show that equivalently, CN ′′

=
1

I−1

(
(ΛN ′′

)−1
)′

constructed as Eq. (30) is the equilibrium demand coefficient. By applying the

Woodbury Matrix Identity to B (Eq. (16)), equilibrium fixed-point equation (18) can be

rewritten in terms of the per-unit price impact Λ̂N ′′
and the cross-asset inference B̂N ′′

:[
(WN ′′

)′(αΣ+ Λ̂N ′′ − (ĈN ′′
)−1)B̂N ′′

(B̂N ′′
)′WN ′′

]
N ′′

= 0. (42)

41



Given that Λ̂N = Λ̂N ′′
, B̂N = B̂N ′′

, and WN ′′
=

[
WN Wn′′

]
, the submatrix of the LHS of

Eq. (42) that corresponds to existing exchanges N equals 0:

([
(WN ′′

)′(αΣ+ Λ̂N ′′ − (ĈN ′′
)−1)B̂N ′′

(B̂N ′′
)′WN ′′]

N ′′

)
N

=
[
(WN)′(αΣ+ Λ̂N − (ĈN)−1)B̂N(B̂N)′WN

]
N
= 0.

The submatrix of the LHS of Eq. (42) that corresponds to the new exchange n′′ equals zero by

conditions (i) and (ii): For each security ℓ ∈ L,

wℓ

(
(αΣ+Λ̂N ′′−(ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
w′

ℓ =
∑
m

∑
m′

wℓmwℓm′
(
(αΣ+Λ̂N ′′−(ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
ℓ,ℓ′

= 0,

because
(
(αΣ+Λ̂N ′′−(ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
m,m′+

(
(αΣ+Λ̂N ′′−(ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
m′,m

= 0

for all m,m′ by condition (i). Furthermore, for any pair of securities ℓ, ℓ′ ∈ L, ℓ′ ̸= ℓ,

wℓ

(
(αΣ+Λ̂N ′′−(ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
w′

ℓ′ =
∑
m

∑
m′

wℓmwℓ′m′
(
(αΣ+Λ̂N ′′−(ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
m,m′ = 0,

because
(
(αΣ+Λ̂N ′′−(ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
m,m′ = 0 for allm,m′ such that wℓm ̸= 0 and wℓ′m′ ̸=

0 by condition (ii). It follows that the constructedCN ′′
in Eq. (30) satisfies the equilibrium fixed

point (42), and hence is the equilibrium demand coefficient. Therefore, ΛN ′′
= 1

I−1
((CN ′′

)−1)′

is the equilibrium price impact. Because Λ̂N = Λ̂N ′′
and B̂N = B̂N ′′

, Lemma 1 implies that

equilibrium payoffs are the same in markets N and N ′′.

(Only if) We prove a contrapositive: if one of conditions (i)-(ii) does not hold, then the

introduction of a new exchange n′′ is nonredundant.

Suppose that there exists no collection of exchanges N ′ that provides locally contingent

demands for assets L (condition (i) does not hold). Without loss of generality, we suppose that

distinct assets k, ℓ ∈ L, k ̸= ℓ are not traded in any existing exchange in N (i.e., {k, ℓ} ̸⊂ K(n)

for all n ∈ N) and assets k and ℓ do not both underlie a security in N (i.e., either wmk = 0 or

wmℓ = 0 for any security m traded in N). By the definition of the weight matrix, the (k, ℓ)th

element ofWNCN(WN)′ is zero. The introduction of exchange {k, ℓ} is not redundant, because
the (k, ℓ)th element of the equilibrium demand coefficient CN ′′

{k,ℓ} in exchange {k, ℓ} is non-zero,

except when assets k and ℓ are independent mutually and with all other assets. Therefore, in

market N ′′ = N ∪ {{k, ℓ}}, the (k, ℓ)th element of WN ′′
CN ′′

(WN ′′
)′ is non-zero in equilibrium,

so we get WN ′′
CN ′′

(WN ′′
)′ ̸= WNCN(WN)′, and equivalently, Λ̂N ′′ ̸= Λ̂N .

Suppose that there exists a collection of exchanges N ′ with locally contingent demands

for assets L (condition (i) holds), but ΛN
K(N ′) is not symmetric (condition (ii) does not hold).

Without loss of generality, suppose that K(n′) ∪ L ̸= ∅ for all n′ ∈ N ′. The asymmetry of

matrix ΛN
K(N ′) implies that there exists an exchange n′ ∈ N ′ with more than one security

(i.e., |K(n′)| > 1), and that the price impact in exchange n′ is not symmetric (i.e., ΛN
K(n′) ̸=

(ΛN
K(n′))

′). By Theorem 4 in Rostek and Yoon (2021a), introducing an exchange n′′ such that
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K(n′′) ⊂ K(n′) is not redundant and ΛN ′′

K(n′′) is not symmetric for the new exchange n′′.

