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Abstract 

i-Motifs (iMs), are secondary str uct ures formed in cytosine-rich DNA sequences and are in v olv ed in multiple functions in the genome. Although 
putativ e iM f orming sequences are widely distributed in the human genome, the folding status and strength of putative iMs vary dramati- 
cally. Muc h previous researc h on iM has focused on assessing the iM folding properties using bioph y sical e xperiments. Ho w e v er, there are no 
dedicated computational tools for predicting the folding status and strength of iM structures. Here, we introduce a machine learning pipeline, 
iM-Seeker, to predict both folding status and structural st abilit y of DNA iMs. The programme iM-Seeker incorporates a Balanced Random Forest 
classifier trained on genome-wide iMab antibody-based CUT&Tag sequencing data to predict the folding status and an Extreme Gradient Boost- 
ing regressor to estimate the folding strength according to both literature biophysical data and our in-house biophysical experiments. iM-Seeker 
predicts DNA iM f olding status with a classification accuracy of 81% and estimates the f olding strength with coefficient of determination ( R 

2 ) 
of 0.642 on the test set. Model interpretation confirms that the nucleotide composition of the C-rich sequence significantly affects iM st abilit y, 
with a positive correlation with sequences containing cytosine and thymine and a negative correlation with guanine and adenine. 
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ntroduction 

ucleotides are the basic units that form DNA and RNA, two
ey molecules in the central dogma. DNA encodes genetic in-
ormation, which is transcribed to mRNA and then translated
o protein. In addition to this transfer of information, DNA
nd RNA can form complex structures, which can play crucial
unctional roles in organisms. Besides the canonical Watson-
rick double-helical B-form structure, DNA can form non-

anonical secondary structures such as G-quadruplexes (G4s)
nd i-Motifs (iMs). G4s are four-stranded structures formed
rom G-rich sequences and are stabilised by Hoogsteen hydro-
en bonding between guanines ( 1 ). iMs are also four-stranded
tructures, but formed from cytosine C-rich regions that are
tabilised by hemi-protonated C-C base pairs (C 

+ :C) ( 2 ,3 ).
omplementary G-rich and C-rich sequences can form G4s
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and iMs interdependently during distinct cellular processes
( 4 ). As a non-canonical structure, iMs are indicated to play an
important role in the genome. There are an increasing num-
ber of in vitro and in celluo studies that report evidence that
iMs could fold in promotor region of certain genes, telomeres
and untranslated regions. They have also been implicated as
a regulatory element associated with the cell cycle, transcrip-
tion, chromatin remodelling, as well as transposable element
dynamics ( 5–7 ). 

Commonly, computational analysis of putative iMs is lim-
ited to indirect identification by searching for potential com-
plementary G4 sequences in the genome ( 8 ). Plenty of G4 pre-
diction tools have been developed previously, and these can
generally be divided into two categories based on whether
or not the models utilised experimentally derived G4-specific
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data. Classical computational tools which do not use G4-
specific data, are typically constructed from string-matching
models based on a specific sequence pattern. Others use a de-
signed scoring system according to pre-defined rules. For ex-
ample, platforms like Quadparser ( 9 ), Quadruplexes ( 10 ), Al-
lQuads ( 11 ) and QuadBase2 ( 12 ) used algorithms like regu-
lar expression to search G4 forming sequences, whilst QGRS
Mapper ( 13 ), G4P ( 14 ), and G4Hunter ( 15 ), use scoring mod-
els that can estimate the probability or strength of putative
G4s ( 16 ). These models have potential to be used in iM-
forming sequences searching, because the putative iMs have in
principle similar sequence patterns and some of the rules will
be transferrable to both structures. For example, enrichment
of G / C in a C / G-rich sequence disfavours both G4 and iMs. In
contrast, there are also platforms guided by G4-specific data
(e.g. biophysical properties, G4 Chip-seq, G4 CUT&Tag, and
G4-seq) that can capture additional G4-specific features to im-
prove the G4 prediction performance ( 17 ). Software like PQS-
finder ( 18 ), G4boost ( 19 ), Quadron ( 20 ), DeepG4 ( 21 ), and
G4-folding energy estimation module integrated in RNAFold
( 22 ) use data from G4-specific experiments to increase the ac-
curacy of predictions with multiple modeling strategies (e.g.
G4Boost and Quadron used ensemble learning and DeepG4
applied deep convolutional neural network( 19–21 )). There-
fore, the application of these models on iM identification is
limited. Out of the existing searching platforms, G4Hunter
is the easiest to use for searching for iMs as it was designed
to take into account C with negative values both to dis-
favour regions rich in alternative G / C and to score both strand
of a DNA duplex simultaneously. C-richness and C-skew is
obviously important for iM formation ( 15 ). G4-iM Grinder
can also be used to predict and evaluate G4 and iM form-
ing sequences ( 23 ). G4-iM Grinder was originally designed
for identifying G-quadruplexes. Its standout feature is the re-
markable flexibility it offers in defining G-quadruplex struc-
tures, coupled with the integration of various scoring sys-
tems, such as G4Hunter ( 15 ), PQSfinder ( 18 ) and cGcC ( 24 ).
However, the G4-iM Grinder scoring system was designed for
G-quadruplexes, not i-motif. Based on the distinguished bio-
physical properties between G-quadruplexes and i-motifs, it
is important to have a specific i-motif searching software that
cooperates with experimental data. Typically, individual C-
rich sequences are biophysically assed for their capability to
form iMs. UV spectroscopy is typically used to determine the
thermodynamic properties such as melting ( T M 

