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Abstract— Intelligent decision-making systems that can solve
task allocation problems are critical for multi-robot systems to
conduct industrial applications in a collaborative and automated
way, such as warehouse inspection using mobile robots, hydro-
graphic surveying using unmanned surface vehicles, etc. This
paper, therefore, aims to address the task allocation problem for
multi-agent autonomous mobile systems to autonomously and
intelligently allocate multiple tasks to a fleet of robots. Such
a problem is normally regarded as an independent decision-
making process decoupled from the following task planning for
the member robots. To avoid the sub-optimal allocation caused
by the decoupling, an end-to-end task allocation framework is
proposed to tackle this combinatorial optimisation problem while
taking the succeeding task planning into account during the
optimisation process. The problem is formulated as a special
variant of the multi-depot multiple travelling salesmen problem
(mTSP). The proposed end-to-end task allocation framework
employs deep reinforcement learning methods to replace the
handcrafted heuristics used in previous works. The proposed
framework features a modular design of the reinforcement
learning agent which can be customised for various applications.
Moreover, a real-robot implementation setup based on the Robot
Operating System 2 is presented to fulfil the simulation-to-reality
gap. A warehouse inspection mission is executed to validate the
training outcome of the proposed framework. The framework has
been cross-validated via both simulated and real-robot tests with
various parameter settings, where adaptability and performance
are well demonstrated.

Note to Practitioners—This paper is motivated by the problem
of dispatching a fleet of autonomous mobile robots to tackle a
mission that can be resolved into multiple waypoint-following
tasks. An end-to-end modular framework is proposed, making
task allocation decisions based on the given waypoint information.
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By using the reinforcement learning technique, the deep neural
network could learn sophisticated policies for allocating tasks.
The policies are trained in a specific pattern which ensures their
joint optimisation for a solver that outputs the near optimal
task execution sequences in an efficient way. This leads to
a multiple travelling salesmen problem (mTSP) solution. Pre-
trained policies are tested in several industrial scenarios reflecting
the applications of search and rescue, maritime surveying, and
warehouse automation, among others. A hardware implementa-
tion configuration based on the Robot Operating System 2 is also
presented to support the practical deployment the framework.

Index Terms— Deep reinforcement learning, task allocation,
multi-agent planning, field robotics.

I. INTRODUCTION

S INCE the development of the first generation of
autonomous mobile robots (AMR) [1], [2], which dates

back to the early 1980s, the AMRs have impressed the
community with their flexibility to a wide range of tasks
and the huge potential in its capability supported by the
rapid progress of the computing hardware. AMRs have two
major hardware components, the mobility system and the on-
board sensors. The mobility system can be made up with a
variety of mechanisms, such as wheeled chassis, legs, and
propellers, depending on the requirements for deployment.
Sensor systems like lidar and camera help the AMR gather
information and perceive the surrounding environment, which
is processed by the software hosted on the computing unit of
the robot to make decisions and navigate around moving and
static obstacles.

Moreover, there is an increasing popularity in the deploy-
ment of multi-robot systems, where a group of operating
robots can increase efficiency by dividing one main task
into several sub-tasks and allocating them to be executed in
parallel [3], [4]. The deployment of a multi-robot system
can also provide more redundancy to address extreme or
emergency conditions, as well as guarantee better coverage of
a large area. The multi-robot systems also ensure systematic
versatility as it is easy to be configured for different missions,
which reduces overall cost and increases the flexibility of the
system.

In this work, the task allocation for multi-robot systems
is discussed in the context of a common robotic task, i.e.,
waypoint following, which involves guiding an AMR to visit
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Fig. 1. The decision-making pipeline solves the task allocation and task
planning modules in the context of waypoint following tasks for autonomous
mobile systems. Addressing the waypoint following, a fundamental func-
tionality module for autonomous mobility, such a decision-making system
can be applied in many robotics applications, such as warehouse inspection
with ground vehicles and maritime surveying with unmanned surface vehicles
(USV).

a series of waypoints in a specified order provided by a
dedicated task planning module. The waypoints are normally
defined as spatial coordinates in the workspace, and the robot’s
objective is to reach the given waypoint within a predefined
tolerance range. Depending on the density of the waypoint
distribution, travelling along a set of sorted waypoints could
also determine a sparse path for the robot [5], [6]. Waypoint
following is a common but important task in autonomous
mobile robot applications [7], [8]. It requires the robot to
sense the surrounding environment, estimate its location and
orientation, and use this information to plan the desired paths
and navigate along the trajectories leading to the waypoints
autonomously.

In such context, the waypoint following task should be
addressed with a multi-robot system which consists of a
fleet of autonomous mobile robots (AMR). Each AMR acts
independently visiting a sub-set of the waypoints but also col-
laborates with each other contributing to the overall waypoint
following task. Generally, the multi-agent planning for such
systems is composed of two processes (Fig. 1):

• task allocation which assigns a sub-set of waypoints to
each individual robot,

• task planning which determines the sequence of execution
for each robot visiting the waypoints allocated to it.

An end-to-end DRL framework is proposed in this work to
tackle the multi-agent planning for the AMRs. The proposed
framework contains a feedback optimisation mechanism which
couples the task allocation step and the task planning step.
The framework has high adaptability in terms of the number
of tasks for allocation. It also features a modular DRL agent
where various networks can be implemented for specific
purposes. The main contributions of this paper are as follows:

• A comprehensive DRL-based task allocation framework
for multi-robot decision-making for waypoint following

tasks is proposed. This end-to-end framework refines
task allocation policies using subsequent task planning
feedback, offering improvements over prior decoupled
approaches.

• The modular DRL agent enhances flexibility, allowing
various neural network agents. Two different network
architectures are implemented, namely the multi-layer
perception (MLP) and mixture of experts (MoE), for
additional validation.

• The optimality gap and computational speed of the
proposed approach have been reduced by more than
40% and 90%, respectively, compared to several state-
of-the-art mTSP solutions, which showcases the superior
performance achieved. Extensive testing on both simu-
lated and real-world datasets further verifies its practical
applicability.

• By configuring and integrating all required software and
network modules using ROS 2, the proposed approach
is validated on a multi-robot hardware platform. The
implementation of the trained policy on hardware has led
to the successful completion of the test mission in a fully
autonomous way.

