1 Hominins likely occupied northern Europe before one million years ago

2	
3	Alastair Key ^{*1} and Nick Ashton ²
4	
5	*Corresponding author
6	ak2389@cam.ac.uk
7	
8	1 Department of Archaeology, University of Cambridge, Downing Street, Cambridge, CB2 3DZ (UK)
9	² British Museum, Department of Britain, Europe and Prehistory, Orsman Road, London, N1 5QJ (UK)

11 Abstract

Archaeological evidence suggests hominins first reached northern Europe during marine isotope stage (MIS) 21 or 25 (c. 840 or 950 thousand years ago [Ka]). This contrasts with southern Europe, where hominin occupation is evidenced from MIS 37 to 45 (c. 1.22 or 1.39 million years ago [Ma]). Northern Europe, however, exhibits climatic, geological, demographic, and historical disadvantages when it comes to preserving fossil and archaeological evidence of early hominin habitation. It is argued here that perceived differences in first occupation timings between the two European regions needs to be revised in light of these factors. To enhance this understanding, optimal linear estimation models are run using data from the current fossil and artefact record. Results suggest northern Europe to have first been occupied as early as 1.16 Ma, or as late as 913 Ka. These timings could represent minimum date expectations and be extended through future archaeological and fossil discoveries.

22 Keywords

Lower Palaeolithic; Early Pleistocene; Optimal Linear Estimation; Modelling; Hominin Demography; Early Human
 Dispersal; Temporal Range Estimation

37 1. Introduction

38 Northern Europe provides the highest latitudinal evidence for Early and Middle Pleistocene hominin populations

39 in the world (Parfitt et al., 2010; Ashton et al., 2014). This high latitude has created a unique climatic, geological,

and demographic context for reconstructing when members of the genus *Homo* first came to occupy the region.
 A context principally characterised by repeated glacial cycles, where severe cold stages are thought to have

42 prevented colonisation events and, once populations did arrive, created significant demographic dips and regional

- extinctions (Dennell et al., 2011; MacDonald et al., 2012; Moncel et al., 2018; Ashton and Davis, 2021). Conversely,
- 44 interglacial warm stages provided suitable climatic and ecological conditions for hominins, with fossil and
- 45 archaeological evidence attesting to the occupation of Europe as far as 53° North during these periods (Parfitt et
- 46 al., 2010; Ashton and Lewis, 2012; Moncel et al., 2018; Ashton and Davis, 2021; Rodríguez et al., 2021).
- 47 Together, this has resulted in a fragmented and sparse evidentiary framework for understanding hominin 48 occupation in northern Europe prior to marine isotope stage (MIS) 13 (circa. 500 thousand years ago [ka]). Indeed, 49 only one fossil and ten archaeological sites have been securely demonstrated to predate this MIS stage (Figures 50 1 and 2; Table 1), and the limitations this places on our understanding of when hominins were present in northern 51 Europe is well known (e.g., Dennell et al., 2011; MacDonald et al., 2012; Hosfield and Cole, 2018; Roebroeks et 52 al., 2018; Davis et al., 2021). From the evidence that is available, we know that hominins were present at 53 Happisburgh (UK) from at least ~ 800 ka (MIS 21), and potentially as early as 936 – 959 ka (MIS 25), due to the 54 presence of footprints and a small flake and core assemblage (Parfitt et al., 2010; Ashton et al., 2014). 55 Subsequently, either one or two archaeological sites are known from MIS 19, while either two or three sites are 56 known from MIS 17 (Pakefield [UK] is either from MIS 17 or 19; see Table 1). MIS 16 has the only suggested glacial 57 habitation site, with lithics dated to 660 ka having been discovered at Moulin Quignon, France (Antoine et al., 58 2019). Additional fossil and archaeological sites are known from MIS 15, 560 - 620 ka (Figure 1; Table 1).
- 59 In comparison, more southernly regions of Europe – notably the Iberian and Italian peninsulas – display earlier 60 evidence of hominin presence. Indeed, long-lived consensus through the short and long chronology hypotheses 61 suggest hominins to have reached these regions in advance of more northern ones (Roebroeks and van 62 Kolfschoten, 1994; Dennell and Roebroeks, 1996; Roebroeks, 2001; McNabb, 2005; Dennell et al., 2011; 63 MacDonald et al., 2012; Moncel et al., 2018); likely as early as 1.2 - 1.4 million years ago (Ma) in Spain (Carbonell 64 et al., 2008; Toro-Moyano et al., 2011; Toro-Moyano et al., 2013; Lorenzo et al., 2015) and 1.0 - 1.5 Ma in Italy 65 (Arzarello and Peretto, 2010; López-García et al., 2015). Reconciling an early appearance of hominins in southern 66 Europe with a later appearance in northern Europe is not easy, particularly given their close geographic proximity. 67 It is important to note, therefore, that the reliability of some early European lithic sites is questioned in the 'short 68 chronology' and 'Galerian migration' hypotheses (Muttoni et al., 2018; Roebroeks et al., 2018). Notably, the 1.2 69 - 1.3 Ma hominin fossils from Sima del Elefante (Atapuerca, Spain) are widely accepted (Carbonell et al., 2008; 70 Lorenzo et al., 2015 [although see: Muttoni et al., 2010]).

71 2. Explaining the Early Southern and Late Northern Colonisation Model

- 72 Once hominins arrived in northern Europe, glacial periods resulted in an absence, or at least, highly diminished 73 number (Antoine et al., 2019; Moncel et al., 2021), of hominins, while more southernly and south-easterly regions 74 could have acted as refugia for 'source' core populations (Dennell et al., 2011; Ashton and Lewis, 2012; 75 MacDonald et al., 2012; Hosfield and Cole, 2018; Moncel et al., 2018; Ashton and Davis, 2021). This does not, 76 however, explain why hominins did not move into northern Europe during warm interglacials prior to MIS 21 or 77 25. If hominins were able to occupy northern Europe during an interglacial c. 800 to 900 ka, then why not earlier? 78 Answering this question is important, as the present model has significant implications for our understanding of 79 hominin behaviour; it implies an inability, potentially by Homo antecessor, to occupy northern European 80 environments despite warmer interglacial environments being suitable.
- Arguments can be constructed for Early Pleistocene interglacial winters being too harsh for hominins without fire
 or clothing (Gowlett, 2016; Hosfield, 2016; Gilligan, 2017; Scott and Hosfield, 2021). Undoubtedly, this is a
 meaningful environmental difference between the two European regions, but one that still leaves eight months
 of the year available for annual migrations or shorter lived, but ultimately unsuccessful, colonisation events
 (Moncel et al., 2018). Moreover, we do not know the precise tolerance of these hominins for cold environments,

whose anatomy was potentially better suited to colder conditions than our own (e.g., Dibble et al., 2017; Wore
et al., 2018; Rodríguez et al., 2021). Definitions of 'northern Europe' vary, but assuming this means north of the
Alps (approx. 46° North) then these dispersals need not imply movement to Happisburgh in the UK but could
include more limited journeys to central or northern France, Belgium, Germany, Austria, or the Czech Republic.
Thus, the likelihood that individuals and small groups did not, at least sporadically, venture into northern Europe

91 prior to the earliest physical evidence at Happisburgh may be low.

