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Abstract

INTRODUCTION: Blood protein biomarkers demonstrate potential for Alzheimer’s

disease (AD) diagnosis. Limited studies examine the molecular changes in AD blood

cells.

METHODS:Bulk RNA-sequencing of blood cells was performed onADpatients of Chi-

nesedescent (n=214and26 in thediscovery andvalidation cohorts, respectively)with

normal controls (n= 208 and 38 in the discovery and validation cohorts, respectively).

Weighted gene co-expression network analysis (WGCNA) and deconvolution analysis

identified AD-associated gene modules and blood cell types. Regression and unsuper-

vised clustering analysis identified AD-associated genes, genemodules, cell types, and

established AD classificationmodels.

RESULTS:WGCNA on differentially expressed genes revealed 15 gene modules, with

6 accurately classifying AD (areas under the receiver operating characteristics curve
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[auROCs] > 0.90). These modules stratified AD patients into subgroups with distinct

disease states. Cell-type deconvolution analysis identified specific blood cell types

potentially associated with AD pathogenesis.

DISCUSSION: This study highlights the potential of blood transcriptome for AD

diagnosis, patient stratification, andmechanistic studies.

KEYWORDS

Alzheimer’s disease, blood, co-expression, deconvolution, diagnosis, neutrophil, stratification,
transcriptome

Highlights

∙ We comprehensively analyze the blood transcriptomes of a well-characterized

Alzheimer’s disease cohort to identify genes, gene modules, pathways, and specific

blood cells associated with the disease.

∙ Blood transcriptome analysis accurately classifies and stratifies patients with

Alzheimer’s disease, with some gene modules achieving classification accuracy

comparable to that of the plasma ATN biomarkers.

∙ Immune-associated pathways and immune cells, such as neutrophils, have potential

roles in the pathogenesis and progression of Alzheimer’s disease.

1 BACKGROUND

Alzheimer’s disease (AD), one of the most common aging-associated

diseases, has become a leading cause of death worldwide.1 Despite

its huge socioeconomic burden, intervention strategies for the disease

are limited. Current diagnosis mostly relies on physicians’ subjective

judgements based on family history and cognitive tests. However,

those diagnostic methods are often insufficiently sensitive to detect

the early stages of the disease or insufficiently specific to distinguish

AD from other types of dementia. Meanwhile, the implementation

of positron emission tomography (PET) and lumbar puncture for

detecting AD hallmarks, including amyloid plaques, tau tangles, and

neurodegeneration—collectively termed the “ATN” biomarker panel—

can quantitatively assess disease severity, greatly improving the sen-

sitivity and accuracy of AD diagnosis. In particular, the sequential

changes in the ATN biomarkers enable us to examine the detailed

molecular phenotypic changes during disease progression, which

facilitates disease staging, intervention, and the development of tai-

lored intervention strategies. Furthermore, the recent identification of

blood-based biomarkers that reflect the respective changes of theATN

biomarkers in the brain, including amyloid-beta (Aβ), phosphorylated
tau at threonine 181 (p-tau181), and neurofilament light polypep-

tide (NfL), has revolutionized the diagnosis and monitoring of AD.2–5

However, it is unclear if these biomarkers fully reflect the various dis-

ease states during AD progression. Moreover, the ATN biomarkers

might not provide a detailed picture of the molecular mechanisms that

underlie AD progression.

The clinical use of blood-based diagnostics for AD is being intensely

investigated because of the ease of access to blood samples. Besides

the blood ATN biomarkers, the expressions of hundreds of plasma

proteins—many of which are expressed by blood cells—are altered in

patients with AD.6–8 Therefore, in parallel to the plasma ATN biomark-

ers, blood cells may also undergo pathophysiological changes along AD

progression.

Transcriptome analysis is a widely used method for studying

how genes behave in different biological contexts, including the

brains of individuals with AD. Specifically, analyses of the brain

transcriptome in AD provide a comprehensive view of the molec-

ular changes in genes, pathways, gene modules, and cell types.9–15

For example, co-expression network analysis of transcriptomic data

has revealed that the immune system is involved in AD,14 while

cell-type deconvolution analysis has shown a decrease in the num-

ber of neurons and an increase in the numbers of microglia and

astrocytes within the AD brain.15 Specific gene sets from transcrip-

tomic data can also distinguish AD-affected brains from undemented

brain tissues.16 Considering the changes in blood cells that occur

upon AD onset and progression, transcriptome analysis may reveal

molecular changes in the blood cells of patients with AD, provid-

ing critical insights into the disease’s pathophysiological mechanisms.

Furthermore, recent studies demonstrate that blood transcriptome

analysis can aid the diagnosis of uncommon muscle and mitochon-

drial disorders, underscoring its potential utility for the diagnosis

and characterization of diseases, including AD.17 Hence, applying

blood transcriptome analysis to AD studies may also reveal new

diagnostic biomarkers. Nevertheless, few studies involving transcrip-

tome analysis have investigated AD blood cells or the application of

blood transcriptomic data to disease diagnosis or stratification. There-

fore, the present study aims to assess the potential usage of blood
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ZHONG ET AL. 3

transcriptomeanalysis forAD, including delineating themolecular phe-

notypic changes in blood cells aswell as clinical diagnosis, stratification,

andmonitoring.

2 METHODS

2.1 Study cohorts

Two cohorts of Hong Kong Chinese individuals aged ≥60 years were

included in this study. The discovery cohort (n = 422) comprised 214

patients with AD and 208 normal controls (NCs) who visited the Spe-

cialist Outpatient Department of the Prince of Wales Hospital of the

Chinese University of Hong Kong from April 2013 to February 2018.