This paper is organised as follows. Related literatures are
reviewed and discussed in Section II. In Section III, the task
allocation problem and the objectives are defined. Then the
task allocation agent, task planning solver, and reward of
the proposed end-to-end DRL framework are explained in
Section IV, and the training results are tested in a series
of simulation scenarios in Section V. In Section VI, the
experimental setup and a real-robot warehouse automation
mission are described to validate the proposed method. Lastly,
this work is concluded in Section VII. The source code
of the decision-making system in this work is available at
https://github.com/ucl-frl/rl_waypoint_mrta.git.

II. RELATED WORKS

The multi-robot waypoint following is a task where a fleet of
robots is requested to navigate through a predefined set of way-
points while avoiding collisions with obstacles and each other.
This task is present in many real-world applications such as
warehouse automation [9], [10], [11], search and rescue [12],
[13], [14], maritime and bathymetric surveying [15], [16],
[17] and precision agriculture [18]. In multi-robot systems,
efficient task allocation strategies are vital to ensure that the
robots work collaboratively and accomplish the mission goals.
Task allocation involves assigning specific tasks to different
robots according to the requirements of the task [19], [20].
Efficient task allocation can help reduce completion time,
improve overall performance, and increase the adaptability and
scalability of the system.

However, task allocation in multi-robot systems is a chal-
lenging problem due to the changing environment [21], the
uncertainty in the robot’s perception and communication reli-
ability, and the complexity of the problem. Common solutions
used to address the multi-robot task allocation problem, such
as market-based & auction-based approaches [22], [23], and
ML-based approaches [24], [25], have common limitations in
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terms of sole focus on the allocation process, but decoupled
from the succeeding planning.

Therefore, it is important to consider a joint optimisation of
both task allocation and its succeeding planning, for instance,
planning visiting sequences and routes for each robot. This
helps reach solutions which can better estimate the overall
global optima, as the allocation of tasks to robots is considered
in the context of the later optimisation problems in the system.
One promising approach is to use deep reinforcement learning
(DRL) algorithms, which can learn to optimise the task allo-
cation policies through trials interacting with the environment.

In this paper, the focus will be on solving the task allo-
cation and associated task planning using a learning-based
framework. Considering the technical factors of robotics, this
combinatorial optimisation problem is formed as a variant
of the classic multiple travelling salesmen problem (mTSP).
Research focusing on the mathematical optimisation has devel-
oped several heuristic algorithms, often with overly simplified
datasets and lack of validation in the real world [26], [27].
In order to generate a better estimate of the optima, these
heuristics are usually computationally expensive for robotic
systems. On the contrast, similar robotic research tends to
implement light-weight decoupled modules and only a small
number of hardware implementations are presented [28], [29],
[30]. Considering multi-robot cooperative navigation, a joint
optimisation of the mTSP and clustering models can help
reduce the overlapping among clusters in a simultaneous way,
generating the benefits of increased collision avoidance capac-
ity and improved system robustness and efficiency. In addition,
when pretrained models are deployed in hardware constrained
systems, a generalised learning-based method benefits from
reducing computational load and execution time compared
to traditional solvers that require large-scale computation at
runtime.

III. PROBLEM FORMULATION

The context of this research is aimed at the coordination of
multiple AMRs to undertake multi-task missions. Specifically,
the objective of the proposed framework is to cooperatively
generate a plan for K robots to visit a set of waypoints,
with each robot starting and ending at the same location, i.e.
forming closed-loop paths for the robots. The given task can
be formulated as consisting of a set of waypoints to traverse
as V = {vn}, n = 1, . . . , N , where vn ∈ RF . In the scenarios
described in this paper, F = 2, which represents the x, y
waypoints’ spatial coordinates.

The planned paths are formalised as a set of cycle graphs
as, {Ck}, k = 1, . . . , K , where K is the number of vehicles
deployed. For each cycle graph Ck , the graph can be formulated
as Ck =

(
Vk, Ek

)
, where Vk

= {vi }k, i = 1, .., Nk denotes the
task data set to be assigned to a particular USV, and Ek

= {li j }k

denotes a set of lengths of the linked paths between vi and v j ,
which topologically forms the edges of the simple cycle graph.
Along the cycle graph, the elements of Vk will subsequently
have ordered labels from 1 to Nk , where Nk =| Vk

| is the
number of elements in Vk . The travelling distance of each
cycle graph Ck could be obtained by summing the distances
of all compartments within Ek .

Denote Ck, k = 1, . . . , K as the cycle graph, and the entire
vertex set, V can be divided into K corresponding partitions,
Vk, k = 1, . . . , K , where Vi ∩ V j = ∅,∀i, j ∈ {1, . . . , K }.
Denote πk as a permutation of the nodes in Ck that leads to
the shortest path. In terms of the overall objectives, various
metrics for performance evaluation can be adopted on a case-
by-case basis. In this work, the objective function is set as
the total route distance for conciseness. Therefore, the overall
objective is written as:

min
πk ,Ck ,k=1,...,K

K∑
k=1

L(Ck |πk,Vk). (1)

L(Ck |πk,Vk) in (1) is defined as:

L(Ck |πk,Vk) = ∥V k
πNk
− Vπ1∥2 +

Nk−1∑
j=1

∥V k
j − V k

j+1∥2, (2)

where ∥ · ∥2 calculates the Euclidean distance.
To solve (2), a two-stage learning process is introduced

as per the aforementioned task allocation and task planning
stages: a) partitioning V into K subsets; b) solving travelling
salesman problem (TSP) within the K subsets. Since both
stages are NP-hard, it is impossible to obtain exact solutions of
the global optima using classical methods. The multi-stage NP-
hard problem can be solved using a set of heuristic methods
in a cascade procedure, where the heuristics approximate the
exact solution in an iterative way. During the approximation
process, the heuristic algorithm will sacrifice some optimality
for computational speed, which will eventually lead to a
systematic disadvantage. Regarding this work, coupling the
two stages with specially designed feedback between task
allocation and task planning can mitigate this disadvantage.
Therefore, this problem can be solved in a coupled manner
by adopting an RL structure. More specifically, the evaluation
results of the task planning will be taken into account and
used as the rewards in the RL structure. This will be further
used to guide the optimisation of (1) where the policy gradient
strategy is used in this paper.

IV. END-TO-END DRL FRAMEWORK

A. Background of DRL

DRL is a branch of machine learning (ML) methods that
train an artificial agent to learn by interacting with an envi-
ronment through trials. DRL combines reinforcement learning
(RL) with deep learning (DL) techniques, allowing the agent
to learn to make decisions based on unstructured input like
raw sensor data in robotics.