) and anneal-
ing ( T A 

) temperatures ( 25 ). Furthermore, thermal difference
spectra (TDS) are typically generated, using the difference in
absorbance spectra between folded and unfolded DNA, de-
termining a signature to identify the formed secondary DNA
structure ( 26 ). UV spectroscopy is often accompanied with cir-
cular dichroism (CD) spectroscopy to confirm the formation
of i-motif structure. The transitional pH (pH T ) is an impor-
tant measure of the stability of iM structures, determined by
assessing the formation of iM across a pH-range ( 8 ,27–29 ). 

A systematic prediction tool to identify DNA iM fold-
ing status and their potential stability is lacking. Recently,
the landscape of iM forming sequences in the whole human
genome was determined via the novel CUT&Tag sequencing
using anti-iM iMab antibodies on living human cells ( 7 ). Here
we introduce, iM-Seeker, a novel computational pipeline us-
ing the genome-wide iM profile ( 7 ), iM-stability data from
the literature, and our in-house biophysical analysis to pre-
dict iM structure formation and stability. iM-Seeker utilised a
newly-designed graph-based algorithm to search for putative 
iM forming sequences within an entered DNA sequence. The 
Balanced Random Forest script is trained on the iMs identified 

in the human genome derived from iMab-based CUT&Tag se- 
quencing data ( 7 ) and was further developed to predict iM 

structure folding status within DNA sequences. iM-Seeker 
also incorporates the Extreme Gradient Boosting (XGBoost) 
regressor to predict the structure stability, by cross referenc- 
ing iM forming DNA sequences to their corresponding pH T 

values. Furthermore, this computational model has shed new 

insight into the importance of nucleotide composition in iM 

stability. A positive correlation was observed for sequences 
containing cytosine and thymine whilst sequences rich in gua- 
nine and adenine were found to have a negative correlation 

with iM stability. Alongside nucleotide composition, long C- 
tract lengths accompanied with short loop lengths contribute 
towards high stability of iM structure. 

Materials and methods 

Data collection 

We collected the published CUT&Tag sequencing data in 

the human genome ( 7 ). The data was downloaded from the 
NCBI GEO database (accession number GSE220882). The 
BigWig format data included iM forming sequences from 

both 93T449 (WDLPS) cell line and human embryonic kid- 
ney (HEK293T) cell line with three biological replicates for 
each cell line. The focus was concentrated on HEK293T cell 
data which was presented with more high-confident iM re- 
gions than WDLPS cells ( 7 ). The downloaded BigWig files 
were converted to bedGraph files and iM-peak region were 
cumulated with SEACR v1.3 set to ‘0.01 non stringent’ pa- 
rameters ( 7 ,30 ). The intersected iM-peak regions among three 
biological replicates were defined as the final high-confident 
iM-peak regions. Literature-derived data of i-motif forming 
sequences and their corresponding pH T values were collected 

( Supplementary Table S1 ). 