A potentially more plausible explanation for the perceived 400,000-year gap (0.8 - 0.9 Ma [Happisburg] to 1.2 1.3 Ma [level TE9, Sima del Elefante]) between the occupation of southern and northern Europe is that our understanding is inaccurate due to a disparity in the likelihood of finding hominin fossils and lithic artefacts in these regions. Simply, the chances of finding evidence of early hominin occupation is greater in more southern
European regions. There are four key reasons for this:

- 97 Due to the above-described absence (or near-absence [Antoine et al., 2019; Moncel et al., 2021]) of 98 hominins during glacial periods and potentially during interglacial winters (Hosfield, 2016; Rodríguez et 99 al., 2021), northern Europe is automatically faced with a diminished fossil and archaeological record 100 relative to more temperate regions. The impact of glacial cycles on hominin populations, and therefore 101 fossil and artefact creation, would have been more muted in the south (Dennell et al., 2011; Hosfield, 102 2016), ultimately providing a more plentiful archaeological and palaeoanthropological record for us to 103 discover today. This difference is further exaggerated by the reduced ability of higher latitudes to support 104 high density hominin populations (Ashton and Davis, 2021). Simply, southern Europe would have 105 sustained larger numbers of hominins across interglacial, transitional, and glacial periods, resulting in a 106 greater volume of evidence being produced, and in turn, a greater number of fossils and artefacts being 107 preserved for us to discover today.
- Glacial periods are associated with the formation of glaciers in northern European regions. The southern limits of glaciers varied dependent on the marine isotope stage (Böse et al., 2012), but their formation would have destroyed many archaeological and fossil sites formed prior to MIS 6, 10, 12 and 16, and potentially before Happisburgh. The impact of glaciers on site preservation is well known to Lower Palaeolithic archaeologists working in these regions (Gowlett, 2006; Preece and Parfitt, 2012; Moncel et al., 2018; Lewis et al., 2021), and the true scale of damage inflicted on our understanding of hominin occupation is hard to ascertain.
- 115 Northern Europe is also geologically impoverished relative to southern Europe when it comes to the • 116 presence of caves and karstic system features suitable for hominin habitation and the preservation of 117 fossils, tools, and other evidence of occupation. It is important to stress that it is not void of such features, 118 but on a relative basis there are fewer. Indeed, Spain and Italy collectively have more carbonate rock 119 than the UK, Germany, Belgium, the Netherlands, Denmark, Poland, Slovakia, and Czech Republic 120 combined (Chen et al., 2017). Further, the few caves that do contain Middle Pleistocene sediments, such 121 as Kent's Cavern and Brixham Cave, were investigated at the inception of the subject, resulting in poorly 122 contextualised artefacts and issues of dating (Cook and Jacobi, 1999). Relative to southern European 123 areas, northern Europe therefore has a poor record of relevant cave or rock shelter deposits and is at a 124 disadvantage when it comes to preserving fossil and archaeological evidence of early hominin habitation 125 (although note that southern pre-Happisburgh sites are also found in open-air locations).
- 126 Finally, south-eastern Britain and northern France have a long history of artefacts being recovered from ٠ 127 river terrace gravels with abundant lithic collections archived from Middle Pleistocene sites (Roe, 1968; 128 Wymer, 1999; Harris et al., 2019). This might be thought to redress the north-south imbalance, but the 129 vast majority of quarries are now inaccessible for detailed investigation or dating and most were situated 130 on post-MIS 13 terraces. There are exceptions where higher terraces have been reinvestigated, such as 131 on the Solent (McNabb et al., 2012), the Bytham (Davis et al., 2021; Lewis et al., 2021), the Stour (Key et 132 al., 2022) and the Somme (Antoine et al., 2019). However, all try to contextualise older collections, with 133 small-scale fieldwork programmes compared to the often much larger excavations in southern Europe 134 (e.g. Peretto, 2006; Toro-Moyano et al., 2011; Ollé et al., 2013; Vallverdú et al., 2014; Arzarello et al. 135 2015). So, despite the long history of research in northern Europe, over the last 50 years there has been 136 a much greater focus on early sites in southern Europe, exacerbating the low chances of discovering

- early sites in the north (Roebroeks, 2006). Disentangling the impact of historical happenstance on our
 present understanding is difficult, but overall it appears to have benefited discoveries in more southern
 regions.
- 140 Together, these demographic, geological, climatic and historical factors have potential to help explain the 141 temporal gap between the earliest evidence of hominins in southern and northern Europe. When balanced 142 against there being relatively few discrete and reliable sites in southern Europe predating Happisburgh (UK) 143 (MacDonald et al., 2012; Moncel et al., 2018; Roebroeks et al., 2018), it can be argued that those we do know of, 144 such as Ataperuca (Bermúdez de Castro et al., 2004; de Lombera-Hermida et al., 2015) and Barranc de la Boella 145 (Vallverdu et al., 2014), do not necessarily portray a true difference in first occupation timing between northern 146 and southern Europe. Instead, their presence (and discovery) results from regional differences in the amount of 147 evidence produced, and the subsequent preservation of that evidence. That is, there is more evidence to find in 148 southern regions, so the few > 1 Ma sites that have been found may be the result of the above noted differences 149 (relative to northern Europe) and not an accurate reflection of hominin occupation. Note that this argument 150 concerns only first arrival dates and is distinct to discussions on length of habitation once populations arrive, 151 frequency of re-colonisation after absence, and comparative population sizes.
- 152 These considerations are confounded by the fact that finding evidence of the first hunter gatherer populations in 153 any region is extremely difficult. Low population numbers and poor preservation of evidence – potentially 154 combined with seasonal, migratory occupation patterns in ill-defined geographic regions - all limit the chances of 155 artefact and fossil evidence being found (Surovell and Brantingham, 2007; Meltzer, 2009; Surovell et al., 2009; 156 Prasciunas and Surovell, 2015; Du et al., 2020; Bobe and Wood, 2021; Key et al., 2021a, 2021b). In other words, 157 the chances of finding physical evidence of the *earliest* hominin occupation in any region, let alone Pleistocene 158 northern Europe, is close to zero. Happisburgh is not, therefore, likely to provide a reliable account of when 159 hominins first reached northern Europe.
 - Fakenham Magna

 Sapiston

 Warren Hill

 Happisburgh 3

 Happisburgh 1

 Happisburgh 1

 Happisburgh 1

 Pakefield

 Boxgrove

 Moulin Quignon

 Abbeville

 Amiens

 Heidelberg

161 Figure 1: The ten oldest sites with evidence of hominin occupation in northern Europe (teal). Five other early sites not

included in the main OLE models are included for context (yellow). Note that some of the yellow sites are included in thealternative model scenarios. Original satellite image: NASA Visible Earth Project.

164

3. Building a More Accurate Model for the Earliest Arrival of Hominins in Northern Europe

165 In the absence of exceptional discoveries and a more comprehensive fossil and archaeological record, how is it 166 possible to identify when hominins first reached northern Europe? A solution to this dilemma was recently 167 introduced to human evolutionary literature in the form of optimal linear estimation (OLE) modelling, a technique 168 able to estimate the earliest or most recent portions of an archaeological and palaeontological phenomena based 169 on existing sparse and fragmentary records (Solow, 2005; Rivadeneira et al., 2009; Key et al., 2021a). That is, OLE 170 can estimate the full temporal range of an artefact or hominin species' presence based on the discoveries made 171 to date. Here, OLE modelling is applied to the combined fossil and archaeological record of northern Europe to 172 provide more accurate estimates for when hominins first came to occupy this region.

173 Early and Middle Pleistocene demographic patterning in northern Europe has recently been described by Hosfield 174 and Cole (2018) to represent a 'punctuated long chronology' (PLC), whereby cycles of population crashes and 175 increases align with MIS stages. Notably, it is not until after the Anglian glaciation (MIS 12) that they argue for 176 substantive demographic growth and population maintenance in northern Europe. With earlier sites interpreted 177 as evidence of "small scale, fragmented dispersals of hominins" (sites older than c. 700 ka in Table 1) and then 178 "small-scale, biface-making populations" but "within a broad geographic range" (sites aged 500 to 700 ka in Table 179 1) (Hosfield and Cole, 2018: 157). Others have made similar demographic interpretations for the region, albeit at 180 times with different chronologies (Dennell et al., 2011; Ashton and Lewis, 2012; Roebroeks et al., 2018; Davis et 181 al., 2021). Put plainly, demographic change in northern Europe is hypothesised to be a process of gradual but 182 small population increases as cultural and anatomical mitigations for cold weather increase, interspersed by 183 marked declines during glacial periods. In this scenario, population growth between MIS 21 or 25 and MIS 11 can 184 be viewed as a punctuated distribution (growth) curve broadly aligning with a Weibull distribution (Figure 2B). 185 More substantive populations than those suggested by Hosfield and Cole (2018) in MIS 17 to 13, or lower 186 populations than those illustrated in Figure 2B, still accord well with a Weibull distribution. Other demographic 187 scenarios for northern Europe exist (Figures 2C and 2D), but it is the above-described PLC model that best fits 188 current fossil and archaeological evidence (Hosfield and Cole, 2018; Ashton and Davis, 2021).