In DRL, deep neural networks (DNNs) are employed to
approximate the policy function, which maps an observed state
of the environment to an action taken by the agent. The use of
DNN enables DRL to learn directly from the perceptual data
without hand-crafted feature extractions, which forms the end-
to-end learning capability and leads to better generalisation
towards different tasks. Policy gradient methods are often
used as the optimiser for the policy functions in DRL. These
methods take the gradient of the policy function with respect to
the parameters of the network using it to update the parameters
to optimise the network.
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Fig. 2. The diagram of the proposed DRL framework.

DRL has great potential and already impressed the public
in a number of fields like robotics, gaming and autonomous
driving by allowing agents to learn from their own experience
and improve their networks and the way to behave over time,
without explicit programming.

B. Overall Framework

The proposed end-to-end framework, which conceptually
follows the general structure of DRL, as shown in Fig. 2,
comes with the agent module highlighted in blue and the
environment module in light yellow. The DRL agent module
is responsible for the partition procedure to cluster the given
waypoints; whereas, the environment module that the agent
interacts with provides the raw data and is also in charge
of solving the TSP problem for each allocation cluster. The
framework starts by taking in the task data as the input to
form a one-shot task observation. The core component of the
DRL agent module is a deep neural network (DNN) which
represents the task allocation policy. The policy parameterised
by the DNN is modelled as a discrete categorical distribution
in order to make the task allocation decisions at the output
stage. The agent, then, samples the clustering results with
respect to the modelled distribution. The input and output of
the agent are formatted as a waypoint tuple and task allocation
matrix respectively so that any DNN network that can adopt
this input/output pattern can be used to parameterise the policy
of the modular DRL agent.

After the task allocation decision has been sampled, way-
points (V) will be grouped into K subsets (K represents
the sum total of USVs). For each subset, TSP will be
solved to generate the task execution sequence with various
existing methods available, such as branch and cut [31],
dynamic programming [32], and self-organising map [33]. The
pre-trained attention-based pointer network [34] is adopted.
According to Bello et al. [35], in terms of solving TSP
problems with 50 cities and 100 cities, the pre-trained
pointer network can be more than 10 times faster than
the Concorde solver [36] respectively. Therefore, inferring
pre-trained models can guarantee a much faster response
speed compared to employing classical TSP solvers, which
is critical for the success of the proposed DRL framework

as the task planning module is invoked in every iteration
step.

It should be noted, in this work, when training the proposed
framework, apart from considering the optimal routing to
evaluate the policy, the clustering quality should also be well
evaluated. Hence, in this paper, a novel clustering reward
design inspired by unsupervised graph neural network (GNN)
node clustering has been proposed, which consists of two sub-
reward, R0 and Rc, reflecting the routing and the clustering
respectively. Additionally, the balance between R0 and Rc

is manipulated via a tunable hyperparameter, λ. The overall
reward R will be fed back to the DRL agent for policy
optimisation using the policy gradient algorithm. Algorithm 1
briefly sketched the outline of the framework, which will be
further described in the following paragraphs.

In general, by creating edges between each node and their
h nearest neighbours with respect to Euclidean distances, the
task data set V can be constructed into a graph, which can
facilitate the quantitative evaluation by having an unsupervised
loss, Rc. Details of this clustering reward, Rc, will be explained
in Section IV-E.

C. Modular Deep Learning Based DRL Agent

In this section, the core of the proposed end-to-end DRL
framework: the DRL agent, will be elaborated. The agent
observes the task dataset and maps the data to an allocation
decision. Its adaptable, modular design allows compatibility
with diverse network models, enhancing the customisability
of the proposed framework. Different applications primarily
vary in state and action spaces. Accordingly, an input/output
design of the framework is proposed, taking customisation
requirements into consideration, which is achieved by train-
ing specific models aligned with corresponding input/output
dimensions. In addition, the framework’s implementation is
further described in two different networks, which demon-
strates that the framework is unbounded by specific network
structures. It further highlights the flexibility of the proposed
framework.

In this work, both the MLP and the MoE networks are
tested. The basic MLP is tested for validating the framework
with only the necessary setup. However, the naive MLP net-
works cannot capture the underlying complicated properties of
the problem and are difficult to generalise to the unseen tasks.
Therefore, for achieving higher adaptability, an assembling
learning method that utilises an MoE [37], [38] mechanisms
is introduced. Researchers who hope to adopt this framework
can feel confident to employ other DNN networks that suit
their application.

1) Input/Output: In order to build the modular DRL agent
with customisable DNN networks to represent the policy, the
input/output data structure of the network must be predefined
and accepted by potential DNN candidates. The number of
neurons of the input layer is set as, the input feature dimension,
F , and the size of the input tensor is (M, N , F), where M
is the batch size and N is the number of waypoints in one
task, also known as the task size. As for the output, the
allocation decision made by the agent is in the form of a
matrix (allocation matrix), S ∈ 1

N×K for implementation,
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Algorithm 1 DRL Task Allocation Algorithm
Require: training dataset X , selected neural network (NN),

TSP solver (TSP), parameter κ of the nearest neighbour
graph (κ-NNG), k, tunable hyperparameter λ
Initialise NN with parameters θc

for X ∈ RN×F in X do
S ∈ RN×K

← NNθc(X)

for k = 1, 2, . . . , K do
πk ← TSP(X, S)

end for
R0 ←

∑
k(travelling distance of πk)

G ← κ-NNG(X, κ)

Rc ← MinCutLoss(G, S)

R← (λ− 1)R0 − λRc

ĝ← ∇θc log pθc(S|X)R
θc ← ADAM(θc, ĝ)

end for

where the value of 1 is set to 1 when vn is allocated to
robot k, otherwise, 0. Each row of the allocation matrix is
a K dimension vector with each element representing the
probability for the corresponding waypoint to be allocated to
the k-th robot. The output logits of the last layer are converted
into a categorical distribution, regarding the K robots as K
options of the decisions. Therefore, each row of the allocation
matrix produces an action distribution for the corresponding
waypoint. The size of the output tensor representing the
allocation matrix is (M, N , K ).