Corollary 5 (Nonredundancy of Innovations: Competitive Market) Let I → ∞,M >

1, and N = {K(n)}n. Suppose that the equilibrium in the market structure N is not ex post.

Introducing an exchange n′ with L ⊊ K assets that does not replicate an existing exchange is

redundant if and only if the following conditions hold:

(i) (Locally contingent market) There is a set of exchanges N ′′ ⊂ N such that, for each pair

of assets, there is an exchange in which they are traded or a derivative which bundles

their returns; there must be a separate such derivative—but not an exchange—for each

pair. In addition to (i), one of the following conditions holds:

(ii) (Symmetric demand coefficient) The submatrix of the per-unit demand Jacobian corre-

sponding to exchanges N ′′, ĈK(N ′′) ≡ WK(N ′′)diag(Cn′′)n′′∈N ′′W′
K(N ′′), and the demand

coefficient of the new exchange CK(n′) are symmetric; or

(iii) (No increase in demand conditioning) For each asset or derivative ℓ ∈ K(n′) in the new

exchange n′, the number of the contingent variables of demand qiℓ,n′(·) in the new exchange

n′ is smaller than or equal to the number of the contingent variables of demand qik,n(·) for
all asset k such that wℓk ̸= 0 in all existing exchanges n.

Proof of Corollary 5 (Nonredundancy of Innovations: Competitive Market). The

proof is analogous to the proof of Proposition 2. A block-diagonal matrix CN ′′
such that

ĈN ′′
= ĈN is constructed using Eq. (30) in the proof of Lemma 1. As seen in ft. 38,

B̂N ′′
= B̂N also holds given the constructed CN ′′

, regardless of the symmetry of CN ′′
. We show

that the constructed matrix CN ′′
satisfies the equilibrium fixed point,[

(WN ′′
)′(αΣ− (ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′WN ′′
]
N ′′

= 0, (43)

if and only if either conditions (i) and (ii) or conditions (i) and (iii) hold.

For simplicity, we define ΨN ′′ ≡ (αΣ − (ĈN ′′
)−1)B̂N ′′

(B̂N ′′
)′ in Eq. (43), and similarly

ΨN ≡ (αΣ − (ĈN)−1)B̂N(B̂N)′. Given that ĈN ′′
= ĈN and B̂N ′′

= B̂N holds, we get ΨN ′′
=

ΨN . Hence, the proof can be completed by showing that

[
(WN ′′

)′ΨWN ′′]
N ′′ = 0 holds for Ψ ∈ RK×K s.t.

[
(WN)′ΨWN

]
N
= 0 (44)

is satisfied if and only if either conditions (i) and (ii) or conditions (i) and (iii) hold.

(If) Suppose conditions (i)-(ii) hold. By the same argument as in the proof of Proposition 2,[
(WN ′′

)′ΨWN ′′]
N ′′ = 0 holds whenever

[
(WN)′ΨWN

]
N
= 0 does. Hence, equilibrium payoffs

are the same in N ′′ and N .
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Suppose conditions (i) and (iii) hold. Then, there exists an exchange n ∈ N such that all

securities in the new exchange n′ are in the span of securities K(n) in exchange n. In fact, there

exists a weight matrix W̃ = (w̃kℓ)ℓ,k ∈ RK(n)×K(n′) such that each security k’s return in the new

exchange n′ can be written as a linear combination of the securities in exchange n: for each

k ∈ K(n′), rk =
∑

ℓ∈K(n) w̃kℓrℓ =
∑

ℓ∈K(n) w̃kℓ(w
′
ℓr). Given W̃, in Eq. (44), the block-diagonal

matrix (WN
n )

′ΨWN
n = (WN ′′

n )′ΨWN ′′
n = 0 implies that

(WN ′′

n′ )′ΨWN ′′

n′ = W̃′(WN
n )

′ΨWN
n W̃ = 0,

which proves that Eq. (44) holds. Hence, equilibrium payoffs in N ′′ are the same as in N .

(Only if) The necessity of condition (i) is proved in Proposition 2. For the necessity of

condition (ii) or (iii), we prove the contrapositive. Suppose that conditions (ii) and (iii) are

both violated: securities x, y ∈ K(n′) such that x ̸= y contain underlying assets k and ℓ that

are not traded in the same exchange together, i.e., wxk ̸= 0, wyℓ ̸= 0, and {k, ℓ} /∈ K(n′) for all

n′ ∈ N ′. However, condition (i) implies that there exists a security m in market N such that

wmk ̸= 0 and wmℓ ̸= 0. The equilibrium demand coefficient CN ′′
in market N ′′ = N ∪{n′′} must

satisfy the equilibrium fixed-point equation (Eq. (43)). Without loss of generality, we assume

that new securities x and y have return rx = rk and ry = rℓ, and the security m is such that

rm = wmkrk +wmℓrℓ for some wmk ̸= 0 and wmℓ ̸= 0. The argument below extends to securities

x, y, and m, that contain other underlying assets.