189 Larger populations leave more evidence of their presence in the archaeological and fossil record, meaning those 190 populations are more frequently going to be found by archaeologists and palaeoanthropologists. This helps to 191 explain the gradual increase in site numbers through time seen in Figure 2 (i.e., site identification probability 192 changes monotonically from the point of first colonisation through to population carrying capacity being reached). 193 This relationship underpins why it is so difficult to identify reliably the earliest populations inhabiting a region, and 194 why temporal modelling techniques are needed to gain a more accurate understanding of when these events 195 happened (Surovell and Brantingham, 2007; Meltzer, 2009; Surovell et al., 2009; Prasciunas and Surovell, 2015; 196 Bebber and Key, 2022). The same problem has recently been highlighted for hominin fossil evidence and our 197 subsequent understanding of different species' temporal presence (Du et al., 2020; Bobe and Wood, 2021). 198 Optimal linear estimation modelling (OLE) has been specifically designed to account for low population numbers. 199 Originally used to model the true extinction dates of species after their last sighting by humans (Roberts and 200 Solow, 2003; Solow, 2005), the technique has since been widely applied and recommended within 201 palaeontological extinction scenarios (e.g., Bradshaw et al., 2012; Crees and Turvey, 2014; Pimiento and 202 Clements, 2014; Wang and Marshall, 2016). It is only recently that OLE modelling has been applied in the reverse 203 temporal direction, having been employed to estimate origination ages for Oldowan, Acheulean and 204 Protoaurignacian technologies (Key et al., 2021b; Djakovic et al., 2022). Indeed, it is well known that 205 archaeologists rarely (if ever) discover the first or last occurrences of past cultural phenomena.

- 206 4. Optimal Linear Estimation
- 207 208

4.1 Model Assumptions

209 OLE has few assumptions relative to alternative temporal modelling techniques (Solow, 2005; Clements et al., 210 2013; Key et al., 2021a), but for meaningful results to be returned it is important for these assumptions to be met. 211 In the present context this includes the assumption that hominins were present in northern Europe prior to the 212 current oldest physical evidence (in this case Happisburgh [Parfitt et al., 2010]), all fossil and archaeological sites 213 used in the model are independent, search effort does not equate to zero in any given temporal context (that is, 214 archaeologists and palaeoanthropologists are not actively excluding sediments older than Happisburgh in their 215 search efforts), the earliest hominins in northern Europe left traces of their presence through lithic artefacts or 216 bones (and ultimately fossils), and we have no *a priori* reason to think that population pressures were significantly 217 different in one interglacial over another. Search effort could be considered unbalanced between Acheulean and 218 earlier flake-and-core-only assemblages as handaxes are more easily recognised (and thus discovered). This is 219 unavoidable, but search effort for expedient technologies has also been considerable in both northern and 220 southern Europe (e.g., see discussions on the Clactonian and eoliths [Ashton et al., 1992; Ellen, 2013; McNabb, 221 2020]).

222 Finally, in the present context, there is the assumption that taphonomic processes are broadly equal or monotonic 223 across the temporal range entered into the model. In other words, if an archaeological site was made in the same 224 location in MIS 15 and MIS 21, then there is the assumption that both would have equal chance of being preserved 225 to the present, or, the period between MIS 21 to MIS 15 would display monotonically increasing preservation 226 probability. As Surovell and colleagues demonstrate (Surovell and Brantingham, 2007; Surovell et al., 2009), this 227 is not a straightforward assumption in all archaeological contexts. Here, however, this is arguably the case for 228 northern Europe between 800 and 600 ka. Northern European stone artefact sites are principally destroyed 229 through glacier formation and fluvial activities, and two of the three most extreme Pleistocene glaciation events 230 happened post-MIS 15. So, irrespective of whether a site was formed in MIS 15 or 21, if a glacier had potential to 231 destroy it (Gowlett, 2006), then it would likely have occurred during MIS 10 or 12 (Preece and Parfitt, 2012). 232 Similarly, Quaternary fluvial terraces (where most pre-MIS 15 lithic artefacts are recovered) form in predictable 233 stages (Bridgland and Westaway, 2014). Once a terrace is formed the river erodes beneath this point, meaning 234 artefacts are saved from further fluvial damage. Incision and erosion can deteriorate Quaternary terraces through 235 time (Bridgland and Westaway, 2014), with this cumulative process potentially impeding the preservation of older 236 sites. It is, however, on a relative scale; all MIS 14 or older sites have been exposed to this process for at least 237 550,000 years. Moreover, several of the most important (i.e., oldest) sites for the OLE models are not found in 238 such deposits. So, at a very broad level, fluvial disturbance affects artefacts and fossils for broadly equal periods. 239 Fossils may also be destroyed by leaching and other chemical processes, but it is arguably the case that if this is 240 going to influence their preservation it will occur within the space of 600 ka (i.e., an additional 200 to 300 ka 241 would not make a substantive difference). While these broad arguments appear reasonable and the use of the 242 OLE methods appear valid, it is possible that in specific, site-dependent circumstances other taphonomic 243 processes may influence the preservation of early hominin sites.

244 4.2 Archaeological and Fossil Sites

OLE models run to estimate origination timings (i.e., in the reverse temporal direction) require temporal data
from the oldest dated occurrences of the investigated phenomenon. Ten occurrences are typically recommended
as optimal for OLE (Roberts and Solow, 2003; Solow, 2005; Rivadeneira et al., 2009), making the technique
particularly amendable to the fragmented fossil and archaeological record of Pleistocene northern Europe.
Northern Europe is defined here as the Alps (approx. 46° North) or more northern latitudes, meaning that preAnglian sites in Iberia, Southern France, and Italy are not included in the models.

251 A thorough review of Palaeolithic and paleoanthropological literature was conducted to identify the oldest fossil 252 and artefactual evidence of hominins in northern Europe (last search effort December 2021). The ten oldest sites 253 identified through this review are presented in Table 1 and Figure 1. These sites represent a 'best-fit' scenario 254 with all being widely accepted in the literature. Several occurrences have been excluded due to their indirect 255 dating methods (e.g., poorly dated terrace sequences), contested 'artefacts', or lack of provenance (see 256 Supplementary Information 1). All excluded occurrences, apart from Untermassfeld in Germany (see: Roebroeks 257 et al., 2018), would be among the youngest dates used in the models, meaning that had they been included, there 258 would only be a minor impact on the estimates produced. The sites of Fakenham Magna (UK) and Sapiston (UK) only display a few artefacts, and although these were identified by strict criteria and a panel of Palaeolithic
specialists (Davis et al., 2021, SI), some may still oppose their inclusion on the basis of the small assemblages, but
they are included for two reasons. First, irrespective of an assemblage's size, the presence of lithic artefacts at a
defined point in time demonstrates the presence of hominins (Davis et al., 2021; Lewis et al., 2021). Second, their
inclusion in the models will produce a more conservative estimate relative to their exclusion (i.e., estimates will
be more limited and closer to the date of the oldest known artefacts).

265 The sites of Happisburgh and Pakefield are among the most important considered here as they provide some of 266 the oldest evidence of hominins occupying northern Europe. Thus, they have a relatively great impact on the 267 model's estimates (Key et al., 2021a). Both, however, are associated with two MIS stages. Happisburgh Site 3 is 268 constrained to MIS 21 or MIS 25 (Parfitt et al., 2010), while Pakefield is constrained to MIS 17 or 19 (Parfitt et al., 269 2005). MIS 17 is the "very youngest" attribution for Pakefield, with an age of MIS 19 being more commonly 270 referenced (Parfitt et al., 2005: 1011; Lewis et al., 2021). Due to these uncertainties, four combinations of data 271 were entered into the OLE models so that versions with all possible Happisburgh and Pakefield MIS associations 272 could be investigated.

273 In addition to the main 'best-fit' site scenario, two further versions were investigated to illustrate hominin 274 dispersal estimations under alternative site-discovery perspectives, each using the four Happisburgh and 275 Pakefield combinations. The first included the sites of Lunery-Rosières and Pont-de-Lavaud, dated to 1.166 and 276 1.054 ma, respectively (Despriée et al., 2017, 2018). Both are from central France, slightly south of la Noira, and 277 without independent dating evidence of the ESR age estimates. Rampart Field and Amiens were removed in this 278 scenario. The second version excluded Fakenham Magna and Sapiston (both UK), as in this case the authors 279 preferred geological age is younger than the ESR dates. Abbeville (France) and Happisburgh Site 1 (UK) replaced 280 them in the models.