2) MLP-Based Architecture: The most straightforward deep
learning architecture to generate the policy is a multi-layer
perception (MLP) with one hidden layer. The number of
neurons in the input layer is set as F , and the size of the
input tensor is (M, N , F). The output is a K dimension
vector with each element representing the probability for the
corresponding waypoint to be allocated to the k-th vehicle.
The size of the output tensor is (M, N , K ). Since the neuron
number of the hidden layer also affects the performance, it is
regarded as a hyperparameter. Empirically, the hidden layer
with 128 neurons has the best performance during the tests.
In summary, this process can be formulated as follows.

Ol = MLPlayer(V) = WV + b, (3)

where V ∈ RM×N×F denotes the feature of waypoints to
traverse, W ∈ RF×128 and b ∈ R1×128 denote the learnable
weight matrix and bias vector, respectively. Ol ∈ RM×N×K

denotes the logits outputted from the MLP layer. Upon apply-
ing the softmax activation function to the output Ol , it can be
converted into a Categorical probability distribution Pl , from
which the waypoints allocated to the k-th vehicle is sampled.

3) MoE-Based Architecture: The deep learning network
served as the DRL agent in this framework is not limited to
the MLP or any other specific networks. Provided the input
and output dimensions, different neural network architectures
can fit in the framework to adapt to different tasks where
specialities are required. In order to test the adaptability of the
DRL agent in terms of different neural network architectures,
besides the classic MLP, a MoE [39] is also employed in

the framework. The MoE agent consists of several indepen-
dent neural networks, namely the experts. Each expert neural
network is supposed to be specialised in one particular task.
Above the expert neural networks, there is another managing
neural network that will decide which expert to solve the given
task. Regarding the research problem of this DRL framework,
there are n expert neural networks in the MoE. Each of them
specialises in allocating waypoints to one specific vehicle.
Meanwhile, the managing neural network decides the weights
for the results from each expert. The output is a logit vector
that can be computed via a weighted sum model, from which
the deep learning-based RL agent makes allocating decisions
for the waypoints. In terms of formulas, the aforementioned
MoE-based process can be summarised as follows.

(a) Construction of each expert model. Suppose there are
nh expert models, each being an MLP layer.

experti (V) = ReLu(WiV + bi ), (4)

where i ∈ [1, nh] is an integer. W i and bi denote the
learnable weight matrix and bias vector of the i-th expert
model, respectively. ReLu is an activation function.

(b) Construction of gating network. The gating network g
utilises a softmax function to output the weights for each
expert:

gi (V) =
exp(vT

i V + ci )
nh∑
j=1

exp(vT
j V + c j )

, (5)

where vi and ci are the weights and biases of the gating
network.

(c) Calculation of the overall MoE output. The output of
the entire model is a weighted sum of the outputs from each
expert model:

f (V) =

nh∑
i=1

gi (V) · experti (V) (6)

Like Ol in (3), f (V) can be used to model a Categorical
probability distribution and perform sampling.

The framework with either MLP or MoE can be adaptive to
different values of N , enabling the framework to infer tasks
with different sizes of the training set.

D. Pointer Network Based Task Planning

After the completion of the task allocation procedure, the
allocation decision is passed to the following task planning
module in the format of the allocation matrix described in the
last section. The task planning module will accordingly plan
the execution sequence for each robot in the fleet given their
assigned waypoints, which is, mathematically, a TSP problem.

Since TSP is an NP-hard problem, the exact solution
of its global optima cannot be solved within polynomial
time. There are several rule-based heuristic methods which
can obtain approximate solutions within a reasonable time.
However, wrapping these iterative heuristics into RL train-
ing will substantially increase the time complexity of the
algorithm. In order to guarantee the RL agent is trainable, the
trained models of attention-based reinforcement learning are
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employed [34], [40]. The algorithm generates the solution πk

for the node set Vk , and πk is formed as the action selected per
time step

{
π1

k , π2
k , . . . , π t

k,
}
. As the reward for training this

attention-based RL policy is assigned episodically for a TSP
problem, the attention-based model is optimised via policy
gradient [41]. The objective J (θp | V) is the expected cost,
which will be estimated with respect to the parameters θp.

J (θp | V) =
∑

k

J k(θp | Vk) (7)

∇θp J k(θp | Vk) = Epθp (πk |Vk )[(L(Ck |πk,Vk)− b(V))

∇ log pθp (πk | Vk)], (8)

where b(V) is a value function acting as a baseline to reduce
the variance in policy gradients [41], [42], which can stabilise
the training process and improve the training efficiency.

It is also worth to ensure the loss of optimality is within
an acceptable range when employing the pretrained pointer
network models for solving TSP. According to the benchmark-
ing results reported in [34], in terms of TSP with 20, 50 and
100 waypoints, the pointer-network-based solvers suffers from
an average optimality gap of 1.74% consuming average 1.09 s.
As a baseline, the Google OR-tools solver suffers from an
averaged 1.80% optimality gap and the Concorde achieved
the optima with an averaged runtime of 9.33 s.

E. Reward Design and Training of the Framework

Another key component of a DRL framework is the reward
design which returns the performance of the state-action pairs
to the optimisation process. As mentioned before, in order to
help the DRL framework have a sophisticated estimation of
performance, a reward consisting of two parts is designed: 1)
a single-value reward reflecting the objective of task allocation
and planning, which, in this case, is the total routing distance,
and 2) a clustering reward. For the representative of the overall
objective, the total route distance, R0, of the K vehicles will
be returned from the task planning stage as (9), where the
TSP solutions will be output as a policy πk based on partition
results. πk is generated for the node set Vk and formed as the
action selected per time step

{
π1

k , π2
k , . . . , π t

k,
}
. With both the

node sets Vk , and the corresponding sequences πk available,
the cycle graph Ck can be obtained. Vk , πk and Ck will then
be passed to the reward module. The total route distance for
all autonomous robots, R0, is calculated as:

R0 =

K∑
k=1

L(Ck |πk,Vk) (9)

The R0 is normalised as in (10), before used as reward
component by policy gradient.