The validation cohort (n=64) included38NCsand26patientswithAD

with plasma p-tau181 levels≤2.55 and> 2.55 pg/mL, respectively (the

p-tau181 cutoff was based on our previous publication8). The valida-

tion cohort comprised 18 participants (14 patients with AD and 4NCs)

from the SpecialistOutpatientDepartment of thePrince ofWalesHos-

pital of theChineseUniversity ofHongKong recruited fromApril 2013

toFebruary2018; 15participants (12patientswithADand3NCs)who

visited Queen Elizabeth Hospital from February 2018 to March 2020;

and 31 patients with ADwho visited the Community CareAge Founda-

tion orHaven ofHopeChristian Service fromOctober 2019 to January

2020 (Table S1).

All participants recruited from hospitals underwent medical history

assessment, clinical assessment, and cognitive and functional assess-

ment (i.e., theMontreal Cognitive Assessment [MoCA]).18 Participants

with any psychiatric disorder or significant neurological disease other

than AD were excluded. For participants recruited from the Specialist

Outpatient Department of the Prince ofWales Hospital of the Chinese

University of Hong Kong, the clinical diagnosis of ADwas based on the

American Psychiatric Association’s Diagnostic and Statistical Manual

of Mental Disorders, Fifth Edition (DSM-5).19 Participants recruited

from Queen Elizabeth Hospital also underwent neuroimaging assess-

ment byMRI.20 For these participants, the clinical diagnosis of ADwas

based on the US National Institute on Aging and Alzheimer’s Asso-

ciation (NIA-AA) workgroup 2011 revised criteria.21,22 In addition,

the participants recruited from the Community CareAge Foundation

or Haven of Hope Christian Service (representing population-level

NCs), underwent medical history assessment as well as cognitive and

functional assessment with theMoCA.18

This study was approved by the Clinical Research & Ethics Com-

mittees of the Joint Chinese University of Hong Kong-New Territo-

ries East Cluster for the Prince of Wales Hospital (CREC Ref. No.

2015.461), the Kowloon Central Cluster/Kowloon East Cluster for

QueenElizabethHospital (KC/KE-15-0024/FR-3), Ethics andResearch

Committee of Haven of Hope Christian Service and the Human Par-

ticipants Research Panel of The Hong Kong University of Science

and Technology (CRP#180 & CRP#225). All participants provided

written informed consent for both study participation and sample

collection.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources (e.g., PubMed). While the utility

of blood transcriptome analysis for investigating dis-

ease mechanisms, diagnosis, and stratification has not

been extensively researched, a few publications describe

its applications in Alzheimer’s disease. These relevant

citations are cited appropriately.

2. Interpretation: Our findings suggest that there are

molecular changes in the blood of patients with

Alzheimer’s disease, including alterations to genes,

gene modules, and biological pathways—particularly

immune-associated pathways and certain blood cell

types. In addition, the results demonstrate the potential

use of blood transcriptomic data to classify and stratify

patients with Alzheimer’s disease.

3. Future directions: This study presents evidence of sys-

temic alterations to the molecular phenotypes of blood

cells in Alzheimer’s disease. It also suggests the potential

utility of blood transcriptomic data for investigating the

disease’s pathophysiological mechanisms and developing

tools for diagnosis and stratification. Future studiesmight

focus on the specific involvement of different blood cell

types in the pathogenesis and progression of Alzheimer’s

disease as well as the use of blood transcriptome analy-

sis for diagnosis and stratification in diverse ethnic groups

and investigating other diseases.

2.2 Blood transcriptome sequencing and analysis

RNA samples were extracted with PAXgene Blood RNA Tubes using

PAXgene Blood miRNA Extraction kits (Qiagen, PreAnalytiX GmbH,

Hilden, Germany). For each participant, 3 to 10 μg total RNA, quan-

tified by a BioDrop DUO machine (BioDrop Ltd., UK), was treated

with a GLOBINclear-Human Kit (Invitrogen, Waltham, MA, USA) to

remove hemoglobin transcripts. Then, 2 to 5-μg cleaned RNA samples

were subjected to RNA sequencing by Novogene (Beijing, China) using

an Illumina NovaSeq 6000 platform. For each participant, 40 million

150-bp paired-end reads were produced.

The raw sequencing reads were first subjected to FastQC

(www.bioinformatics.babraham.ac.uk/projects/fastqc/) to evaluate

data quality and then to Trimmomatic23 to trim and filter low-quality

reads. The cleaned reads were then mapped to the GRCh37 human

reference genome (GRCh37.87 GTF file, sourced from ENSEMBL)

using the STAR aligner (“spliced transcripts alignment to a reference”;

version 2.5.3a)24 with the default settings. Gene and transcript abun-

dance were then quantified by analyzing the mapped BAM files with

Stringtie2 version 2.1.4.25 A total of 63,677 genes from ENSEMBL
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4 ZHONG ET AL.

encompassing different categories were analyzed, including 22,810

protein-coding genes, pseudogenes, and long noncoding RNAs. There

are 28,010 genes remaining after excluding genes with low expression

(with at least one read count in each sample).

2.2.1 Differential expression analysis

For the 28,010 genes that passed the quality control and low-

abundance filtering, the raw read counts were subjected to DESeq226

to determine the genes that were differentially expressed in patients

with AD compared to NCs, with age, sex, and population structure

(represented by the top five principal components from the genomic

data) included as covariates. A cutoff (i.e., adjusted p < 0.1 calculated

using the Benjamini and Hochberg method) was applied to identify the

12,837 differentially expressed genes.

2.2.2 Gene ontology enrichment analysis

The online tool PANTHER version 14.027 was utilized to perform

Gene Ontology and pathway enrichment analyses on the differentially

expressed genes (i.e., upregulated, downregulated, or from specific

gene modules). Gene Ontology terms with a false discovery rate

(FDR)< 0.05were considered statistically significant.

2.2.3 Co-expression network analysis

WGCNA28 was applied to construct co-expression networks and iden-

tify genes that are co-regulated in human blood. Before analysis, the

lm() function was applied to regress out the confounding effects of age

and sex on gene expression matrix. The resultant clean gene expres-

sion matrix (measured as transcripts per million [TPM]) was then

subjected to WGCNA, with a signed similarity matrix (i.e., Pearson’s

correlation coefficients) generated to represent the strength of the

correlations among the gene expression profiles. Gene modules were

identified using the default settings, and those with at least 30 genes

were retained for downstream analysis. To determine the correlations

between each gene module and phenotype or other AD-associated

endophenotypes (e.g., plasma biomarkers), the first principal compo-

nent of themodule’s gene expression (termed the “module eigengene”)

was used.