Each fossil or artefact occurrence had its associated date range identified. These data were drawn directly from published results of radiometric dating methods, or from known marine isotope stage ranges when authors provide only MIS-level chronological associations, following Lisiecki and Raymo (2005) and Railsback et al. (2015). In addition, the author's preferred age for the site or the mean of the date range was also identified. Preferred dates were typically only provided by authors when stratigraphic interpretations allowed more precise dating approximations relative to the use of central tendency values. The use of MIS stages to create input data means results are best interpreted at the MIS level.

288

289 Figure 2: The ten archaeological and fossil sites included in the 'best-fit' OLE models presented in the context of Early and 290 Middle Pleistocene marine isotope stages (Figure 2A). Figures 2B, 2C and 2D present hypothetical demographic scenarios for 291 northern Europe following an initial occupation event in MIS 25. Figure 2B represents the punctuated long chronology (PLC) 292 model as proposed by Hosfield and Cole (2018), where populations are slow to increase during initial interglacial periods but 293 following technological and anatomical changes there are increased populations in MIS 15 and 13, before a marked increase 294 in MIS 11. Figure 2C represents a scenario where populations in northern Europe are tightly linked to mean annual 295 temperatures, with winter temperatures, annual resource fluctuations, predation, and disease (for example), not limiting 296 population numbers in one period more than another. Figure 2D represents the standard PLC model (Hosfield and Cole, 2018) 297 without any meaningful population growth until MIS 11. In each, a Weibull distribution curve is presented to demonstrate that 298 the standard punctuated long chronology model (Figure 2B) best fits the assumptions of optimal linear estimation modelling. 299 Note that Happisburgh and Pakefield have both of their proposed ages illustrated (yellow). Versions of these scenarios with 300 complete regional extinction during glacial periods, and interglacial periods without recolonisation, could also be included but 301 are not presented here. The numbers at each peak refer to MIS stages. The original MIS figure is modified from Ahn et al. 302 (2017) under the terms of an CC-BY-NC License.

303 4.3 The OLE Method

304 OLE uses the timing and chronological spacing of a phenomenon's known occurrences to statistically estimate its 305 full temporal presence. The technique relies on the dates (and their spacing) entered into the model displaying a 306 joint distribution with approximately a 'Weibull form'; an assumption which has already been noted as valid for 307 the present scenario. It then uses the temporal spacing of these dates to determine the shape parameters of the 308 Weibull distribution, which is in turn used to estimate the origination date of the phenomenon in question. Based 309 on the Weibull distribution created, a start point is identified by the model as the date by which another earlier 310 occurrence of the phenomenon should have been found had the phenomenon continued beyond this point (given 311 previous search effort). In the present context, this means the OLE model determines an 'origination point' for 312 hominins entering northern Europe, and if the true earliest date was before this then by now we should have 313 found an artefact or fossil occurrence earlier than Happisburgh. There are no parameters of the model specific to 314 biological or cultural phenomena, and it can be used to investigate temporal presence through a combination of 315 both types of evidence if necessary, so long as all model assumptions are still met (i.e., while fossils do display 316 lower preservation rates relative to stone tools, in the present scenario they equally meet the assumptions 317 outlined in Section 4.1, including site identification probability changing monotonically, and there is no reason to 318 believe their combined probability distribution curve will not meet the model's assumptions).

319 The formulaic expression of the OLE method is available through diverse sources (e.g., Solow, 2005; Rivadeneira 320 et al., 2009; Key et al. 2021b). This includes Clements et al.'s (2013: 345) experimental testing of the technique, 321 where it is demonstrated to provide "generally accurate and precise estimates" in a range of scenarios. Despite 322 this, the estimates produced in the present study should only be viewed with the same accuracy as the data 323 entered into the models. In this case, model accuracy is limited to individual MIS stages as determined by sites 324 such as Sapiston, Fordwich, Warren Hill and Pakefield (Table 1). Clements (2013) provides an accessible means 325 which to run OLE models through the R sExtinct through package (available via: 326 https://github.com/cran/sExtinct/blob/master/R/OLE.fun.R or the sExtinct package in the CRAN archive). 327 Additionally, the R code used here is available in the Supplementary Information. The OLE method is applied here 328 in reverse such that occurrence age increases towards the past, where $T_1 > T_2 > ... > T_k$ are the k earliest occurrences, 329 ordered from the earliest (T_k being the most recent). As there is no specific start date for the time series, the 10th 330 youngest site date was used as the beginning of the period. All calculations were undertaken in R v. 4.0.3 (R Core 331 Team, 2019). All required data is present in Table 1.

332 Four combinations of site occurrence data were entered into the OLE model, depending on which of the two MIS 333 associations are used for Happisburgh (MIS 21 or 25) and Pakefield (MIS 17 or 19) (Table 1). Three origination 334 estimations were created for each data combination. The first used the original author's preferred age for each 335 site or the mean of the published date range, with the OLE model being run once. Given that many of the sites 336 could only be assigned to individual MIS, the uncertainty of these assignments was addressed using two 337 resampling approaches. Dates were randomly drawn from within each site's date range using either a normal or 338 uniform distribution, and these data were then assessed independently for each distribution type with the OLE 339 method. Normal distributions were defined by standard deviations equal to the half of the difference between 340 the mean value and range bounds. This process was repeated 10,000 times and results were expressed as a mean 341 from all iterations. This was repeated independently for the three site scenarios. All modelled scenarios are 342 detailed in Table 2.

Two types of data relevant to understanding when hominins first entered Europe are produced through the OLE method. The first is T_0 , which represents the estimated origination date for when hominins first entered northern Europe. In addition, each model also produced a T_{CI} value, which represents the upper bound of each model's confidence interval ($\alpha = 0.05$). This is effectively the date beyond which there is a 5% or less likelihood (as determined by CIs) that hominins were present in northern Europe.

Table 1: The ten oldest widely accepted archaeological or hominin fossil occurrences in northern Europe. Four OLE models are
 run as the oldest archaeological occurrence, Happisburgh (UK), is constrained to *either* MIS 21 or MIS 25, and the second or
 third oldest, Pakefield (UK), is constrained to *either* MIS 17 or MIS 19 (Table 2). Yet, as some of the oldest dates used, they

351 have a relatively great impact on the model's estimated date and in turn would have substantial implications for the model's

352 predictions. The Mauer mandible is the only hominin fossil old enough to warrant inclusion in the models.