R̄0 =
R0 − µ(R0)

σ (R0)+ ϵ
(10)

where µ(R0) is the average of a batch of R0, and σ(R0)

denotes the standard deviation of a batch of R0.
Besides, adding the clustering reward for the DRL agent

helps generate clustering results. In this paper, MinCut pool-
ing [43] is adopted as the base for the clustering reward.
MinCut pooling develops a soft clustering, formulated as an

allocation matrix, S ∈ 1
N×K . A multiple layer perception

(MLP) within the MinCut predicts the allocation matrix S,
given the waypoints V of a graph. The original implementation
consists of an unsupervised loss which has two components:
the basic clustering loss as:

Rcc = −
Tr

(
S⊤AS

)
Tr

(
S⊤DS

) (11)

and an orthogonality loss to avoid degeneration clustering:

Rco =

∥∥∥∥∥ S⊤S∥∥S⊤S
∥∥

F

−
IK
√

K

∥∥∥∥∥
F

(12)

where A and D are the adjacency matrix and degree matrix of
the encoded graph which will be introduced in the following
paragraph. The Tr(·) denotes the trace of the matrix and ∥·∥F
denotes the Frobenius norm.

In order to implement the MinCut pooling as the clustering
reward, the task data set V has to be converted into a graph.
This is achieved by taking the undirected κ-nearest neighbour
graph (κ-NNG) of V in its Euclidean distance space, as G =
(V,L). With the adjacency matrix, A, and degree matrix, D,
of the κ-NNG, G, the clustering loss and orthogonal loss can be
computed by (11) and (12). Then the unsupervised clustering
loss, Rc, is obtained via:

Rc = Rcc + Rco (13)

The training objective of the DRL framework is to optimise
the partition with external reference from the TSP solutions
mentioned in section IV-D. Therefore, by combining the cost
reflecting the overall optimisation objective based on TSP
results, and the unsupervised clustering loss, the reward is
eventually defined as:

R = (λ− 1)R̄0 − λRc, (14)

where λ is the hyperparameter leveraging the influence of the
unsupervised clustering loss within the overall reward.

Degeneration happens when the task allocation policy
doesn’t assign any waypoint to an available robot in the
fleet, which is viewed as an unacceptable case. Therefore,
when the algorithm detects degeneration cases during training,
a punishment strategy will be triggered, R0 = p, where p is
the penalty score which would be dramatically greater than a
sensible R0.

V. SIMULATION IMPLEMENTATIONS

This section covers the training of the task allocation
policies and a set of simulations testing the framework with
the trained models. The test cases involve both naive scenarios
with randomly generated data and practical scenarios with
real-world data.

A. Experiment Setup and Training

PyTorch [44] is used for the implementation and training
of the proposed method. The state is provided to the agent on
the go by generating N waypoints from a uniform distribution
on the [0, 1)× [0, 1) unit square for each episode of training,
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Fig. 3. Averaged training curves of the training sessions on N = 50 and
N = 100 datasets.

so that the trained models could be used in different scales by
normalising the input. The agent makes a decision in the form
of an allocation matrix S as described in section IV. For the
optimisation objective, the agent focuses on minimising the
total route distance of the robots in the entire mission. The
closed loop routes for robots to execute are planned by the
fast-response TSP solver introduced in IV-D.

An MoE network with 3 component experts is adopted as
the agent. Each component expert network is a 3-layer MLP
with a hidden layer size of 128, using the ReLu activation
function. The training produced two sets of models on N =
50 and N = 100. For each set of the training sessions, three
models are trained with K = 3, 4 and 5. During the training,
1 million sets of waypoints were generated. Each set of way-
points is used as a task instance which contains 100 random
waypoints distributed within the defined workspace. The batch
size of training sessions is set as 32. An Adam optimiser [45]
with a learning rate of 0.01, β1 = 0.9 and β2 = 0.999 is
used in the policy gradient method. As for the reward-related
hyperparameters, λ is set to 0.5 and p is 10 times the length
of the workspace.

The training curves for two model sets are shown in Fig. 3,
illustrating the RL agent’s performance throughout the train-
ing. The vertical axis indicates the cost of total travel distance
by all robots, while the horizontal axis denotes the training
step. The data, derived from the first 10,000 training iterations
of the six open-source models available at our repository,1

showcase two curves. The blue and orange curves are the
averaged training cost of N = 50 and N = 100, respectively.
The shades shown in the figure visualise the bounds defined
by average value ± standard deviation. Initially, there is a
noticeable descent in the cost, indicating the rapid acquisition
of the easy rewards and the agent’s initial exploration of
the state space. Subsequently, the curve tends to stabilise,
reflecting a period of fine-tuning as the agent refines its policy.

1https://github.com/ucl-frl/rl_waypoint_mrta.git

B. Experiment Results and Evaluation
In order to validate the framework and the performance of

the pre-trained models, a set of experiments are performed to
test the trained models. The experiments consist of missions
that require the agent to make decisions with a different
number of available robots, K = 3 and K = 4, where
the different pre-trained models described in the experimental
setup are utilised respectively. Four generated test missions
have a different number of waypoints to be traversed.

The workspace is kept identical to the normalised one used
for training where four sets of randomly generated waypoints
are located, forming the four missions with a different number
of waypoints, N = 50, 100, 150 and 300. The pre-trained
model with K = 3 would be used to solve the missions
with N = 50, 150 and 300. By solving these three missions,
the adaptability of the proposed framework is demonstrated in
terms of the size of tasks, N . A further test is carried out by
using the pre-trained model with K = 4 to solve the missions
with N = 100 to ensure the framework is able to address task
allocation for different sizes of robot fleets.

The results of the four experiments are shown in Fig. 4. For
each sub-figure which corresponds to a mission, the upper
sub-figures show the distribution of the waypoints in the
workspace and the lower sub-figures visualise the allocation
decision taken by the agent and the corresponding execution
sequences planned by the pointer-network-based TSP task
planner. For qualitative analysis and visualisation, a number of
areas with densely distributed waypoints are shaded into blue.
In the illustrated results, different colours represent different
robots being responsible. To showcase the closed loop route
generated by the TSP task planner, dashed lines link the
consecutive waypoints according to the execution sequence,
which indicates the visiting order during traversal instead of
the absolute path guiding a robot. As for the absolute paths,
the path planning solution will be discussed in section VI in
the context of real-robot implementation. Taking Fig. 4 as an
example, the 50 waypoints are assigned to the robots in three
clusters, where none of the five pre-marked dense groups is
separated into two different clusters. Then the task planning
solver produced the execution sequences for the three robots
with the routing distances of 2.23, 2.38, and 3.87 unit lengths,
respectively. Fig. 4b and c illustrated two more complicated
cases but the processing patterns are the same. In Fig. 4,
the other pre-trained model is tested with N = 100 and
K = 4 situations. Four allocation clusters are assigned to the
robots, and four out of five pre-marked dense groups are kept
within one cluster.