Graph-based putative i-motif searching 

Putative i-motifs can be identified based on their sequence 
pattern (C ≥3 N 1–12 ) 3 C ≥3 where C represents cytosine and N 

represent any nucleotide ( 31 ,32 ). The classic approach to 

identify potential putative iM-forming sequences is to search 

complementary sequences of G4-forming sequences based 

on sequence pattern matching. This assumption and current 
approaches limit the identification of iMs with their different 
variations in C 

+ :C formations and topologies compared 

to G4s ( 31 ,32 ). For example, many iM sequences are not 
actually simple ones with only 4 sets of C-tracts. If there 
are 5 or more sets of C-tracts with different lengths, then 

it is a question of which 4 of them form the core C 

+ :C 

base pairs within the i-motif structure. For example, the 
sequence that matches the greedy regular expression rule 
(C ≥3 N 1–12 ) 3 C ≥3 , ‘CCC ACCC ACCC ACCC ACCC’, contains 5 

sets of C-tracts, then there are 3 possible i-motifs (numbering 
the C-tracts according to 1–5, the three possibilities are 
1235; 1345; 1245). The options are further complicated 

if the length of the C-tract is different. For example, the 
sequence matches the non-greedy regular expression rule 
(C ≥3 N 1–12 ) 3 C ≥3 , ‘CCCC ACCC ACCCCC ACCC’, which con- 
tains four sets of c-tracts but with different lengths of C.
Thus, this simple sequence contains six potential i-motifs,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
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CCC-C A-CCC-A-CCC-CC A-CCC, CCC-C A-CCC-AC-
CC-C A-CCC, CCC-C A-CCC-ACC-CCC-A-CCC, CCC-A-
CC-A-CCC-CC A-CCC, CCC-A-CCC-AC-CCC-C A-CCC,
nd CCC-A-CCC-ACC-CCC-A-CCC). To overcome this
imitation, we designed a general pattern for iM formation
earching using directed graph traversal process. For one
equence, the C-tracts can be regarded as nodes, and the
oops can be defined as edges. All possible C-tracts (C-tract
ength ≥ 3) are identified as nodes in the first phase, and if the
istance between two nodes (loop length) is between one and
welve nucleotides, a directed edge is added between the two
odes. After constructing the directed graph, all possible iM
ormations and conformations are identified via the traversal
f the directed graph from every node. All possible putative
Ms are represented with the sub-population containing the
rst four nodes and three edges of the traversing paths with
t least four nodes. To choose the representative iM struc-
ures from all possible iM structures, four strategies were
ntroduced (greedy non-overlapping, greedy overlapping,
on-greedy non-overlapping, and non-greedy overlapping)
aintaining the nomenclature derived from QuadBase2 ( 12 ).
verlapping strategy selects an iM representative structure

or each iM starting coordinate while the non-overlapping
unction has no coinciding iM representatives. The greedy
trategy maximises the loop length of iM representatives with
ongest C-tract. For non-greedy strategies, the iM with the
ost extended C-tract length and the shortest loop length

an be selected. One representative iM forming sequence may
ave many different iM conformations although they share
he same sequence content. Two representative iM forma-
ions are chosen according to their stability: (A) the structure
ith minimum standard deviation of loop lengths; (B) the

tructure with minimum length of the two side loops (iMs
ave three loops, separated by four C-tracts, and we refer to
he loops on both sides as ‘side loops’). The users can also set
he configuration to get all putative iM conformations. We
alled the initial computational pipeline Putative-iM-Searcher
Figure 1 A). 

ataset construction and feature selection for 
achine learning 

e employed Putative-iM-Searcher in high-confident iM-peak
egions and interval regions in both Watson and Crick strands
n the human reference genome (GRCh38). Putative iMs
n high confident iM-peak regions were defined as folded
Ms, and unfolded C-rich sequences in interval regions. We
sed a non-overlapping strategy to avoid bias in the per-
ormance estimation of the classification model. Four clas-
ification datasets were constructed: (Classification dataset
) non-overlapping, greedy and conformation A; (Classifi-
ation dataset 2) non-overlapping, greedy and conformation
; (Classification dataset 3) non-overlapping, non-greedy and
onformation A; (Classification dataset 4) non-overlapping,
on-greedy and conformation B. 
We selected underpinning data with reliable pH T from

iterature-derived data. We also generated in-house biophysi-
al experimental data, with systematic changes in sequences,
or developing regression models. The Putative-iM-Searcher
as applied to filter dataset of iM forming sequences with

heir corresponding pH T values. The known, characterised
Ms, their respective sequence pattern and corresponding pH T 

ere used for regression model construction. We filtered iM
items with the same putative iM forming sequence but differ-
ent pH T and combined iM items with the same putative iM
forming sequence and pH T to avoid bias. Both our classifica-
tion model (for iM folding status prediction) and regression
model (for iM folding strength estimation) used thirty-three
different features: C-tract length, iM length, loop length, mid-
dle loop length, longest side loop length, shortest side loop
length, sum of two side loops, longest loop length, shortest
loop length, A density in iMs, C density in iMs, G density in
iMs, T density in iMs, A density in loops, C density in loops, G
density in loops, T density in loops, A density in middle loop,
C density in middle loop, G density in middle loop, T density
in middle loop, A density in longest side loop, C density in
longest side loop, G density in longest side loop, T density in
longest side loop, A density in shortest side loop, C density in
shortest side loop, G density in shortest side loop, T density
in shortest side loop, A density in two side loops, C density in
two side loops, G density in two side loops, T density in two
side loops. For the regression system, the iM folding strength
is defined as the pH T after standardization and min-max
scaling. 