Equilibrium fixed-point equation (43) in market N ′′ implies that both the (k, ℓ)th element

and the (ℓ, k)th element of the LHS of Eq. (43) must be zero:

(
(αΣ− (ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
k,ℓ

=
(
(αΣ− (ĈN ′′

)−1)B̂N ′′
(B̂N ′′

)′
)
ℓ,k

= 0. (45)

The corresponding equilibrium fixed-point equation in market N implies that CN satisfies

wmkwmℓ

((
(αΣ− (ĈN)−1)B̂N(B̂N)′

)
k,ℓ

+
(
(αΣ− (ĈN)−1)B̂N(B̂N)′

)
ℓ,k

)
= 0, (46)

i.e., the sum of the (k, ℓ)th and the (ℓ, k)th elements must be zero. When the demand co-

efficient ĈN satisfies Eq. (46), ĈN ′′
= ĈN does not satisfy Eq. (45), unless the matrix

(αΣ− (ĈN)−1)B̂N(B̂N)′ is a symmetric matrix, i.e., unless equilibrium in market N is ex post.

Hence, given that equilibrium in N is not ex post, the new exchange n′ is not redundant.

A.3 Example

Example 8 (Nonlinear Pricing of Derivatives) Consider market structureN = {{1, 2}, {3}, {d}}
and a derivative d that assigns the same weights to assets 1 and 2 (i.e., rd =

1
2
r1 +

1
2
r2). Assets

1 and 2 are symmetric with respect to their return variances (σ11 = σ22) and the realizations of
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traders’ aggregate initial holdings (|q0,1| = |q0,2|), but they can be heterogeneously correlated

with asset 3 (i.e., σ13 and σ23 can differ).

Figure 2: Underpriced and Overpriced Derivatives
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Notes. With innovation in market-clearing technology, derivatives are not linearly priced, given the underlying
asset prices. A derivative is generally either underpriced, i.e., pd <

∑
k wdkpk (grey areas), or overpriced, i.e.,

pd >
∑

k wdkpk (white areas), if the underlying assets’ return distributions are asymmetric.
In both panels, the market structure is N = {{1, 2}, {3}, {d}}. Derivative d weights assets 1 and 2 equally (i.e.,
rd = (r1 + r2)/2). In addition, σ12 = −0.1, σkk = 1 for all k, and q0,1 = q0,3 = 10. In Panel (A), the aggregate
initial holdings satisfy q0,1 < q0,2. In Panel (B), the aggregate initial holdings satisfy q0,1 > q0,2.

(i) (Derivatives are linearly priced when the market is either symmetric or uncontingent)

When σ13 = σ23 (45-degree lines in Fig. 2), the market structure is symmetric for assets

1 and 2, and thus, price impact matrix in market N ′ is symmetric, i.e., λ12 = λ21.

Then, by Corollary 1, derivative d is linearly priced by the underlying asset prices, i.e.,

pd =
1
2
p1 +

1
2
p2 (i.e., the 45-degree lines in the panels of Fig. 2). This result holds for an

arbitrary derivative weight and for any realizations of traders’ aggregate initial holdings.

(ii) (Derivatives can be underpriced or overpriced, depending on heterogeneity in asset co-

variances and heterogeneity in aggregate initial holdings across assets) When ρ13 ̸= ρ23,

the price impact Λ is asymmetric, i.e., ΛaCa ̸= (I − 1)Id. With an asymmetric price

impact, Corollary 1 provides a necessary and sufficient condition for the derivative to be

overpriced relative to the linear price based on the equilibrium prices of the underlying

assets p̂d = wd1p1 + wd2p2: with M ≡
(
(αΣ)−1 +W (Λ+ σ0

1−σ0
C−1)−1W ′)−1 ∈ RK×K ,

pd − p̂d = W ′
d

(
((1− σ0)(I − 1)Id+ σ0Id)

−1 − ((1− σ0)ΛaCa + σ0Id)
−1
)
Mq0 > 0. (47)

Due to the lack of closed form solution for Λ, we cannot rewrite the condition (47) on

price impact Λ as a condition on primitives Σ and q0. Instead, Fig. 2 shows that the

derivative can be underpriced (grey areas) or overpriced (white areas), depending on

the heterogeneity in asset covariances (ρ13, ρ23) and the realization of aggregate initial

holdings (q0,2 = 10 in Fig. 2A; q0,2 = −10 in Fig. 2B).
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