Regarding the inferred decisions made following the trained
policy, the overall goal is addressed in an appropriate way
where the waypoints are allocated to the available robots. The
waypoints assigned to one robot cluster together, tending not to
overlap with an area which is occupied by waypoints assigned
to other robots. Only one of the aforementioned shaded areas
is split by two robots, whereas the others are allocated to
one single robot. Overall, the performance of these tests
indicated the generalisation of the robot in terms of task size,
as well as the capability to tackle the different sizes of robot
fleets.
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Fig. 4. Four sets of test sessions with different waypoint numbers, N , and
available robot numbers, K . The waypoints are generated randomly in the
1 × 1 workspace which are allocated by the DRL agent to K robots based
on the inference of the trained networks. Some densely distributed waypoints
are manually marked with blue shades. The task allocation and task planning
results are also visualised in colours to distinguish the waypoints allocated to
different robots, and the execution sequences are indicated by dashed lines
connecting the consecutive waypoints. The values of route distances for each
robot are also included in the figure.

C. Practical Implementations

To further validate that framework has the capability to be
integrated into decision-making systems of autonomy solu-
tions, two more practical scenarios are configured: (a) a search
and rescue scenario in a coastal area, and (b) a regular main-
tenance and inspection mission for offshore infrastructures.

In the first search and rescue scenario, there are three USVs
available to carry out this mission in an 2.5 km2 adjacent area
near the Royal National Lifeboat Institution Southend-on-Sea

Fig. 5. The inferred search and rescue plan assigned to 3 USVs along with
designated execution sequences for each vehicle.

Fig. 6. The offshore infrastructure scenario simulated the task allocation and
planning for regular maintenance and inspection of 86 Oil rigs located in the
north sea petroleum reservoir.

lifeboat station, UK. As shown in Fig. 5, 100 waypoints are
randomly scattered into the mission area as the exploration
checkpoints, and the system makes the task allocation and
associated task planning decisions based on the pre-trained
policy.

So far, waypoints in both the training and test tasks are
generated based on the random generator, PCG64 [46], imple-
mented in NumPy [47]. Therefore, in the second offshore
infrastructure maintenance scenario, the proposed method is
verified on real-world data, locations of 86 oil rigs in the
North Sea petroleum reservoir, to ensure the DRL agent does
not overfit into the random-pattern input data. The GIS data of
the oil rigs are sourced from North Sea Transition Authority
open data [48]. Eighty-six oil rigs are selected in an area to
the east of Lincoln in the North Sea as shown in Fig. 6.

Both pre-trained models mentioned before inferred this
simulation so that two different cases can be tested where the
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TABLE I
COMPARATIVE TOTAL DISTANCE RESULTS ON SOLVING DIFFERENT SCALE TSPLIB PROBLEMS

Fig. 7. Regular unmanned inspection plan covering 86 north sea oil
infrastructures to be carried out by a fleet with 3 or 4 USVs.

maintenance and inspection missions of the 86 are allocated
to two fleets with different sizes, K = 3 and 4. The decision-
making results can be found in Fig. 7.

D. Comparative Analysis

The proposed task allocation framework for multi-robot
systems is regarded as a minsum multi-depot mTSP problem,
a unique variant of the broader mTSP or vehicle routing prob-
lem (VRP). There are two further variants of the multi-depot
mTSP problem, differing in depot location determination. This
work concentrate on the unpredetermined variant.

In such a problem, K robots will be dispatched without
predetermined depots. Any K waypoints can be selected as
the depots by the algorithm and the optimisation objective is
to minimise the total distance travelled by all robots. Though
there are many research covering the general mTSP [49],
[50] and the fixed multi-depot problems [26], [51], very
limited research has focused on this specific unpretermined
variant [27], [52]. Zhou et al. [52] proposed a series of

algorithms based on the genetic algorithm (GA) and particle
swarm optimisation (PSO) [53] to solve mTSP under the
same settings as the proposed framework. The two GA-based
algorithms are namely partheno genetic algorithms (PGA) and
Improved PGA (IPGA). Another commonly-used [52], [54]
baseline method is the invasive weed optimization (IWO) pro-
posed by Venkatesh and Singh [55]. The current known best
results under this setup were reported by Karabulut et al. [54],
using the IBM CPLEX platform to solve a mixed-integer linear
programming (MILP) model with an one-hour runtime, where
the results are rounded to integer. These known best results
are underlined and reported in the ‘CPLEX’ rows of Table I.

All the available optimisation results and computational
time are acquired from the above work for a comprehensive
comparative analysis. The validation problems are from the
open-source dataset, TSPLIB2 which is well established as
the standard for the analysis of conventional TSP and VRP
problems. The benchmarking results using different TSPLIB
instances are provided in Table I. Each problem instance is
solved by our framework given K = 3, 4, or 5 robots by
inferring a model pre-trained with N = 100 dataset. None
of the tested instance has been used for the training of our
models. For the baselines, all available results are reported in
Table I. The chosen problem instances, kroA100, kroA150,
kroB150 and kroA200 are of different scale and commonly
used in other mTSP research [56], [57], [58].

The values provided in Table I are the best minsum costs
tested from all methods. The results of our framework out-
perform all the baseline methods and are also adequately
close to the known best. The average optimality gap is also
reported in the last column which compares each method

2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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TABLE II
COMPUTATIONAL TIME ON SOLVING PROBLEMS OF DIFFERENT SCALE

against the CPLEX results. Smaller optimality gap values
mean better performance. It can also be found that when N
of the test instances is closer to the N = 100 of our training
dataset, the optimality gap tends to diminish. Therefore, in real
applications, high quality solutions could be obtained by
selecting proper models given an estimate of the number of
waypoints. The computational time taken by the compared
methods on solving problems with same scales and settings
are provided in Table II in the form of average computational
time ± variance. The baseline methods are run on a 2.7 GHz
Intel Core i5-5257U (14 nm, 2015). Our hardware is a 2.6 GHz
Intel Core i7-3720QM (22 nm, 2012), which, according to the
CPU Benchmarks,3 has a poorer single-thread performance
compared to the i5-5257U. Obviously, our framework requires
much less computing resources to deploy compared to all
the baselines as well as the one-hour runtime of the known
best solution, which fits more for edge computing systems in
robotics applications, with an acceptable optimality trade-off.