The imbalanced ensemble learning to predict 
folded and unfolded i-motifs 

A five-fold cross-validation assessment was applied to evalu-
ate the classification performance of the iMs for four datasets
via nine widely-used classifiers including Decision Tree ( 33 ),
Random Forest ( 34 ), Balanced Random Forest ( 35 ), Naive
Bayes ( 36 ), Linear Discriminant Analysis ( 37 ), Easy Ensem-
ble ( 38 ), Balanced Bagging ( 39 ,40 ), Random Undersampling
Boosting (RUSBoost) ( 41 ) and Extreme Gradient Boosting
(XGBoost) algorithms ( 42 ). The brief description of these
models can be found in Supplementary Table S2 . The combi-
nation of dataset and model which achieve best performance
via area under the receiver operating characteristic curve (AU-
ROC) and balanced accuracy, was used for classification. In
the whole dataset, 90% of data was randomly selected and
separated into a training & validation set, and the remaining
10% of data was used as the test set. Five-fold cross-validation
and grid searching on training & validation set were employed
to search for the best hyperparameters and test set was used to
evaluate the model’s classification performance on accuracy,
recall, specificity, and AUROC. 

The regression algorithm to measure the strength 

of i-motif using ensemble learning 

Consistent iM searching and conformation identification
strategy with classification dataset was applied in the re-
gression model. A five-fold cross validation assessment was
applied to evaluate the regression performance of the iMs
based on thirteen widely-used regressors including Decision
Tree ( 33 ), Random Forest ( 34 ), Linear Regression ( 43 ), Ridge
Regression ( 44 ), Lasso Regression ( 45 ), Elastic Net Lin-
ear Regression ( 46 ), Linear Support Vector Regression ( 47 ),
Radial Basis Function Support Vector Regression ( 48 ), K-
Nearest Neighbors Regression (KNN) ( 49 ), Adaptive Boost-
ing (AdaBoost) ( 50 ), Gradient Boosting ( 51 ), Extreme Gradi-
ent Boosting (XGBoost) ( 42 ) and Random Sample Consen-
sus (RANSAC) algorithms ( 52 ). The brief description of these
models can be found in Supplementary Table S2 . In the whole
dataset, 80% of data was separated into training & valida-
tion set randomly for hyperparameters adjustment by five-fold

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
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Figure 1. The outline of the whole iM-Seeker. ( A ) The framework of Putative-iM-Searcher. Putative-iM-Searcher can detect all i-motif conformation and 
representativ e conf ormation based on o v erlapping & non-o v erlapping strategy , greedy & non-greedy strategy , and representativ e-conf ormation strategy. 
( B ) The framework of iM-Seeker. iM-Seeker employs Putative-iM-Searcher to find putative i-motif forming sequences on human genome with 
corresponding published CUT&Tag sequencing data for determining folded and unfolded iM forming sequences and iM-containing sequence with 
corresponding pH T , respectively. For both folding status and strength prediction tasks, the whole dataset was randomly divided into a training & 

validation set (90% data for folding status prediction task and 80% data for folding strength prediction task, respectively) and a test set (10% data for 
folding status prediction task and 20% data for folding strength prediction task, respectively). Five-fold cross-validation and grid searching on training & 

validation set are employed to search for the best hyperparameters and test set is used to evaluate the model’s performance. The Balanced Random 

Forest classification model and XGBoost regression model are trained to predict the folding status and folding strength, respectively. ( C ) The processing 
flow of query data using iM-Seeker. Created with BioRender.com. 
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ross-validation and grid searching, and 20% of data was used
o evaluate the regression performance of the model by coeffi-
ient of determination (R 

2 ), root mean squared error (RMSE),
nd mean absolute error (MAE) ( 19 ). The feature importance
f the regression model was extracted from the model with
importance_type = gain’. 

mplementation 

he algorithm was written in Python 3, and machine learn-
ng was employed via the Python Scikit-learn package ( 53 ),
mbalanced-learn package ( 54 ), and XGBoost package ( 42 ).
he programs and documentation of Putative-iM-Searcher
nd iM-Seeker are available at Figshare via DOI https://doi.
rg/ 10.6084/ m9.figshare.24587160.v1 . 