Ranked Age	Site ^{1, 12, 1}	3	Happisburgh Happisburgh 1 2		MIS Stage	Evidence of Occupation	Reference	
1	Happisburgh	Mean Date	947,500 ²	840,000 ²	25 or	78 flake and core artefacts	Parfitt et al., 2010	
	Site 3, UK	Date	936,000 -	814,000 -	21			
		Range	959,000	866,000				
		Mean	775.	501 ³			Davis et al., 2021	
2	Fakenham	Date	761,000 - 790,000		19	2 flakes + 1 scraper	Lewis et al., 2021	
	Magna, UK	Date						
	5,	Range	,					
			Pakefield 1	Pakefield 2		I		
		Mean	775,500 ⁴	694,000 ⁴		1	Parfitt et al., 200	
3 *	Pakefield, UK	Date	113,300	051,000	19 or	30 flakes, 1 core, 1		
5	r ukenelu, ok	Date	761,000 -	676,000 -	17	retouched flake		
		Range	790,000	712,000	1 1			
		Mean		001 ³			Lewis et al. 2021	
4 *	Sapiston, UK	Date	094,	001	17	3 flakes	Davis et al., 2021	
4	Sapision, ok		676.000	- 712,000		5 Hakes	Davis et al., 202.	
		Date	676,000	- / 12,000				
		Range		0005	-		N4 and the l	
-		Mean	690,	000 5	17		Moncel et al.,	
5	la Noira, France	Date			17	199 flakes, 57 cores, 58	2013	
		Date	660,000 ·	- 720,000		LCTs		
		Range						
		Mean	660	,000			Antoine et al.,	
6	Moulin	Date			16	244 flakes, 13 cores, 5	2019	
	Quignon,	Date	650,000 ·	- 670,000		bifaces + historical		
	France	Range						
		Mean	609	,000			Wagner et al.,	
7	Heidelberg,	Date			15	Homo heidelbergensis	2010; 2011	
	Germany	Date	569,000 -	- 649,000	1	mandible		
		Range	,	,				
		Mean	592,	001 ⁶		238 flakes, 4 cores, 4	Key et al., 2022	
8	Fordwich, UK	Date	332,001		15	retouched + > 330	, ,	
	,	Date	563.000 -	- 621,000		historical handaxes		
		Range	000,000	021)000				
		Mean	592	,000				
9	Rampart Field,	Date	002	,000	15	4 flakes, 1 core, 1 handaxe	Lewis et al. 2021	
5	UK	Date	563.000	- 621,000	1 10	+ historical	Davis et al., 2021	
		Range	505,000	021,000				
	Amiens, France	Mean	55/	000 ⁸			Antoine et al.,	
10	Anniens, France	Date	554,	000	13 to	22 flakes, 1 core +	2015	
10		Date	456.000	- 652,000	15 15	historical	2015	
			450,000	-052,000	1.5	miscorical		
		Range	F.2F	000 ⁹			Autoine et al	
·- /- +	ماله المحينة الم	Mean	525,	000 -	141		Antoine et al.,	
n/a⁺	Abbeville,	Date	500.000	550.000	14 to	5 flint flakes, 5 bifaces, +	2016	
	France	Date	500,000 ·	- 550,000	15	historical		
		Range		10				
	Happisburgh Site 1, UK	Mean	501,0	000 10			Lewis et al., 2019	
n/a⁺		Date			13	478 flakes, 1 handaxe		
		Date	478,000 ·	- 524,000				
		Range						
	Boxgrove, UK	Mean	501	,000	13	Hundreds of bifaces and	Roberts and	
n/a⁺		Date				flakes, Homo	Parfitt, 1999	
		Date	478,000 ·	- 524,000		heidelbergensis fossils		
		Range						
	Warren Hill, UK	Mean	501,	000 ⁷	13	3 flakes + 100's of historical	Voinchet et al.,	
n/a⁺		Date				handaxes, flakes, cores	2015; Lewis et al	
		Date	478,000	- 524,000			2021	
		Range						
		Mean	492.0	000 11		82 handaxes, 240	Davis et al., 2021	
n/a⁺	High Lodge, UK	Date			13	retouched flakes, + other	Ashton et al.,	
n/a		Date	478,000 -	- 506 000	-	and historical	1992	
							1332	

⁺ Not included in the OLE models but presented here as well-known sites to provide additional context. ^{*} Note that Sapiston and Pakefield change their placing within the OLE model depending on which date is used for the latter. ¹⁻¹³ See: Supplementary Information 1

Table 2: The different iterations of the OLE models run during the present analyses.

		e st Fit' Site Scenarios e 1 Sites Ranked 1 – 10)	
	Author preferred or mean published dates	Uniform distribution resampling using published date ranges	Normal distribution resampling using published date ranges
Happisburgh MIS 25 and Pakefield MIS 19	Model 1	Model 5	Model 9
Happisburgh MIS 25 and Pakefield MIS 17	Model 2	Model 6	Model 10
Happisburgh MIS 21 and Pakefield MIS 19	Model 3	Model 7	Model 11
Happisburgh MIS 21 and Pakefield MIS 17	Model 4	Model 8	Model 12
	Alternati	ve Site Discovery Scenarios	
Model versions 1 to 12, but	1	Amiens are excluded and replaced by L (Models 13 to 24)	unery-Rosières and Pont-de-Lavaud.
Model versions 1 to 12, but	•	and Sapiston are excluded and replaced (Models 25 to 36)	by Abbeville and Happisburgh Site 1

359 360

5. When Did Hominins First Occupy Northern Europe?

361 OLE models use individual years as units of time, meaning that the origination estimations appear precise relative 362 to the fossil and artefact record from which they are derived. The present results are, however, most reliable 363 when interpreted at the individual MIS level (see above). Four combinations of temporal data were used in the 364 OLE models given current uncertainty regarding the MIS associations of artefacts from Happisburgh and Pakefield. 365 Across all data combinations and model versions for the 'best-fit' scenario (Table 2), the estimated earliest 366 occupation dates for northern Europe ranged between 913,303 (MIS 23) and 1,159,968 (MIS 35) years before 367 present (Table 3). The resampling results align closely with those created using the mean or author preferred 368 data. In all instances the normal and uniform resampling estimates were younger than the mean estimates, but 369 this was only by a maximum of ~ 8,000 years.

Applying an MIS 25 age to Happisburgh resulted in an estimated first arrival for hominins in northern Europe from approximately 1.129 to 1.159 Ma, which accords with either MIS 34 or 35 (Table 3). The upper bound of the different model's confidence interval (T_{CI}) is approximately 1.661 to 1.812 Ma. If an MIS 19 association is used for Pakefield then the estimates are more recent, dating to 1.129, 1.132 and 1.136 Ma (across the three versions of the OLE method used here). An MIS 17 association for Pakefield suggests an older first arrival, at 1.152, 1.155, or 1.159 Ma. Notably, these latter results are within the warm MIS 35 interglacial, while those that associated Pakefield with MIS 19 are at the threshold of MIS 33 and 34 (Table 3).

An MIS 21 age for Happisburgh returned estimated first arrival dates of approximately 913 to 935 Ka, which would
indicate an MIS 23 or 24 occupation for hominins (Table 3). The upper bound of the different model's confidence
interval (*T*_{CI}) is approximately 1.110 to 1.191 Ma. Again, estimates applying an MIS 19 age for Pakefield were ~ 20
Ka, dating to 913, 914 and 917 Ka. If Pakefield dates to MIS 17, then the estimates suggest a 931, 932 or 935 ka
arrival for hominins in northern Europe. Notably, all estimates align along glacial and interglacial boundaries (Table 3).

When Sapiston and Fakenham Magna were removed from the site occurrence data, an MIS 25 age for Happisburgh resulted in estimates from approximately 1.178 to 1.215 Ma (Supplementary Information 1). An MIS 21 age for Happisburgh resulted in first occupation timings between 953 to 986 ka. When Lunery-Rosières and Pont de Lavaud were included in the site occurrence data, estimated first occupation dates for northern Europe increase to approximately 1.388 to 1.425 Ma (Supplementary Information 1). There was a limited impact caused by the different age assignments for Happisburgh and Pakefield.

Table 3: Estimated origination dates and MIS associations for the first arrival of hominins in northern Europe based on OLE
 and the region's 'best-fit' known archaeological and palaeoanthropological record. Four data combinations are presented

dependent on the MIS associations used for the sites of Happisburgh (21 or 25) and Pakefield (17 or 19). Presented

 $\label{eq:392} alongside the origination estimates (T_{o}) are each models' confidence interval (T_{cI}).$

			To		Ta			
		Mean estimates	Resampling (normal)	Resampling (uniform)	Mean estimates	Resampling (normal)	Resampling (uniform)	
Happisburgh 25 &	Origination (years BP)	1,136,609	1,132,162	1,129,449	1,686,733	1,673,997	1,661,242	
Pakefield 19	Associated MIS	34 (1,114 - 1,141 ka)	34 (1,114 – 1,141 ka)	34 (1,114 - 1,141 ka)	59 (1,670 – 1,697.5 ka)	59 (1,670 – 1,697.5 ka)	58 (1,642.5 – 1,670 ka)	
Happisburgh 25 &	Origination (years BP)	1,159,968	1,155,696	1,152,109	1,812,829	1,801,410	1,783,605	
Pakefield 17	Associated MIS	35 (1,141 – 1,190 ka)	35 (1,141 – 1,190 ka)	35 (1,141 – 1,190 ka)	65 (1,802.5 - 1,816 ka)	64 (1,782 – 1,802.5 ka)	64 (1,782 – 1,802.5 ka)	
Happisburgh 21 &	Origination (years BP)	917,214	914,498	913,303	1,119,760	1,114,554	1,110,611	
Pakefield 19	Associated MIS	24 (917 – 936 ka)	23 (900 – 917 ka)	23 (900 – 917 ka)	34 (1,114 - 1,141 ka)	34 (1,114 - 1,141 ka)	33 (1,104 - 1,114 ka)	
Happisburgh 21 &	Origination (years BP)	935,922	932,616	931,228	1,191,908	1,185,264	1,180,577	
Pakefield 17	Associated MIS	24 (917 – 936 ka)	24 (917 – 936 ka)	24 (917 – 936 ka)	36 (1,190 – 1,215 ka)	35 (1,141 – 1,190 ka)	35 (1,141 – 1,190 ka)	

393

398

6. The early occupation of northern Europe

As exceptional as the lithic artefacts and hominin footprints identified at Happisburgh are (Parfitt et al., 2010;
 Ashton et al., 2014), they are not evidence of the very earliest hominins to have entered northern Europe. Instead,
 they reflect the current earliest known physical evidence of hominins in the region, as determined by past search
 efforts. To gain a more accurate understanding of when hominins first reached northern Europe, OLE models
 have been used to reconstruct the missing portion of the artefact and fossil record and provide the often invisible

404 'long-tail' to our understanding of hominin demography. As determined by the models, hominins are likely to
405 have first entered northern Europe during MIS 34-35 or MIS 23-25, depending on whether Happisburgh provides
406 evidence of hominins during MIS 25 or 21 (respectively). At a minimum, this is approximately 73,000 to 182,000
407 years earlier than current evidence suggests, and in several modelled scenarios demonstrates their presence prior
408 to one million years ago.