2.2.4 Disease classification analysis

The clean gene expressionmatrix (quantified in TPM)mentioned above

was subjected to a generalized linear model using the glm function in

the R Stats Package version 3.6.0. The trainedmodelswere then applied

to both the discovery and validation cohorts, and the model output—

termed the “module score”—was used to evaluate the accuracy of AD

classification. As an indicator ofmodel performance, the areaunder the

receiver operating characteristics curve (auROC) was calculated using

the roc function in the R pROC package.29

2.2.5 Participant stratification analysis

The predicted score for each selected gene module—M01, M02, M05,

M09, M13, and M15—was subjected to k-means clustering using the

kmeans() function in the R stats package to determine the subgroups

of participants in the discovery cohort. The optimal number of clus-

ters was determined using the elbowmethod, which was implemented

using the fviz_nbclust() function in the R factoextra package.30 Then, for

uniform manifold approximation and projection (UMAP) analysis, the

module score was subjected to the umap() function in the umap pack-

age in R to project individual participants into a two-dimensional plane

for visualization.

2.2.6 Cell-type deconvolution analysis

The lm() function was applied to regress out the confounding effects

of age and sex on gene expression before analysis. The clean gene

expression matrix (measured in TPM) was subjected to CIBERSORTx

software31 for cell-type deconvolution analysis using the LM22 signa-

ture matrix as a reference. One-tailed robust regression analysis was

performed to examine the associations between gene modules (repre-

sented by predicted scores) and cell-type enrichment scores (obtained

from CIBERSORTx) using data from the NCs in the discovery cohort.

Association analysis was conducted to identify cell types that were

altered in AD using multiple linear regression, taking all the analyzed

cell types jointly andwith age and sex included as covariates.

2.2.7 Functions and tools for statistical analysis

Linear regression was performed using the lm() function in the R

stats package, and robust regression analysis was performed using the

lmrob() function in the R robustbase package.32

2.3 Calculation of population structure using
whole-genome sequencing data

Whole-genome sequencing data for the studied participants were

retrieved from previous studies.33,34 In brief, whole-genome sequenc-

ing (5× coverage with 150-bp paired-end reads) was performed

by Novogene on an Illumina HiSeq × Ten and NovaSeq plat-

form (San Diego, CA, USA). The GotCloud pipeline35 was adopted

to detect variants from our whole-genome sequencing data. In

brief, the sequencing data were subjected to FastQC (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) for quality control

and Trimmomatic36 to trim and filter low-quality reads. The clean data

weremapped to theGRCh37 reference genome containing decoy frag-

ments usingBWA-mem. The datawere then subjected to theGotCloud

pipeline for data processing and variant detection using the default

settings.37 The clean genotype fileswere subsequently toBeagle38 and

Thunder39 for genotyping refinement. After passing the GATK Variant
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Quality Score Recalibration and minor allele frequency filter (> 5%),

the common variants underwent linkage disequilibrium pruning using

PLINK software (version 1.9). The linkage disequilibrium-pruned vari-

ants were subsequently utilized for principal component analysis with

PLINK to identify population structure.

2.4 Measurement of plasma protein biomarker
levels

Data for plasma biomarkers, including the Aβ42/40 ratio and total tau,

p-tau181, andNfL levels, were obtained from a previous publication.40

Among the 422 participants in the discovery cohort, 184 including 100

patients with AD and 84 NCs had available plasma biomarker data.

Plasma biomarker data were available for all 64 participants in the

validation cohort.

For brain imaging analysis, T1-weighted magnetization-prepared

rapid gradient-echo (MPRAGE) and fluid-attenuated inversion recov-

ery (FLAIR) sequences were retrieved for 54 patients with AD and 85

NCs from thePrince ofWalesHospital in the discovery cohort. The raw

imaging files were deidentified and sent to BrainNowMedical Technol-

ogy (HKSAR, China) to analyze the volumes of different brain regions

andwhite matter hyperintensity levels.

2.5 Single-cell analysis

2.5.1 Study participants

Five additional elderlyHongKongChinese individuals (all females aged

69 to 83 years) were recruited for the blood single-cell RNA sequenc-

ing analysis. Three patientswith ADormild cognitive impairmentwere

recruited from the Specialist Outpatient Department of the Prince of

Wales Hospital at the Chinese University of Hong Kong, and two indi-

viduals without a history of major disease were recruited from the

Prince ofWalesHospital. PatientswerediagnosedwithADormild cog-

nitive impairment according to the DSM-5 criteria.19 This study was

approved by the Clinical Research & Ethics Committees of Joint Chi-

nese University of Hong Kong-New Territories East Cluster for the

Prince of Wales Hospital (CREC Ref. No. 2015.461) and the Human

Participants Research Panel of the Hong Kong University of Science

and Technology (CRP#180 and CRP#225). All participants provided

written informed consent for both study participation and sample

collection.

2.5.2 Blood collection and leukocyte isolation

Whole-blood samples (2mL) were collected from individuals using

K3EDTA tubes (VACUETTE; Greiner Bio-One). To lyse red blood

cells, the blood samples were treated with 40 mL ACK Lysing Buffer

(A1049201, Thermo Fisher) for 5 min at room temperature. The

remaining cells were then washed with 10 mL phosphate buffered

saline (PBS) and pelleted by centrifugation at 300× g for 5min at room

temperature. For a second round of red blood cell lysis, the cell pellets

were then resuspended in 15 mL ACK Lysing Buffer (A1049201) and

incubated for 5 min at room temperature. After a second washing step

with PBS and centrifugation, the cell pellets were resuspended in 2mL

PBS with 0.04% BSA and filtered with a 40-μm cell strainer (352340,

Corning). The cell suspensions were then assessed for cell viability and

counted under a microscope. The concentration was adjusted to 1000

cells per μL with PBS and 0.04% bovine serum albumin (BSA).