E. Ablation Study

This section analyses the impact of the coupled task allo-
cation framework and the tailored MoE employed in the RL
agent using an ablation analysis. Besides the complete baseline
model, there are results from four additional ablated models.

There is one model based on a simpler RL-agent but keeping
the coupled framework. Two other models ablate the coupled
framework, using conventional clustering algorithms as the
task allocation modules instead. The one last model is set
up with the most basic random allocation. All models are
validated on the TSPLIB instances kroA100, kroA150 and
kroA200 which has been introduced in the comparative
analysis. While the task allocation module being switched or
ablated, the task planning module, i.e. the TSP solver, is kept
the same as the complete baseline model for all tests, which is
the pointer network based solver introduced in Section IV-D.
For the two RL-based models, pretrained parameters from
the first 65 steps after the training convergence are used
for the inference. For the non-RL-based decoupled models,
65 random seeds are provided for the algorithms to repeat the
tests. In Table III, the average and standard deviation (SD) of
the costs as well as the computational time of the 65 repetitions
are reported.

The complete baseline model of this ablation study utilises
the coupled task allocation framework introduced throughout
this work. The task allocation module of the baseline is a MoE

3https://www.cpubenchmark.net

agent, as mentioned in Section IV-C, with two 128-dimension
hidden layers and three 128-dimension expert layers. The
results of the baseline task allocation module is reported in
the ‘MoE’ row of Table III in bold font. In the first ablation
step, the MoE is substituted with a dynamic scaling MLP
which has three 128-dimension hidden layers. This MLP can
also be regarded as a single-expert MoE. Using this MLP-
based task allocation module could validate the improvement
of the expert layers in the complete baseline. Then, the coupled
allocation-planning loop is ablated. The ablation forms the
conventional decoupled clustering + TSP solver framework to
validate the improvement of the RL-based modular task alloca-
tion framework. The analysis involves two popular clustering
algorithms, the k-means algorithm and a multi-way spectral
clustering [59]. The tested spectral clustering employs an 10-
NNG as the affinity matrix and it has no tuning parameters
which leads to a trivial SD. Lastly, the decoupled clustering-
based task allocation is replaced by a random process which
samples task allocation labels from a discrete uniform distribu-
tion. For the consistency, all test cases reported in this section
are based on the aforementioned hardware, 2.6 GHz Intel Core
i7-3720QM.

As the results revealed in Table III, the coupled RL-
based task allocation framework significantly improves the
performance compared to the conventional clustering-based
task allocation under all test cases. Meanwhile, the deployment
runtime of the proposed framework, though only to a subtle
extent, also outperforms the decoupled clustering-based task
allocation. Within the proposed framework, it is also obvious
that advanced neural networks like MoE could improve the
performance against the basic MLP. However, it is also worth
mentioning that for all learning based task allocation, extensive
training on high performance computing (HPC) platforms is
necessary, though the cost of training would not be reflected
on the deployment of robotics systems.

F. Summary

In this section, the training setup of the framework and sev-
eral experimental demonstrations based on both generated and
real-world data are introduced. The task allocation framework
solved all the test missions using the given resources correctly.
Meanwhile, its adaptability to the size of tasks, as well as the
capability to incorporate different sizes of the fleet are also
validated. A comprehensive comparative analysis is also car-
ried out to validate the performance of the proposed methods
in the context of state of the art. Furthermore, an ablation
study is reported to analyse the performance improvement of
the designed components of the framework.

VI. REAL-ROBOT IMPLEMENTATION

In this section, the hardware implementation setup is
explained. Meanwhile, a test run on the Husarion ROSbot
robot platform carrying out a warehouse automation mission
is performed.

A. Experiment Setup

Implementing the DRL-based task allocation framework
on real robots is also necessary for testing the performance,
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TABLE III
PERFORMANCE OF DIFFERENT TASK ALLOCATION MODULES ON TSPLIB INSTANCES

robustness, and reliability of the system in real-world scenarios
and addressing the sim-to-real gap. Therefore, a real-robot
experiment using ROS 2 as the test middleware is configured.
In this section, a concise real-world robotic test setup based
on pure open-source software is firstly presented, and then,
the task allocation and task planning systems is implemented
on real robots based on this test framework to carry out an
inspection task.

The experimental setup consists of three major hardware
components, the workstation, robot fleet, and a router. The
workstation hosts the occupancy grid map for robot localisa-
tion and navigation and the task allocation and task planning
modules for decision-making. The workstation can be a normal
PC as there are no computationally expensive algorithms
relying on it. The robot fleet consists of K robots, each of
which is equipped with an onboard computer to execute ROS
nodes, sensors to observe the surrounding environment and
estimate the robot state, and actuators to drive the mobile
robot or commit any specific task. The router that bridges
the other two components, as shown in Fig. 8, is in charge of
data distribution, passing information and messages between
robots in the fleet and the workstation.

The setup is implemented with ROS 2 Foxy [60] and its
default data distribution service, Fast DDS. To deal with
substandard network environments and gain flexible internet
connectivity, the Linux-based embedded operating system
OpenWrt is utilised, especially its repeater and wireless
access point features. The connectivity interface between
the workstation and the router is IEEE 802.3 [61] Ether-
net connection for maximum reliability and data throughput
speed. Wireless solution based on IEEE 802.11 [62], however,
is used for mobile robots to ensure mobility. Autonomous
mobility modules implemented on the robots are devel-
oped based on Nav2 [63], which is the default navigation
package of ROS 2. The mobility module deployed on the
onboard computer of the robots is composed of three major
parts:

Fig. 8. The experimental setup for the real-robot tests based on ROS 2. The
networking among the ground control workstation and the autonomous mobile
robots is managed by a router through both Ethernet and wireless connection.
Localisation and navigation algorithms are implemented using the navigation
stack of ROS 2, which helps the robot follow the waypoints in the given map
using only onboard sensor observations. The robots subscribe to decisions
made by the task allocation agent and task planning module that determines
the responsibility distribution and execution sequences.

• localisation algorithm that calculates the frame transfor-
mation between the odometry and mapping origins,

• waypoint following algorithm that plans the paths for
the robot to navigate to the given waypoint and avoid
obstacles,
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Fig. 9. Husarion ROSbot 2 pro platform used in the experiment.

• actuator control algorithm that communicates with the
actuator driver board to manoeuvre the robot and follow
the planned paths.