409 This reduces discontinuity between the earliest hominin occupation of southern and northern Europe. 410 Importantly, however, based on these models alone, a difference of 100 or 300 ka still exists between the regions 411 and current understanding on why southern Europe was occupied prior to northern Europe need not be 412 overhauled (although see discussion below). Indeed, differences between these regions are still evidenced, along 413 with the associated behavioural implications for hominins (McNabb, 2005; Roebroeks, 2006: Dennell et al., 2011; 414 MacDonald et al., 2012; Hosfield and Cole, 2018). What is presented here, however, is a potentially more realistic 415 scenario where instead of 12 or more marine isotope stages going by before hominins ventured into northern 416 Europe, it may be as low as two to four (although see later our discussion concerning southern Europe). As 417 identified in the introduction, these dispersal events need not be successful or prolonged events (Ashton and 418 Davis, 2021); discussion here refers to the first arrival of hominins in these two regions and not the onset of 419 continual occupation.

420 Of the four date combinations used in the models, the only estimates securely and consistently attributed to a 421 warm interglacial (in this case MIS 35) use an MIS 25 and 17 association for Happisburgh and Pakefield respectively 422 (Table 3). Assuming hominins first entered northern Europe during a warm interglacial (Dennell et al., 2011; 423 Ashton and Davis, 2021), an MIS 25 and 17 association for Happisburgh and Pakefield may be more likely relative 424 to the alternatives of MIS 21 or 19. The strength of this assertion, however, is weakened by the site of Moulin 425 Quignon (France) which dates to 670 – 650 ka (MIS 17a – MIS 16b) and suggests that Middle Pleistocene hominins 426 could survive for at least short periods in reasonably cold climatic conditions (Moncel et al., 2021; Rodríguez et 427 al., 2021). In this scenario, the OLE estimates suggest all date combinations to be feasible (Table 3). Thus, while 428 the OLE models do not provide a great deal of resolution on the dating of Happisburgh and Pakefield, they do 429 provide a small contribution to a now long-lived question. Notably, evidence now suggests that even if 430 Happisburgh Site 3 dates to its lower MIS 21 estimate, it can be stated that hominins were likely present in 431 northern Europe by MIS 23 - 24.

432 The OLE estimates match Hosfield and Cole's (2018) punctuated long chronology (PLC) hypothesis well; albeit 433 with a longer pre-Anglian tail than the original authors may have predicted. Thus, while the PLC should no longer 434 necessarily reflect an absence of hominins prior to one million years ago, these early populations were still likely 435 characterised by "small scale, fragmented dispersals of hominins... equipped with a flake and core lithic tool kit" 436 (Hosfield and Cole, 2018: 157). The absence and presence of handaxes in northern Europe pre- and post-MIS 16 437 (respectively), as is currently evidenced in the archaeological record, could have contributed to demographic 438 patterns observed in the PLC model (Hosfield and Cole, 2018; Ashton and Davis, 2021). There is a degree of 439 ambiguity regarding whether a PLC without population growth in subsequent interglacial periods was a possibility 440 (Figure 2D), but it seems unlikely that - even if only minor changes occurred - hominins were not able to cope 441 better with winter or glacial climates through time by means of cultural and anatomical adaptations (see 442 discussion below; Rodríguez et al., 2021). This interpretation is supported through the increasing number of 443 archaeological sites evidenced from MIS 21 through to 15, which could indicate larger populations (see earlier 444 discussion concerning Surovell and Brantingham [2007] and Surovell et al. [2009]).

445 The removal of Sapiston and Fakenham Magna from the site occurrence data did not substantially alter the 446 model's results relative to the 'best-fit' scenario (estimates were 40 - 50 ka older with their removal). Thus, 447 irrespective of one's views on these sites, hominins are estimated to first reach northern Europe during 448 approximately MIS 35 or MIS 25 (depending on Happisburgh's age). The inclusion of Lunery-Rosières and Pont-449 de-Lavaud significantly altered the OLE estimates. This is not unexpected as they represented the two oldest 450 occurrences in this alternative model (Key et al., 2021a). In this scenario, hominins are inferred to have first 451 occupied northern Europe during MIS 45 or 47, a date that aligns closely with the earliest known hominin fossils 452 and artefacts in southern Europe (Carbonell et al., 2008; Arzarello and Peretto, 2010; Toro-Moyano et al., 2011; 453 Toro-Moyano et al., 2013; López-García et al. 2015). Depending on one's view of the Lunery-Rosières and Pont-

- 454 de-Lavaud artefacts and dates, and whether they represent northern European sites, then, the OLE models could
- 455 provide evidence of hominins first arriving in northern and southern Europe at the same time. As clearly stated
- 456 by Roebroeks et al. (2018), robust criteria are required for widespread acceptance of sites and OLE estimates are
- 457 only as strong as the site data used.

458 This is not the first time that an arrival date in advance of one million years has been suggested for hominins in 459 northern Europe (Garcia Garriga et al., 2013; Landeck and Garcia Garriga, 2016). Importantly, however, the 460 current argument and OLE data have been constructed without the use of contested archaeological sites (bar the 461 Lunery-Rosières and Pont-de-Lavaud scenario) (see: Roebroeks et al., 2018). Moreover, it is important to note 462 that the modelled dates do not confirm the controversial ca. 1.07 Ma occurrence of Untermassfeld (Germany) to 463 be a hominin site, even if its age is within the newly revised temporal framework (Landeck and Garcia Garriga, 464 2016; Roebroeks et al., 2018). As OLE estimates are derived directly from archaeological and fossil data, their use 465 to validate this record is not appropriate and sites that could potentially contribute to future modelling efforts 466 must be verified by evidence external to the OLE method (i.e., conclusive proof that human-made artefacts or 467 fossils are present).

468

58 7. Southern and northern Europe: implications of a shorter time-gap for their earliest occupation

Had the OLE method been applied to the current fossil and artefact data-record of southern Europe it is likely
that the estimated first arrival of hominins would have been pushed beyond the current 1.2 – 1.4 Ma (Carbonell
et al., 2008; Arzarello and Peretto, 2010; MacDonald et al., 2012; Toro-Moyano et al., 2013; Lorenzo et al., 2015).
It is unlikely to be above 1.5 to 1.6 Ma due to several of the oldest sites being closely linked in age (see the
'Oldowan' scenario in Key et al. [2021b]), but it could *potentially* increase the chronological gap between northern
and southern regions by as much as the current Table 3 models reduce it.