2.5.3 Single-cell RNA sequencing library
construction and sequencing

We prepared scRNA-seq libraries using a Chromium Next GEM Sin-

gle Cell 3′ Library & Gel Bead Kit v3.1 (1000121; 10x Genomics)

according to the manufacturer’s protocol. In brief, 10 μL cell suspen-

sion (10,000 cells) was mixed with reverse-transcription reagents and

loaded into a chip to partition single cells into droplets. The droplets

were incubated on a thermocycler to generate barcoded cDNA from

polyadenylated mRNA by reverse-transcription. Libraries were con-

structed from cDNA according to themanufacturer’s instructions. The

library concentrationwasmeasured usingQubit (ThermoFisher Scien-

tific), and fragment lengths were measured using a Fragment Analyzer

(Advanced Analytical Technologies). The libraries were then sent to

Novogene for sequencing on aNovaSeq 6000 system,which generated

150-bp paired-end reads for downstream analysis.

2.5.4 Single-cell RNA sequencing preprocessing
and quality control

DemultiplexedFASTQ fileswere aligned to the hg19 reference genome

using CellRanger version 6.1.2 to obtain gene counts. Single cells with

≥200 uniquemolecular identifiers and genes detected in≥5 cells were

selected for analysis. For quality control, cell-free mRNA contamina-

tion was estimated and removed using the SoupX package.41 Potential

dead cells (i.e., ≥ 10%mitochondrial genes or ≤200 features) and mul-

tiplets (i.e., aggregation of twoormore cells into single droplets;≥5000

features) were excluded using Seurat version 4.0.6.42 After filtering,

19,958 cells remained in the dataset.

2.5.5 Single-cell RNA sequencing integration, cell
clustering, and cell-type annotation

The gene count matrices of each sample were normalized and

integrated with the reciprocal principal component analysis and

SCTransform-based workflows in Seurat. In brief, variable features

were identified and normalized using the SCTransform function. The

first 30 principal components from reciprocal principal component

analysis were selected to identify integration anchors between sam-

ples using the FindIntegrationAnchors function. The samples were then
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6 ZHONG ET AL.

integrated into a single Seurat object using the anchors via the Inte-

grateData function.We performed principal component analysis on the

integrated data and selected the first 30 principal components for clus-

ter identification using k-nearest neighbor algorithm. We identified

the differentially expressed genes of each cluster using the Wilcoxon

rank-sum test with the FindAllMarkers function. Only genes with a

log2(fold-change) > 0.25 that were expressed in ≥ 10% of cells in the

cluster were analyzed. Known cell-type marker genes among the dif-

ferentially expressedgeneswereused toassign clusters to13cell types

based on the literature.43,44

2.6 Data visualization

A heatmap of the differentially expressed genes was generated using

the heatmap.2() function in the ggplot package in R. The heatmap of

the co-regulation of gene expression was generated using the TOM-

plot function in the WGCNA package in R. Bar charts, heatmaps of

the association results between gene modules and disease-associated

endophenotypes, and receiver operating characteristic curves were

generated using GraphPad Prism version 8.0.2. Radar plots were gen-

erated using the ggradar() function using the R ggradar package, and

Ridgeline plots were generated using the geom_ridgeline() function in

the R ggridges package.

3 RESULTS

3.1 Blood transcriptome analysis reveals
dysregulated genes and pathways in patients with
AD

To understand themolecular changes in the blood cells of patientswith

AD, we performed bulk RNA-seq on blood cells from an AD cohort

recruited in Hong Kong,45,46 comprising 422 participants (patients

with AD: n = 214, normal controls [NCs]: n = 208), hereafter referred

to as the “discovery cohort” (Table S1; see Figure 1 for study design).

Based on these RNA-seq data, we first identified genes that were dys-

regulated in the blood in AD by using a generalized linear model with

age, sex, and population structure (i.e., the top five principal compo-

nents estimated fromgenomic data) as covariates.Out of 28,010 genes

detected in the blood, 12,837 were differentially expressed between

the patients with AD and NCs, including 7736 upregulated and 5101

downregulated genes (adjusted p < 0.1; Figure 2A, Table S2). We sub-

sequently conducted Gene Ontology enrichment analysis to examine

the biological processes associated with those differentially expressed

genes. The upregulated genes are involved in the metabolic process

(false discovery rate [FDR] = 1.22 × 10−16), translation (FDR = 3.99 ×

10−10) and oxidative phosphorylation (FDR = 5.31 × 10−4; Figure 2B,

Table S3), whereas the downregulated genes are involved in the cell

cycle (FDR = 1.77 × 10−17), histone modification (FDR = 3.18 × 10−8),

and immune-associated pathways such as autophagy (FDR = 4.59 ×

10−5) and lymphocyte activation (FDR = 6.20 × 10−4; Figure 2B,

Table S4). Hence, by identifying which genes and pathways are altered

in blood cells in AD, our results suggest the existence of molecular

changes in the blood cells of patients with AD.