iophysical characterisation of C-rich DNA 

equences 

he test oligonucleotides were synthesised and reverse phase
PLC purified by Eurogentec (Belgium) and were resus-

ended in ultra-pure water. The DNA final concentration was
onfirmed via Nanodrop. Samples were prepared as 10 μM
NA in 10 mM sodium cacodylate (NaCaco) and 100 mM
Cl buffer with the range of pH 4–8. The DNA samples were
nnealed prior to biophysical characterisation by denaturing
he DNA for 5 mins at 95 

◦C and allowing to reanneal by
lowly cooling down to room temperature, overnight. 

The CD spectra of the annealed C-rich sequences were
ecorded on a JASCO 1,500 spectropolarimeter (JASCO UK
td.) under a constant flow of nitrogen. An accumulation
f four CD spectra scans was acquired from 200–320 nm
t 20 

◦C with a data pitch of 0.5 nm, scanning speed of
00 nm / min with 1 second response time, 1 nm bandwidth,
nd 200 mdeg sensitivity. The measured DNA samples and
uffer at corresponding pH were subtracted before zero cor-
ection at 320 nm. The transitional pH (pH T ) was deter-
ined by plotting the measured ellipticity at 288 nm and pH

ange and the resulting inflection point of the Boltzmann sig-
oidal or bi-phase sigmoidal fit using Graphpad Prism (Ver-

ion 10.1.0.316). 
The CD samples at pH 5.5 were diluted in the same buffer

o 2.5 μM final DNA concentration. These samples were used
o perform UV spectroscopy (V-750ST UV / VIS Spectropho-
ometer, JASCO UK Ltd.) to obtain the thermal difference
pectra (TDS) and determine the melting temperature ( T M 

),
nnealing temperature ( T A 

) and their respective hysteresis
T H 

). For melting / annealing experiments, the absorbance at
95 nm was measured at every 1 

◦C increase / decrease in three
ycles of denaturation and reannealing. The cycle begins with
0 mins at 4 

◦C followed by gradual increase of 0.5 

◦C / min
o 95 

◦C (melting). Once the final temperature was reached,
he samples were kept at 95 

◦C for 10 mins before reversing
he process (annealing). The melting and annealing temper-
tures were determined via the first derivative method of for
ach measured cycle as previously described ( 55 ). The samples
ere kept at 4 

◦C after the completion of the final reannealing
ycle. For the thermal difference spectra (TDS), these samples
ere used to obtain the absorbance spectrum (230–320 nm).
he samples were kept at 4 

◦C for an additional 10 mins be-
ore measuring the absorbance spectrum of potentially folded
Ms. This was followed by a second absorbance spectrum after
0 mins at 95 

◦C for the unstructured DNA structure. Individ-
al TDS signatures were determined by subtracting both ab-
orbance spectra (unfolded-folded DNA structure), zero cor-
recting at 320 nm, and finally normalisation to the maximum
absorbance to 1 as previously described ( 26 ). 

Results 

Description of the iM-Seeker framework 

iM-Seeker is a computational framework using machine learn-
ing to predict the folding status and folding strength of iMs.
The outline of the whole iM-Seeker structure is shown in Fig-
ure 1 . The Putative-iM-Searcher was developed to discover
the putative iM forming sequences (Figure 1 A). Putative-
iM-Searcher constructs a directed graph model and obtains
representative conformation from all DNA structure con-
formations based on the configuration of overlapping &
non-overlapping strategy, greedy & non-greedy strategy, and
representative-conformation-selection strategy. The Balanced
Random Forest classification model and XGBoost regres-
sion model were trained on iMab-based genome-wide iM
landscape and biophysical experimental justified iM with
pH T , respectively, for the folding status prediction and fold-
ing strength estimation (Figure 1 B). The workflow of iM-
Seeker after receiving the query sequences is shown in Fig-
ure 1 C. Putative-iM-Searcher was applied to query sequences
to find putative iM forming sequences in the first stage.
For each putative iM individual, the Balanced Random For-
est classification model will be used to predict the folding
status. Next, an estimated folding strength score was cal-
culated by the XGBoost regression model for putative iM
individuals. 

iM-Seeker predicts iM structure folding status 

Recently published CUT&Tag sequencing data was used
to determine empirically the difference between folded iMs
and unfolded C-rich sequences ( 7 ). This data incorporated
among three biological replicates, giving an excellent base for
determining iM-formation. Putative iM-forming sequences
in the intersected high-confident iM-peak regions from the
CUT&Tag sequencing data were defined as folded iMs,
while other C-rich sequences in interval regions that did
not give iM-peaks were defined as unfolded C-rich se-
quences. We separated classifications into greedy / non-greedy
and non-overlapping classification datasets. Greedy and non-
overlapping classification datasets included 8,837 folded iMs
and 733,115 unfolded C-rich sequences while 9,641 folded
iMs and 755,747 unfolded C-rich sequences were in non-
greedy and non-overlapped two datasets. 