- 475 The present northern European models could, however, represent a minimum expectation, with estimates 476 potentially increasing should any sites older than Happisburgh be found in northern Europe (see the Lunery-477 Rosières and Pont-de-Lavaud models already discussed). Indeed, as outlined already, the fossil and archaeological 478 record of northern Europe is hampered in its ability to display evidence of Early and Middle Pleistocene hominins, 479 meaning that direct comparisons of northern and southern European first arrival dates are not appropriate 480 without considering these factors. This includes comparisons derived from OLE models. The arguments for these 481 demographic, geological, climatic and historical limitations are as outlined in Section 2. These factors help explain 482 why multiple fossil and artefact sites equal to or older than Happisburgh exist in southern Europe, without this 483 necessarily being due to an absence of hominins in northern Europe. Moreover, they suggest that northern 484 Europe's 'missing tail' is likely proportionately greater than southern Europe's.
- 485 We are not claiming that hominins did not reach southern Europe first, but instead that our ability to fairly 486 compare the two regions is impeded and northern Europe is missing a greater proportion of its fossil and 487 archaeological record. Indeed, the current suggested disparity in terms of first hominin presence seems unlikely, 488 and there is good reason to think hominins were present in northern Europe prior to one million years ago. Thus, 489 sites older than Happisburgh likely exist in northern Europe and could be found in the future. In such an event, 490 and given the greater sparsity of the northern European record (and therefore the proportionately greater impact 491 of new discoveries on temporal models), OLE 'origination point' estimates could be pushed back further, and this 492 scenario would imply a shortened time period between the earliest occupation of southern and northern Europe 493 irrespective of whether both regions use OLE (although revised northern European OLE estimates should still be 494 within the present model's confidence intervals). Southern Europe could also identify new, older hominin 495 evidence, but given its current increased preservation and discovery rates (Section 2), the impact of new 496 discoveries will potentially be more muted.
- 497 Some ecological models and hypotheses support a shorter first occupation-gap between north and south. At first this would appear to include the Galerian migration hypothesis (Muttoni et al., 2018), which is based on a known faunal turnover in Europe during the late Early Pleistocene Transition (EPT; c. MIS 22). The authors argue that dry, steppic conditions with lower sea-levels provided ecological corridors into Europe for hominins and other species including *Elephas antiquus* and *Mammuthus trogontherii*. Although the hypothesis has an elegance, it does not fit the published age of several southern sites (e.g. Pirro Nord, Atapuerca TE9) and is dependent on revision of their

503 dates (Muttoni et al., 2018). If these multiple southern sites were revised to c. MIS 22, then it is likely that OLE 504 estimates for southern Europe would be lower than those for northern Europe, which would not align with 505 recognised dispersal routes. Thus, a strict interpretation of the Galerian migration hypothesis does not appear 506 consistent with there being a 'long tail' to the known archaeological record of northern Europe. Ecological 507 modelling by Blain et al. (2021), however, provides a different perspective. Based on herpetofaunas from 508 palaeontological sites in Iberia, they identify the floral and faunal environment of European hominins during the 509 Early and early Middle Pleistocene, and demonstrate that these humid woodlands would likely have been found 510 in northern France, south-west England, Belgium and Germany. This suggests there were few archaeologically-511 detectable ecological reasons preventing a rapid and early occupation of northern Europe, as suggested by the 512 OLE models.

513 An earlier, pre-MIS 21 or 25, emergence of hominins into northern Europe has implications for several widely 514 discussed behavioural attributes. This includes the capability of hominins to survive northern Europe winters, 515 which has recently been investigated in several detailed studies (Hosfield, 2016, 2020, 2021; Hosfield and Cole, 516 2018; Rodriguez et al. 2021). Three main cold-weather coping mechanisms have been considered, the first being 517 seasonal migration; although many authors have highlighted the difficulties of long migrations (Hosfield, 2020) 518 and the presence of young children at Happisburgh suggest at least some early groups were not seasonal, adult 519 hunting parties (Ashton et al., 2014). A second coping mechanism could have been physical adaptation through 520 more functional body hair, increased sub-cutaneous fat and a higher basal metabolic rate (Hosfield 2020; 521 Rodriguez et al., 2021). This may be part of the answer, but studies are clear that the third coping mechanism technological thermal-buffering (i.e., clothing) - would also have been required (Rodriguez et al., 2021). A 522 523 behaviour which further implies prime access to animal hides through hunting or as top scavengers. Hominin 524 presence in high latitudes may also imply effective food acquisition in regions with relatively dispersed, seasonal 525 resources, which may in turn suggest dependence on near-coastal locations (Parfitt et al., 2010; Cohen et al., 526 2012; Hosfield, 2020). The present OLE models suggest that all of these behaviours may extend back over a million 527 years.

Finally, several authors have argued that the shorter ~41 ka cycles and unstable climatic conditions towards the
onset of the EPT (1.2 - 0.9 ma) may have delayed hominin dispersal into northern Europe, whereas more stable
climate with lower seasonality and higher ecological diversity after 0.9 Ma enabled hominin expansion (Kahlke et
al., 2011; Hosfield and Cole, 2018). An earlier dispersal, as suggested by the OLE models, implies that human
population size and rate of growth was sufficient to allow extension of their geographic range into northern
Europe over shorter time-frames with the versatility to deal with unstable environments.

Providing model-based estimates for the first occupation of northern Europe is important for understanding the timing of hominin adaptations to high latitudes. These include biological responses and physical capabilities, technological and behavioural developments, and demographic processes through expansion and contraction. The challenge is to find corroborating evidence for these earlier population incursions given the markedly lower chances of discovery in northern Europe. Notably, major river systems of northern Europe still provide a largely untapped source in the higher terraces for potential evidence of earlier human occupation.

540 8. Conclusion

541 It is only through continued search efforts that additional physical evidence of Early and Middle Pleistocene 542 hominins will be discovered in northern Europe. What is made clear by the present study is that we can reasonably 543 expect this evidence to stretch as far back as 913 ka to 1.159 ma, but this could represent a minimum expectation 544 that may be pushed back further in the future. Thus, future discoveries may provide physical evidence of hominins 545 in northern Europe before one million years ago. Whether we do find evidence of these early and potentially 546 limited incursions is another question, but as recent discoveries in the Bytham, Somme and Stour Valleys attest, 547 the early Lower Palaeolithic record of northern Europe is not yet exhausted (Antoine et al., 2019; Davis et al., 548 2021; Lewis et al., 2021; Moncel et al., 2021; Key et al., 2022). In this way, the OLE models act as a temporal guide 549 for future fieldwork investigations while simultaneously providing new data to supplement discussions based on 550 known archaeological, fossil, climatic and palaeoenvironmental evidence (e.g., Dennell et al., 2011; Roebroeks et 551 al., 2018; Moncel et al., 2018; Muttoni et al., 2018; Ashton and Davis, 2021). These models are not the well-dated 552 sites with unambiguous traces of hominin presence requested by Roebroeks et al. (2018); that is, they do not

- 553 provide conclusive evidence of hominins in northern Europe prior to Happisburgh. Instead, they provide an
- empirically grounded and theoretically robust scenario based on the current archaeological and fossil record,
- which is a direct result of past and present search efforts. As future discoveries are made, the OLE estimates can
- be revised in line with these new data and our understanding on the origination timing of hominins in northern
- 557 Europe can be refined further. Irrespective of how new discoveries impact future modelling, it is clear that the
- earliest hominin occupation timings of southern and northern Europe cannot be compared without climatic,
- geological, demographic and historical differences between these two regions being considered.

561 Acknowledgements

562 We are grateful to Ivan Jarić for his permission to share the supplementary R code. AK would like to thank Rob563 Davis for sharing an early version of Davis et al. (2021). Four reviewers provided detailed and constructive

- 563 Davis for sharing an early version of Davis et al. (2021). Four reviewers provided of564 comments on an earlier version of this manuscript, for which we are grateful.