To validate the observed gene expression changes in AD blood, we

repeated the RNA-seq and differential expression analyses on blood

cells froman independent cohort (n=64; comprising 26p-tau–positive

patientswithADand38p-tau–negativeNCs)—hereafter referred to as

the “validation cohort”—with a stricter diagnosis based on the exam-

ination of plasma p-tau181 levels. The changes in transcript levels of

those differentially expressed genes (i.e., the fold-change between the

ADandNCgroups) between the discovery and validation cohortswere

strongly correlated (R2 = 0.89, p < 2.2 × 10−16). This finding validates

the observed molecular changes in the blood cells of patients with

AD (Figure 2C, Table S5). Furthermore, we examined the expression

changes of key AD risk genes implicated in a genome-wide association

study (GWAS) of both the discovery and validation cohorts.47 Many of

these keyADGWAS risk genes, such as apolipoprotein E (APOE),ABCA7,

and CR1, which are associated with inflammation and immune func-

tion, were differentially expressed at the gene level in the blood of

patients with AD in the discovery cohort, with a consistent trend of

dysregulation in the validation cohort (Figure 2D). Indeed, single-cell

RNA-seq studies have provided compelling evidence suggesting that

APOE is expressed in specific blood cell types, particularly in human

macrophages and mouse leukocytes.48,49 We extended the analysis to

all genes that resided in AD GWAS risk loci based on the annotations

fromKunkle et al.50 Notably, for specificADrisk loci,multiple genes are

significantly dysregulated in both the discovery and validation cohorts

(e.g., ABCA7, CR1, HLA-DRB1, MS4A2, MYAP1, and SPI1; Figure S1).50

These findings support the findings of previous Gene Ontology anal-

yses that highlight the dysregulation of immune-associated pathways

in AD, further indicating that the molecular changes in blood cells are

associated with AD pathogenesis.

3.2 Gene modules in blood cells are involved in
diverse biological processes in AD

Given the involvement of the above-mentioned differentially

expressed genes in diverse biological pathways, it is important to

identify gene modules to focus on understanding the key biological

processes in AD. As genes related to a given biological process likely

have overlapping regulatory mechanisms and similar expression

patterns, we performed WGCNA to identify modules of co-expressed

genes that are altered in the blood from patients with AD and whose

expression levels are highly correlated. In brief, we constructed a

co-expression network from the 12,837 differentially expressed

genes in the blood samples from the discovery cohort and identified

15 AD-associated gene modules, which we designated M01–M15

(Figure 3A, B; Tables S6-19). Interestingly, Gene Ontology analysis

revealed that many of these gene modules are involved in immune-

associated pathways. For example, M07 is involved in B cell activation

(FDR = 1.04 × 10−5), M09 in adaptive immune response (FDR = 3.96

× 10−11), M11 in innate immune response (FDR = 5.82 × 10−24), and
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ZHONG ET AL. 7

F IGURE 1 Schematic diagram of the study design. (A) Samples and data collected. (B) Types of analyses performed. (C) Proposed applications
of blood transcriptomic data for Alzheimer’s disease classification, patient stratification, and cell-type analysis. AD, Alzheimer’s disease; ATN,
amyloid/tau/neurodegeneration; RNA-seq, RNA sequencing

M15 inmyeloid leukocyte activation (FDR=1.53×10−5). These results

further corroborate the dysregulation of immune pathways in blood

cells in AD and suggest the parallel involvement of diverse immune-

associated pathways during AD pathogenesis and progression. In

addition, M06 is associated with synaptic transmission (FDR = 3.42 ×

10−2; Table S8), suggesting a link between the molecular changes in

blood cells and the brain during AD pathogenesis and progression.

3.3 Associations between gene modules and AD

We subsequently evaluated whether these gene modules contribute

equally to AD or not. Accordingly, we used lasso logistic regression

to condense the gene expression data from each module into a single

numeric score—termed the “module score”—that reflects the relative

overall expression changes of genes within the module. We trained

the model using data from the discovery cohort and determined if it

can distinguish patients with AD from NCs in both cohorts. We then

evaluated the ability of the identified gene modules to identify AD by

calculating the auROCs in both cohorts (as a measure of the strength

of the association between the identified genemodules and AD). Inter-

estingly, all 15 AD-associated gene modules were associated with AD

(auROC>0.7), and6modules—M01,M02,M05,M09,M13, andM15—

exhibited consistently strong associations with AD (auROC > 0.9) in

both cohorts (Figure 4A; Figures S2, S3; Table S20). Among these

six modules, M09 and M15 are related to immune functions: adap-

tive immune response and myeloid leukocyte activation, respectively.

These results indicate that several distinct biological processes, espe-

cially those related to immune cells or pathways, are dysregulated in

blood cells in AD, highlighting the roles of these processes in AD.

3.4 Associations between gene modules and
plasma ATN biomarkers

During AD progression, the plasma ATN biomarkers are correlated

with key pathological hallmarks in the brain.51,52 Given that the above-

mentioned gene modules can identify AD based on the blood cell
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8 ZHONG ET AL.

F IGURE 2 Dysregulation of genes and pathways in the blood of patients with AD. (A) Heatmap of the normalized expressions of genes that
were differentially expressed between patients with AD (n= 214) andNCs (n= 208) in the discovery cohort (FDR< 0.1). Rows represent individual
genes (n= 7736 and 5101 up- and downregulated genes, respectively), and columns represent individual participants. Colors denote the levels of
gene expression (TPM). (B) Representative gene ontology terms enriched by genes that were up- (red) or downregulated (blue) in patients with AD
versus NCs. (C) Correlations between the log2(fold-change) of differentially expressed genes in the discovery cohort (n= 422) and validation
cohort (n= 64). (D) Heatmap showing the differential expressions of AD genes identified byGWASs in the discovery and validation cohorts. (E) Dot
plot of the transcript levels of representative AD genes that were differentially expressed in the blood of patients with AD versus NCs in the
discovery cohort. Data aremean± SEM. (D, E) Log2(fold-change) calculated by negative binomial generalized linear models fromDESeq2;
*p< 0.05, **p< 0.01, ***p< 0.001. AD, Alzheimer’s disease; FDR, false discovery rate; GWAS, genome-wide association study; NC, normal control;
Norm., normalized; SEM, standard error of themean; TPM, transcripts per million

transcriptome, we subsequently investigated if these modules are

associatedwith pathological changes of AD. Accordingly, we evaluated

the plasma ATN biomarkers using the ultrasensitive SIMOA (“single-

molecule array”) platform and determined their correlations with the

module scores of each gene module. Interestingly, in the discovery

cohort, only 9 of the 15 gene modules were significantly correlated

with the plasma ATN biomarkers (p < 0.05; Figure S4). Among the six

modules that were closely associated with AD (i.e., M01, M02, M05,

M09, M13, and M15), only M02, M13, and M15 were correlated with

the plasma ATN biomarkers (“ATN modules” hereafter; Figure 4B).