Thirty-three features from labelled folded iM and unfolded
C-rich sequences were derived. A five-fold cross-validation as-
sessment was applied on nine classifiers on four classification
datasets to select the best dataset and model. Considering the
mean AUROC score and mean balanced accuracy of five folds,
Balanced Random Forest performed best in all four datasets
because the balanced learning strategy can better fit our imbal-
anced datasets. Thus, Balanced Random Forest was selected as
the final classifier. Greedy and non-overlapping datasets out-
performed the non-greedy and non-overlapping datasets in
terms of the mean AUROC score and mean balanced accu-
racy. Although there is no significant difference between con-
formation A and B for greedy and non-overlapping datasets,
both AUROC and balanced accuracy of conformation A were
found to be higher than B (Figure 2 A). Thus, the greedy, non-
overlapping and conformation A strategy was selected for the

https://doi.org/10.6084/m9.figshare.24587160.v1
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Figure 2. Model selection and performance estimation of classification model. ( A ) The comparison among nine models (Decision Tree, Random Forest, 
Balanced Random Forest, Naive Bayes, Linear Discriminant Analysis, Easy Ensemble, Balanced Bagging, RUSBoost, and XGBoost) on four classification 
datasets. AUROC and balanced accuracy show that Balanced Random Forest on greedy & non-overlapping & conformation A dataset has the best 
performance. ( B ) The performance of Balanced Random Forest classifier on the test set. Accuracy, recall, specificity, and AUROC can reach 81%, 77%, 
81% and 87% respectively. ( C ) The ROC curves for classification performance. The Receiver Operating Characteristic (ROC) for the five-fold cross 
validation is shown. Each fold coloured separately with the AUC score and the mean ROC curve are coloured blue, and the random probability is shown 
as black dash lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Model comparison of thirteen regressors on iM folding strength 
estimation 

Index R 

2 mean 

Root mean 
squared error 

mean 
Mean absolute 

error mean 

Linear regression –0 .158 0.195 0.139 
Ridge regression –0 .012 0.182 0.132 
Lasso regression –0 .027 0.185 0.146 
Elastic net linear 
regression 

–0 .027 0.185 0.146 

Decision tree –0 .002 0.181 0.134 
Random forest 0 .434 0.138 0.105 
Support vector 
regression 

–0 .043 0.185 0.130 

Radial basis 
function support 
vector regression 

0 .187 0.165 0.120 

KNN 0 .111 0.173 0.128 
AdaBoosting 0 .355 0.147 0.113 
Gradient boosting 0 .379 0.144 0.110 
RANSAC –2 .184 0.315 0.222 
XGBoost 0 .458 0.134 0.103 
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The whole dataset was divided into the training & val-
idation set (90%) and test set (10%) because the whole
dataset contains ∼740,000 data items, test set with ∼74,000
(10%) data items is enough to test the model performance.
The Balanced Random Forest model was optimised by cross-
validation and grid search on the training & validation set.
We evaluated the model performance on the test set with
81% accuracy, 77% recall, 81% specificity and 87% AUROC
score, which show the model can achieve good performance in
both folded iMs and unfolded C-rich sequences (Figure 2 B).
Besides, we assessed the model’s generalisation performance
through five-fold cross-validation deployed across the entire
dataset on AUROC (Figure 2 C). The AUROC scores on all
5-fold are all higher than 0.8, which shows the excellent gen-
eralisation performance. 

iM-Seeker measures the iM structure stability 

The literature-derived data ( Supplementary Table S1 ) and
the experimental biophysical data ( Supplementary Table S3 )
were combined to a collection of 206 C-rich DNA sequences
with their corresponding pH T values. The comparison of
CD spectroscopy, UV spectroscopy, and TDS between rep-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
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Figure 3. The performance evaluation of the XGBoost regressor on the 
test set ( n = 24). The Pearson correlation coefficient (PCC, 0.852, 
P < 1.25 ×10 −7 ) and R 