The mobile robot platform used in this setup is Husarion
ROSbot 2 Pro (Fig. 9). ROSbot 2 Pro is an educational AMR
mounted with a series of sensors: a 360◦ lidar scanner,
a structured light RGB depth camera, an integrated inertial
measurement unit (IMU) and four time of flight (ToF) range
finders. The main perceptual sensor is the omnidirectional
lidar scanner with a detection radius of 25 m and a sam-
pling rate of 16000 Hz. The computing unit that hosts the
onboard ROS nodes is an UP Board with a 1.92GHz Intel®

ATOMTM x5-Z8350 Processor. The actuators of the mobility
module are 4 DC motors with encoders mounting on a chassis
with differential dynamics. Other ROS-compatible AMRs may
also be used in the fleet, provided that they are equipped
with required sensors, power supply and actuators. The ROS
package deployed on the onboard computing unit is available
at https://github.com/ucl-frl/frl_rosbot_onboard.git.

B. Hardware Implementation: A Warehouse Inspection
Scenario

This test task is configured as a warehouse inspection
scenario in an office environment, assuming each desk is a
warehouse racking bay. The task consists of 17 waypoints
in the workspace (Fig. 10a), 2 inspection waypoints for each
racking bay and an additional inspection waypoint close to the
entrance of the warehouse. In a real warehouse mission, the
robot would normally be required to execute further tasks such
as taking pictures or scanning QR codes. Therefore, in this
task, users would request the robot to turn to face the racking
bay after arriving at the racking bay inspection waypoints and
to face North for the entrance inspection waypoint.

Besides the orientation on the arrival of waypoints, other
criteria of success for the implementation includes: traversing
all the allocated waypoints, following the designated execution
sequence unless replanned by the decision-making system, and
no collision against other robots or obstacles.

In this inspection scenario, a fleet consisting of three robots
is dispatched. The task allocation policy divided the inspection
waypoints into three groups containing 6, 3, and 8 waypoints

Fig. 10. The experimental setup for the real-robot tests based on ROS 2.
The networking between the ground control workstation and the autonomous
mobile robots.

respectively. Based on this allocation decision, the task plan-
ning module also provides the execution sequences shown in
Fig. 10b.

In the configured test environment, GPS is not applicable
for indoor setup. To make the case closer to applications
in practice, it is also assumed that there is no external
indoor localisation system such as ultra-wide band (UWB)
anchors or motion capture system mounted. Consequently,
this test can only rely on the onboard perception system of
the robots for localising themselves on the given map. The
a prior occupancy grid map, as in Fig. 10, is obtained with
simultaneous localisation and mapping (SLAM) carried out by
the Husarion ROSbot 2 Pro in advance. The adaptive Monte
Carlo localisation (AMCL) [64], [65] is adopted in the imple-
mentation. As for path planning, a global path planner based
on the Dijkstra algorithm computes the route from the current
state of the robot to the goal state at the waypoint taking
obstacle avoidance into account. The obstacle information is
formatted into a global cost map given the occupancy grid map
hosted in the workstation. The path is then subscribed by the
DWB local motion planner which is an extended version of
the classic dynamic window approach (DWA) [66] algorithm
for path following. The motion planner actively observes the
vicinity of the robot using the onboard sensors, lidar in this
case. If moving occupancy cells are observed, the planner will
assume that they are dynamic obstacles and try to predict their
trajectories a few time intervals ahead. Based on the obstacle
information, the DWB planner works out the desired speed in
a search space limited by the current speed and acceleration
limit of the robot by maximising an objective which aims to
align the robot to the goal, avoid obstacles and speed up the
manoeuvre.

Two of the three robots (Robot 0 and Robot 2) dis-
patched are deployed in the test. The velocity command
for the actuator of the differential chassis consists of two
components, the linear velocity ẋ and the angular velocity θ̇ .
The maximum velocities are limited to max(ẋ) = 0.26 m/s,
max(θ̇) = 1 rad/s, and the corresponding acceleration maxima
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Fig. 11. The warehouse inspection scenario implementation.

are max(ẍ) = 2.5 m · s−2, max(θ̈) = 3.2 rad · s−2. In the
warehouse inspection scenario test, the robots successfully
executed the brown route at the south end of the map and the
blue route at the north end as shown in Fig. 11, which meets all
defined criteria under the guidance of the task allocation and
task planning modules without collisions. At the beginning of
the task, the robot sets off from the initial waypoints. In a real
warehouse, the robots may need to navigate from their docks
to the nearest assigned waypoint in the first place. In Fig. 11,
nine pictures of the test are taken at a constant time interval of
18s. Due to the short distance from detected obstacles within
the local planner’s dynamic window, there is some offset from
the actual path to the ideal lines between two consecutive way-
points. However, the robots reached the designated waypoints
and the correct orientation which faces the warehouse racks
(desks in the photo) to inspect. The average time consumption
of the robot from one waypoint to the consequent one is about

15 seconds, where the robots will turn from the inspection
attitude back to follow the planned path and turn to the rack
again after reaching the succeeded waypoint. Additionally,
there is no human intervention or any auxiliary instruction
provided other than the ones described in this work throughout
the hardware implementation. More details can be found at
https://youtube.com/watch?v=x_Vipmf4ph0.

VII. CONCLUSION

In this work, the task allocation problem for multi-AMR
systems is discussed in the context of the waypoint following
tasks. An end-to-end DRL framework is proposed to address
the decoupled decision-making of the task allocation and the
succeeding task planning module. The modular design of
the DRL agent and the objective-oriented component reward
makes it possible to apply the framework in tasks of various
sizes as well as to extend this framework for more autonomous
applications. Experimental results have validated the good
scalability which ensures pretrained models can be reused
when the waypoint number changes. Formulating the research
problem as a variant of mTSP, a comparative study against
other state-of-the-art solvers revealed the superior performance
of our framework. Moreover, a real-robot implementation
solution based on ROS 2 is provided, and an autonomous test
run with no external localisation and human interventions is
deployed to validate the trained policies.

Limitations have also been identified in this study. Currently,
the framework cannot generalise to a robot fleet of different
number of robots from those used in training. Skewness in
some allocation plans is also observed, a reasonable occur-
rence given that the reward is based on total distance. In future
research, the exploration of recurrent neural networks and a
more sophisticated reward design could potentially mitigate
these known issues. Notably, the models generated by the
proposed framework require minimal computing capacity, ren-
dering it ideal for hardware constrained robotic systems.
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