We further compared the auROCs for AD classification between the

three ATN modules and the three that were not (“non-ATN modules”

hereafter). Interestingly, there was no significant difference between

the auROCs of the ATN and non-ATN modules (Figure 4C). Hence,

our results suggest that there are specific AD-associated molecu-

lar changes that occur in blood cells but are not correlated with

the plasma ATN biomarkers. Accordingly, these findings indicate that

blood transcriptome analysis could supplement the ATN biomarkers
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ZHONG ET AL. 9

F IGURE 3 Genemodules with distinct biological functions identified by co-expression network analysis. (A) Heatmap showing the
co-expression (i.e., correlation coefficients) among differentially expressed genes in the blood of patients with AD. Colors along the left side and
top represent the 15 genemodules defined byweighted correlation network analysis. (B) Detailed information about the 15 identified gene
modules, including (from left to right) the correlations between themodules and the presence of AD, gene count, and associated biological
functions inferred fromGeneOntology analysis (Pearson correlation analysis; *p< 0.05, **p< 0.01, ***p< 0.001). AD, Alzheimer’s disease

for the diagnosis of AD. Of note, these non-ATNmodules might still be

associated with brain functions.

Next, to examine whether the six modules that are closely associ-

ated with AD are associated with the brain structural and cognitive

changes in AD, we determined the correlations between the module

scores and cognitive performance measured by the MoCA as well as

brain volume (i.e., the amygdala and hippocampus) measured by MRI

among participants from the discovery cohort. Interestingly, both the

ATN and non-ATN modules were correlated with cognitive perfor-

mance aswell as volumetric changes in the amygdala and hippocampus

in all participants (Figures S5, S6). This suggests that the molecular

changes in blood cells captured by transcriptome analysis are corre-

lated with changes in cognitive function and brain structure, which

might provide additional information for determining disease status

beyond the existing ATN biomarkers.

3.5 Accuracy of the identified gene modules for
AD classification

We subsequently investigated whether blood transcriptomic data can

assist AD classification. Accordingly, we trained logistic regression

models that include the module scores from the six modules closely

associated with AD—M01, M02, M05, M09, M13, and M15—and out-

put a single numeric score representing an individual’s disease status.

We again calculated the auROCs to evaluate the performance of the

AD classification models. Interestingly, the models based on the ATN

modules (i.e., M02, M03, and M15) were highly accurate in both the

discovery (auROC= 0.990) and validation cohorts (auROC= 0.897) as

were the non-ATNmodules (i.e., M01,M05, andM09) (auROC= 0.983

and 0.927 in the discovery and validation cohorts, respectively). Fur-

thermore, when combining all six modules, the classification model

exhibited similarly high accuracy (auROC= 0.998 and 0.920 in the dis-

covery and validation cohorts, respectively; Figure 4D, E). Thus, our

results indicate that blood transcriptomic data can be used to clas-

sify AD with relatively high accuracy. Furthermore, the plasma ATN

biomarkers and blood gene modules exhibited similar accuracy of AD

classification. In the discovery cohort, the models based on the blood

gene modules (auROC = 0.98–1.00) classified AD more accurately

than those based on the plasma ATN biomarkers (auROC= 0.70–0.82;

Figure 4D, Table S21). We obtained similar results in the validation

cohort: themodels developedusing thebloodgenemodules performed

better (auROC = 0.90–0.92) than that based on plasma Aβ42/40 ratio

(auROC = 0.76) and comparably to that based on plasma NfL level

(auROC = 0.95; Figure 4E, Table S21; data for p-tau181 are not pre-

sented, because plasma p-tau181 was used as a selection criterion

for the validation cohort). Taken together, these results suggest that

blood transcriptome analysis can accurately distinguish patients with

AD fromNCs.

3.6 Stratification of participants based on blood
transcriptomic data

Given the progressive nature and complex multifactorial etiology of

AD, accurate staging is crucial for effective disease management.
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10 ZHONG ET AL.

F IGURE 4 Classification of AD status according to the ATN and non-ATN genemodules. (A) AD classification accuracy of individual gene
modules in the discovery and validation cohorts. The auROCs> 0.9 are highlighted in red. (B) The correlations betweenmodules with a
auROC> 0.9 in the two analyzed cohorts and the levels of the ATN biomarkers in all participants were examined. Modules correlated with any
ATN biomarker are underlined (Pearson correlation analysis; *p< 0.05, **p< 0.01, ***p< 0.001). (C) AD classification accuracy for selected
modules grouped according to their association with the ATN biomarkers. Data are themean± SEM auROCs obtained using eachmodule score
within the group (one-sample t-test). ROC curves showing the discriminatory accuracy of selectedmodules and the plasma ATN biomarkers in (D)
the discovery cohort and (E) validation cohort. AD, Alzheimer’s disease; ATN, amyloid/tau/neurodegeneration; auROC, area under the receiver
operating characteristic curve; NC, normal control

Despite recent studies suggesting the existence of multiple AD sub-

types, there is limited information about the molecular mechanisms

associated with these subtypes or stages. Of note, the AD-associated

blood gene modules identified herein involve distinct biological pro-

cesses that may be altered along with disease progression. Hence,

the dysregulation of these gene modules may represent individuals’

specific status through AD progression.

Accordingly, to determine if the identified gene modules from

blood cells can be used to stratify participants into subgroups, we

performed unsupervised clustering analysis using the module scores

from M01, M02, M03, M05, M09, and M15. Accordingly, the partici-

pants in the discovery cohort clustered into five subgroups, designated

C1–C5 (Figure 5A), with increasing proportions of patients with AD

indicating that the current stratification is associated with disease

progression (Figure S7). Therefore, we investigated whether individu-

als from different subgroups had different statuses by comparing the

AD endophenotypes among subgroups. Notably, there were signifi-

cant differences in plasma ATN biomarker levels (Figure 5B), cognitive

performance (Figure S8a), and the volumes of the amygdala (Figure

S8b) and hippocampus (Figure S8c) among subgroups (p < 0.05). Thus,

besides classifying AD risk, blood transcriptomic data can also stratify

individuals into subgroups corresponding to different disease stages or

states.