2 (0.642) show a positive correlation between 
measured and predicted iM folding strength. 
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esentative iM forming sequence and representative non-iM
orming sequence shows the reliability of our experiments
 Supplementary Figure S1 ). However, one study contained
96 different sequences which contained only C and T. To
void bias, these DNA sequences were excluded to avoid mis-
nterpretation and skewing the importance of different nu-
leotides in the loops. 171 data items were selected as high-
onfident iM-containing items from 206 items based on cri-
eria including TDS ( Supplementary Data Set S1 ). After fil-
ering data items with the same putative iM but different
H T and combining iM items with the same putative iM and
qual pH T from high-confident data items, 120 putative iMs
ere extracted from the remaining sequence segments using

he consistent Putative-iM-Searcher strategies (greedy, non-
verlapping, and conformation A) with classification session
ollowed by feature selection ( Supplementary Data Set S2 ).
he 120 pH T values standardized and rescaled to range from
 to 1 via min-max scaling to define iM folding stability. 
A five-fold cross-validation assessment was applied to thir-

een regressors on regression datasets to find the model. Con-
idering the mean of three indicators (R 

2 , RMSE, and MAE)
n five-folds, XGBoost was selected as the final model be-
ause of the best performance (Table 1 ). The whole dataset
as divided into training & validation set with 80% data

nd test set containing the remaining data. After optimiza-
ion using cross-validation and grid search on training &
alidation set, the final XGBoost model was applied to the
est set to assess the performance. R 

2 , RMSE, and MAE can
each 0.642, 0.104 and 0.08, respectively, which shows the
odel can achieve good performance in estimating the fold-

ng strength (Figure 3 ). The Pearson Correlation Coefficient
PCC) also reveals a strong correlation between measured and
redicted folding strength ( P < 1.25 ×10 

−7 ). 

odel interpretation provides insights into 

mportant features for iM stability 

e investigated the relative importance of the iM features
xtracted from the regression model. Features with high im-
ortance contribute more to the construction of the model
and may play a more crucial role in iM formation than fea-
tures with low importance. We divided the features into two
groups based on the Pearson correlation coefficient (PCC):
features with positive PCC were assumed to strengthen iM
formation ( Supplementary Table S4 ). In contrast, negative-
correlated features were supposed to have a negative effect
( Supplementary Table S5 ). In each group, the top 10 critical
features are shown in Figure 4 . Nucleotide composition af-
fects the stability of iM structures. Stable iMs prefer to contain
more C and T, especially T in side loops (Figure 4 A). High G
density and A density are associated with unstable iMs, es-
pecially these two nucleotides in side loops (Figure 4 B). In
addition, the C-tract length and loop length are two domi-
nant features in all length-relative features. Long C-tract and
short loop length can help with iM stability. Previous stud-
ies showed that in the same experimental condition, iMs with
long C-tracts tend to be more stable than iMs with short C-
tracts ( 56 ,57 ). 

Discussion 

Unlike the computational prediction of G4 structures, iMs
are more complex in terms of what makes them stable
( 8 , 29 , 31 , 58–61 ) and it has been difficult to make predictions
about iMs in the same way as G4s. Although, putative iMs
have a similar sequence pattern to G4s, the stability of the
structures has been more difficult to predict, as it has been
shown that iMs can tolerate changes in sequence more than
G4s ( 31 ), but are overall less stable in general. Therefore,
iM-specific experimental data is critical to construct accurate
computational models for iM prediction and stability. To the
best of our knowledge, there are no iM-specific computational
tools. Due to the similarity in sequence patterns between G4
and iM, some previous software developed for G4 can be used
on putative iM searching and can calculate a numeric value to
estimate iM ( 8 , 15 , 23 ) but there was no iM-specific experimen-
tal results which were fed into models to help with model de-
sign and training. In this paper, we developed both a putative
iM-forming sequence searching tool, Putative-iM-Searcher,
and a machine learning approach to prediction of DNA iM
folding status and folding strength, iM-Seeker. We considered
that the identification of putative iM forming sequences, their
folding status and folding strength were three significant parts
of iM investigation that could benefit from computational pre-
dictions. Putative-iM-Searcher can construct directed graphs
based on different configurations, can search all putative iM
formations and conformations by graph traversal from input
DNA sequences. Users can choose to set parameters including
C-tract length, the first loop length, the second loop length,
and the third loop length. The representative conformations
can be obtained based on overlapping & non-overlapping
strategy, greedy & non-greedy strategy, and representative-
conformation strategy. Users can choose to obtain all putative
iM formations and conformations as well. Based on the de-
tected putative iMs by Putative-iM-Searcher, we used genome-
wide CUT&Tag sequencing data and experimental data with
pH T from previous studies and our experiments to develop
iM-Seeker. Diverse machine learning methods including both
traditional machine learning and advanced deep learning have
achieved excellent performance in Biology including molecu-
lar structure prediction and synthesis (e.g. protein and RNA
structure prediction and design), molecular function and in-
teraction investigation (e.g. RNA-protein binding prediction
and therapeutic target gene discovery), and so forth ( 62–67 ).