Of note, the module score used for stratification analysis was cal-

culated based on the expression levels of genes within each module,

which are associated with specific biological processes (Figure 3).

Therefore, alterations to these biological processes canbe represented

by changes in the associated module score. Accordingly, to inves-

tigate whether specific biological processes associated with the six

gene modules are altered among the identified subgroups, we com-

pared themodule scores fromthesemodules among subgroupsC1–C5.

Interestingly, our analysis revealed significant alterations in the gene

module scores among these subgroups. For instance, the module

scores of M01, whose genes are involved in cellular component orga-

nization, were significantly higher in C2–C5 than in C1 (p < 1 × 10−3;

Figure 5C, D). Meanwhile, the module scores of M15, whose genes are

involved in myeloid leukocyte activation, were significantly lower in

C2–C5 than in C1 (p < 1 × 10−3; Figure 5C, D). These results indicate
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ZHONG ET AL. 11

F IGURE 5 Stratification of participants based on the ATN and non-ATN genemodules (A) UMAP plots of participants stratified according to
phenotype group (left panel) and subgroups (right panel: C1–C5). Colors denote the indicated group phenotypes (AD andNC, left panel) or
indicated subgroups classified by k-means unsupervised clustering (right panel). (B) Comparison of plasma ATN biomarker levels among subgroups
(generalized linear regression; *p< 0.05, **p< 0.01, ***p< 0.001 vs. C1; #p< 0.05, ##p< 0.01, ###p< 0.001 vs. C2). Data aremean± SEM. (C)
Heatmap comparingmodule scores from six modules that closely associated with AD among subgroups (generalized liner regression; *p< 0.05,
***p< 0.001 vs. C1). (D) Radar plot showing the relative differences in averagemodule scores among C1, C3, and C5. Aβ, amyloid-beta; AD,
Alzheimer’s disease; ATN, amyloid/tau/neurodegeneration; NC, normal control; NfL, neurofilament light polypeptide; p-tau181, tau
phosphorylated at threonine 181; UMAP, uniformmanifold approximation and projection

that blood transcriptome analysis can further elucidate the molecu-

lar changes that occur during AD progression, providing insights into

possible pathophysiological mechanisms associated with the disease

pathogenesis and progression of AD.

3.7 Changes in blood cell subtypes are implicated
in AD

The transcriptomic changes described herein are likely due to molecu-

lar changes occurring within individual blood cell subtypes. Therefore,

we identified which gene modules are associated with the roles of

specific blood cell types (Figure S9a). Accordingly, to examine how

the molecular changes in individual blood cell subtypes are associ-

ated with AD or the identified gene modules, we conducted cell-type

deconvolution analysis using the blood transcriptomic data from the

discovery cohort. The enrichment scores estimated from the deconvo-

lution analysis represent the contribution of each blood cell subtype to

the transcriptomic data. We subsequently performed multiple regres-

sion analysis to determine the associations of the enrichment scores

with the module scores and AD phenotypes. Notably, the key ATN and

non-ATN gene modules were significantly associated with the expres-

sion profiles of various blood cell types (Figure 6A, Figure S9a, Table

S22). In particular, some associations were closely aligned with the

annotated biological functions of the individual gene modules. For

instance, M09 is involved in adaptive immune response and associ-

ated with plasma cells (p = 6.82 × 10−130; Figure 6A, Table S22),

whereas M15 is involved in myeloid leukocyte activation and asso-

ciated with neutrophils (p = 8.13 × 10−7; Figure 6A, Table S22). Of

note, among the analyzed cell types, neutrophils were most closely

associated with AD (p = 1.09 × 10−22; Figure 6B, Figure S9b, Table

S23). Therefore, the dysregulation of genes in M15 is likely linked

to molecular changes in neutrophils during AD pathogenesis and

progression.

To further examine the relationship between M15 and neutrophils,

we performed single-cell RNA-seq analysis of the blood cells from

three patients with AD and 2 NCs. We estimated the module scores

of M15 for individual cell types and then visualized the distribution of
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12 ZHONG ET AL.

F IGURE 6 Changes in blood cell subtypes are implicated in AD. (A) Heatmap showing the associations among the selected genemodules and
enrichment scores for individual cell types estimated by cell-type deconvolution analysis (NCs; one-tailed robust regression; *p< 0.05, **p< 0.01,
***p< 0.001). (B) Associations between disease phenotypes and enrichment scores for individual cell types from cell-type deconvolution analysis
(generalized liner regression; *p< 0.05, **p< 0.01, ***p< 0.001). (C) UMAP plot showing the scores of theM15module in the blood single-cell
dataset. (D)Module scores forM15 in distinct blood cell types classified according to the blood single-cell RNA sequencing data. (E) Heatmap
displaying cell-type enrichment scores among subgroups of participants (i.e., C1–C5) (generalized liner regression; *p< 0.05, **p< 0.01,
***p< 0.001 vs. C1). (F) Radar plot displaying the relative differences in cell-type enrichment scores among C1, C3, and C5. AD, Alzheimer’s
disease; NC, normal control; UMAP, uniformmanifold approximation and projection

M15 module scores across different cell types. The module score of

M15 was significantly higher for neutrophils than for other cell types

(Figure 6C, D), which is corroborated by the correlation betweenM15

module scores and neutrophil enrichment scores in our cell deconvo-

lution analysis (Figure 6A, Table S22). Thus, these results collectively

suggest that the dysregulation of M15 in AD is predominantly driven

by neutrophils.

To better understand changes in blood cell types during AD pro-

gression or in different disease stages, we compared the cell-type

enrichment scores across different subgroups classified according to

gene modules from the blood transcriptomic data. Accordingly, we

observed significant alterations in key blood cell subtypes among these

subgroups. For instance, the enrichment scores of M0 macrophages

and resting mast cells were significantly higher in C3–C5 than in C1

(p < 1 × 10−3; Figure 6E, F). Meanwhile, the enrichment scores of

neutrophils were significantly lower in C4 and C5 than in C1 (p < 1

× 10−2; Figure 6E, F). These results show that, besides diagnosis

and patient stratification, blood transcriptome profiling can reveal
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ZHONG ET AL. 13

molecular changes in specific blood cell types that play critical roles in

AD pathogenesis and progression.

4 DISCUSSION

Recent advancements in “omics” research have revolutionized the

prediction of AD risk and diagnosis.53–56 Notably, transcriptome anal-

ysis is now widely used to accurately quantify the levels of all genes

expressed in tissues of interest and is extensively applied in disease

studies. Therefore, blood transcriptome analysis is expected to com-

prehensively profile disease-associated molecular changes in blood

cells during AD pathogenesis and progression. Accordingly, as one of

the first comprehensive analyses of the AD blood transcriptome, we

assayed the blood transcriptome of individuals from well-defined AD

cohorts with available data on plasma ATN biomarkers, brain volu-

metric data, and cognitive function to identify molecular signatures

in blood cells that are associated with AD (i.e., dysregulated genes,

modules, and biological pathways). In particular, we identified specific

immune pathways and immune-associated blood cell types that are

altered in the blood of patients with AD. We verified some of these

alterations using single-cell transcriptomic data in independent partici-

pants. Of note, the genemodules identified from blood transcriptomes

also classified patients with AD with accuracy comparable to that

with the plasma ATN biomarkers. Furthermore, these gene modules

could also stratify participants into distinct subgroups corresponding

to different disease stages or states. Thus, our findings collectively

suggest that there are changes in the molecular phenotypes of blood

cells during the onset and development of AD, highlighting the poten-

tial utility of blood transcriptomic data for both mechanistic and

drug development studies in AD as well as patient classification and

stratification.

Importantly, our findings support the potential of using blood

transcriptome analysis to identify presymptomatic AD patients who

already showmolecular changes. Specifically, by using blood transcrip-

tome analysis, we can stratify AD patients and NC into five subgroups;

specifically, C1 consists entirely of undemented participants, and C2

primarily consists of undemented individuals (87 out of 94; see Figure

S7). Of note, compared to individuals in C1, individuals in C2 have a

lower plasma Aβ42/40 ratio but no obvious differences in cognitive

performance, or volume of the hippocampus or amygdala. This sug-

gests that, despite being classified as NCs according to other analyses,

individuals in C2 may already exhibit amyloid pathology (Figure 5 and

Figure S8). Therefore, analyzing the blood transcriptome could also aid

in the early detection of individuals at risk of developing AD before

symptomsmanifest.

Numerous studies demonstrate alterations in the blood transcrip-

tome of AD patients, although the overlap in the dysregulated genes

among different published studies is small.57–60 This discrepancy may

be attributable to the small sample sizes of those studies (Figure S10

and Table S24). Nonetheless, it is worth highlighting that approxi-

mately half of the dysregulated genes reported in those studies were

differentially regulated in AD patients in the present study. Thus, com-

prehensive AD-associated blood transcriptome profiling can be used

to detect biomarkers of AD and provide insights into the pathological

mechanisms of the disease.

Recent genetics and functional studies suggest the involvement

of immune-associated signaling pathways, including the peripheral

immune system,61,62 in the pathogenesis of AD.37,61,62,63 Concor-

dantly, our blood transcriptome and gene ontology analyses demon-

strate the potential involvement of immune-associated pathways

(i.e., innate and adaptive immune-associated pathways) and specific

immunecell types (i.e., B cells, neutrophils, and leukocytes) inAD.Given

that several studies suggest that neutrophils are involved in AD,64–69

we further examined the genes associated with myeloid leukocyte

activation from module M15, which is associated with neutrophils.

Accordingly, we identified that LYN, a member of the Src family of

nonreceptor protein tyrosine kinases, is involved in essential neu-

trophil functions such as phagocytosis, chemotaxis, and respiratory

burst response (Figure S11a). LYN is mainly expressed in blood cells

(Figure S11b), and our previous high-throughput proteomic analysis

highlights LYN as one of the most differentially regulated proteins in

AD,46 both its blood transcript and plasma protein levels are consis-

tently lower in patients with AD than inNCs. Our analysis of single-cell

blood data confirms the high expression of LYN in neutrophils (Figure

S11c). Moreover, the fraction of LYN-positive neutrophils was signifi-

cantly lower in individuals with high p-tau181 levels than in those with

low levels (Figure S11d). Meanwhile, although LYN plasma protein and

blood transcript levels were lower in patients with AD, they were only

correlated in NCs and not in patients with AD (Figures S11e–g). These

observations again highlight the involvement of the peripheral immune

system, including neutrophil functioning, in AD pathogenesis and pro-

gression. Notably, there is a recent report on the success of a phase

three clinical trial of masitinib, a tyrosine kinase inhibitor that blocks

LYN activity.70,71 This corroborates the feasibility of targeting LYN or

its associated pathways as an intervention strategy for AD.72–74

In summary, our comprehensive analysis of the blood transcriptome

in patientswith AD reveals keymolecular phenotypes, including genes,

modules, pathways, and subtypes of blood cells, that may be closely

associated with AD pathogenesis and progression. Our findings also

suggest the potential utility of blood transcriptome analysis for disease

classificationand stratification.Given theeaseof blood sampling, blood

transcriptome analysis could provide insights into human diseases,

aiding the development of technologies for disease diagnosis, moni-

toring, and patient stratification. This could ultimately facilitate both

early intervention and precision medicine for AD and other human

diseases.75
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