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae092#supplementary-data


8 Nucleic Acids Research , 2024 

Figure 4. The iM feature importance obtained from the regression model. ( A ) Top 10 important features with positive Pearson correlation coefficient 
(PCC) with folding st abilit y. ( B ) Top 10 important features with negative Pearson correlation coefficient (PCC) with folding st abilit y. 
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The wonderful example is the advent of the revolutionary
deep learning tools to protein structure like AlphaFold ( 63 )
and RoseTTAFold ( 62 ). This is the first time a machine learn-
ing approach has been applied to classification of this specific
DNA structure motif and will significantly improve the ac-
curacy of in silco iM prediction. The iMab antibody-based
CUT&Tag sequencing data presents the folding status of C-
rich sequences and iM-Seeker captures the difference between
features in both folded iMs and unfolded C-rich sequences
and allows for classification. Another regression model was
trained on iM sequences derived from biophysical data, corre-
sponding sequence with pH T to measure the folding strength.

We chose thirty-three features from iM samples for model
construction. Considerable proportion of G4 prediction stud-
ies adopted the similar strategy to extract features from G4
sequence (some models also used flanking sequences) fol-
lowed by constructing model via traditional machine learning
( 19 ,20 ). An example is Quadron, which is a gradient boost
machine model built on 119 features from G4s and their flank-
ing sequences ( 20 ). Although deep learning has shown the
power on more complex biological systems to solve hard puz-
zles, traditional machine learning is still efficient and sensitive
for plenty of questions because of their good interpretabil-
ity and fitness for relatively small dataset ( 67 ). iM-Seeker has
good performance on both classification and regression tasks
modelling on these features via ensemble learning. Generally,
the selection of model is determined by the data structure and
fitness between model and data. In our dataset, the number
of folded iMs (8,837 iMs) is much less than unfolded motifs
(733,115 iMs), which can mislead the classifier to overfit the
unfolded dataset and classify folded iMs into unfolded cate-
gory incorrectly. Thus, Balanced Random Forest outperforms 
other candidate models, because this decision-tree-based en- 
semble learning model employs an under-sampling strategy to 

avoid overfitting of unfolded samples. Therefore, both folded 

samples and unfolded samples have good performance (recall 
77%; specificity 81%). XGBoost, another ensemble learning 
approach which was also used in the G4 classification mis- 
sion ( 19 ), is selected for the estimation of folding strength 

among thirteen regressors. Although the number of data items 
for the regression model is limited, the regression part of iM- 
Seeker can also provide a reliable reference to evaluate the iM 

strength ( R 

2 0.642; RMSE 0.104; MAE 0.08). Previous stud- 
ies investigated the iM formation features which can influence 
the iM strength by biophysical characterisation. The length of 
C-tracts, short loop length and high density of C and T can 

enhance the formation of iMs because other strong structures 
can be formed with G and A, which can result in the competi- 
tion between iM and other structure motifs ( 5 , 8 , 56 , 57 , 68 , 69 ).
Important features extracted from the regression model re- 
vealed a consistent result with previous research, which also 

justifies the reliability of our model. However, the stabilising 
effect of additional thymines is now quite well documented 

and consistent with the results observed here ( 31 ,70 ). Also 

the competition between guanines and cytosines were previ- 
ously used in G4Hunter ( 15 ) as a scoring factor as having the 
complementary base within the sequences can skew structure 
formation towards hairpin ( 31 ). 

iM-Seeker offers users the opportunity for a dedicated iM- 
searching tool, which is based on machine learning from exist- 
ing datasets. The approach could be applied to other DNA and 

RNA structures where there is a wide range of data available,
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or example to further increase the accuracy of prediction of
ormation of G4 structures. 

ata availability 

he programs and documentation of Putative-iM-Searcher
nd iM-Seeker are available at Figshare via https:// doi.org/ 10.
084/m9.figshare.24587160.v1 . 

upplementary data 

upplementary Data are available at NAR Online. 
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