589 References

- Ahn, S., Khider, D., Lisiecki, L. E. and Lawrence, C. E. 2017. A probabilistic Pliocene–Pleistocene stack of benthic
 δ180 using a profile hidden Markov model. Dynamics and Statistics of the Climate System 2 (1): dzx002
- 592 Antoine, P., Moncel, M.-H., Locht, J.-L., Limondin-Lozouet, N., Auguste, P., Stoetzel, E., Dabkowski, J., Voinchet,
- 593 P., Bahain, J.-J., and Falgueres, C. 2015. Dating the earliest human occupation of Western Europe: New evidence
- from the fluvial terrace system of the Somme basin (Northern France). Quaternary International 370: 77-99
- 595 Antoine, P., Moncel, M.-H., Limondin-Lozouet, N., Locht, J.-L., Bahain, J.-J., Moreno, D., Voinchet, P., Auguste, P.,
- 596 Stoetzel, E., Dabkowski, J., Bellow, S.M., Parfitt, S.A., Tombret, O. and Hardy, B. 2016. Palaeoenvironment and
- 597 dating of the Early Acheulean localities from the Somme River basin (Northern France): New discoveries from
- the High Terrace at Abbeville-Carrière Carpentier. Quaternary Science Reviews 149: 338-371
- Antoine, P., Moncel, M.H., Voinchet, P., Locht, J.-L., Amselem, D., Hérisson, D., Hurel, A. and Bahain, J.J. 2019.
 The earliest evidence of Acheulian occupation in Northwest Europe and the rediscovery of the Moulin Quignon
- 601 site, Somme valley, France. Scientific Reports 9: 13091
- Arzarello, M. and Peretto, C. 2010. Out of Africa: The first evidence of Italian peninsula occupation. QuaternaryInternational 223-224: 65-70
- Arzarello, M., Peretto, C. and Moncel, M.-H. 2015. The Pirro Nord site (Apricena, Fg, Southern Italy) in the
 context of the first European peopling: Convergences and divergences. Quaternary International 389: 255-263
- Ashton, N. M., Cook, J., Lewis, S. G. and Rose, F. 1992. High Lodge: excavations by G. de G. Sieveking, 1962-8,and J. Cook, 1988. British Museum Press.
- Ashton, N., McNabb, J. and Parfitt, S. 1992. Choppers and the Clactonian: a reinvestigation. Proceedings of thePrehistoric Society 58 (1): 21-28.
- Ashton, N. and Lewis, S.G. 2012. The environmental contexts of early human occupation of northwest Europe:
 The British Lower Palaeolithic record. Quaternary International 271: 50-64
- Ashton, N., Lewis, S.G., De Groote, I., Duffy, S.M., Bates, M., Bates R., Hoare, P., Lewis, M., Parfitt, S.A., Peglar, S.,
 Williams, C. and Stringer, C. 2014. Hominin footprints from Early Pleistocene deposits at Happisburgh, UK. PLOS
 One 9 (2): e88329
- Ashton, N. and Davis, R. 2021. Cultural mosaics, social structure, and identity: The Acheulean threshold in
 Europe. Journal of Human Evolution 156: 103011
- 617 Barton, N. and Colcutt, S. 1986. A Survey of English and Welsh Palaeolithic Cave Sites. Unpublished report for618 English Heritage.
- Bebber, M.R. and Key, A.J.M. 2022. Optimal linear estimation (OLE) modeling supports early Holocene (90008000 RCYBP) copper tool production in North America. American Antiquity, 1-17. doi:10.1017/aaq.2021.121
- Bermúdez De Castro, J.M., Martinón-Torres, M., Carbonell, E., Sarmiento, S., Rosas, A., van der Made, J. and
 Lozano, M. 2004. The Atapuerca sites and their contribution to the knowledge of human evolution in Europe.
- 623 Evolutionary Anthropology 13 (1): 25-41
- Blain, H.-A., Fagoaga, A., Ruiz-Sánchez, F.J., García-Medrano, P., Ollé and Jiménez-Arenas, J.M. 2021. Coping
 with arid environments: A critical threshold for human expansion in Europe at the Marine Isotope Stage 12/11
 transition? The case of the Iberian Peninsula. Journal of Human Evolution 153: 102950
- 627 Bobe, R. and Wood, B. 2021. Estimating origination times from the early hominin fossil record. Evolutionary628 Anthropology, doi: 10.1002/evan.21928
- Böse, M., Lüthgens, C., Lee, J.R., and Rose, J. 2012. Quaternary glaciations of northern Europe. Quaternary
 Science Reviews 44: 1-25

- 631 Bradshaw, C.J.A., Cooper, A., Turney, C.S.M. and Brook, B.W. 2012. Robust estimates of extinction time in the 632 geological record. Quaternary Science Reviews 33: 14-19
- 633 Bridgland, D.R. and Westaway, R. 2014. Quaternary fluvial archives and landscape evolution: a global synthesis. 634 Proceedings of the Geologists' Association 125 (5-6): 600-629
- 635 Carbonell, E., Esteban, M., Martin Nájera, A., Mosquera, M., Pedro Rodriguez, X., Olle, A., Sala, R., Verges, J.M.,
- 636 Maria Bermudez de Castro, J., and Ortega, A.I. 1999. The Pleistocene site of Gran Dolina, Sierra de Atapuerca,
- 637 Spain: a history of the archaeological investigations. Journal of Human Evolution 37 (3-4): 313-324
- 638 Carbonell, E., Bermudez de Castro, J.M., Pares, J.M., Perez-Gonzalez, A., Cuenca-Bescos, G., Olle, A., Mosquera,
- 639 M., Huguet, R., van der Made, J., Rosas, A., Sala, R., Vallverdu, J., Garcia, N., Granger, D.E., Martinon-Torres, M.,
- 640 Rodriguez, X.P., Stick, G.M., Verges, J.M., Allue, E., Burjachs, F., Caceres, I., Canals, A., Benito, A., Diez, C.,
- 641 Lozano, M., Mateos, A., Navazo, M., Rodriguez, J., Rosell, J. and Asuaga, J.L. 2008. The first hominin of Europe. 642 Nature 452: 465-469
- 643 Chen, Z., Auler, A.S., Bakalowicz, M., Drew, D., Griger, F., Hartmann, J., Jiang, G., Moosdorf, N., Richts, A.,
- 644 Stevanovic, Veni, G. and Goldscheider, N. 2017. The World Karst Aquifer Mapping project: concept, mapping
- 645 procedure and map of Europe. Hydrogeology Journal 25: 771-785
- 646 Clements, C.F., Worsfold, N.T., Warren, P.H., Collen, B., Clark, N., Blackburn, T.M. and Petchey, O.L. 2013.
- 647 Experimentally testing the accuracy of an extinction estimator: Solow's optimal linear estimation model. Journal 648 of Animal Ecology 82 (2): 345-354
- 649 Cohen, K. M., MacDonald, K., Joordens, J.C.A., Roebroeks, W. and Gibbard, P.L. 2012. The earliest occupation of 650 north-west Europe: a coastal perspective. Quaternary International 271: 70-83
- 651 Cook, J. and Jacobi, R., 1998, Observations on the artefacts from the Breccia at Kents Cavern, in Ashton N.M.,
- 652 Healy, F. and Pettitt, P., Stone Age Archaeology: Essays in Honour of John Wymer: Lithic Studies Society 653 Occasional Paper 6, pp. 77–89
- 654 Crees, J.J. and Turvey, S.T. 2014. Holocene extinction dynamics of Equus hydruntinus, a late-surviving European 655 megafaunal mammal. Quaternary Science Reviews 91: 16 - 29
- 656 Davis, R., Ashton, N., Hatch, M., Hoare, P.G., and Lewis, S.G. 2021. Palaeolithic archaeology of the Bytham River:
- 657 human occupation of Britain during the early Middle Pleistocene and its European context. Journal of
- 658 Quaternary Science 36 (4): 526-546
- 659 Dennell, R. and Roebroeks, W. 1996. The earliest colonization of Europe: the short chronology revisited. 660 Antiquity 70: 535-542
- 661 Dennell, R.W., Martinon-Torres, M. and Bermudez de Castro, J.M. 2011. Hominin variability, climatic instability 662 and population demography in Middle Pleistocene Europe. Quaternary Science Reviews 30 (11-12): 1511-1524
- 663 Despriée, J., Courcimault, G., Voinchet, P., Jouanneau, J.-C., Puaud, S., Abdessadok, S., Depont, J., Duval, M.,
- 664 Lebon, M., Ingicco, T., Moncel, M.-H., Falgueres, C. and Bahain, J.-J. 2017. Le site du pléistocène inférieur de
- 665 Lunery-Rosières, la Terre-des-Sablons (France, région Centre, Cher) : unités sédimentaires, datations ESR,
- 666 études géoarchéologiques, préhistoire. Quaternaire 28 (1) : 5-30
- 667 Despriée, J., Moncel, M.-H., Arzarello, M., Courcimault, G., Voinchet, P., Bahain, J.-J., and Falgueres, C. 2018. The 668 1-million-year-old quartz assemblage from Pont-de-Lavaud (Centre, France) in the European context. Journal of 669 Quaternary Science 33 (6): 639-661
- 670 Di Modica, K., 2011. La documentation du Paléolithique moyen en Belgique aujourd'hui, état de la question. In:
- 671 Toussaint, M., DiModica, K., Pirson, S. (Eds.), Le Paléolithique moyen en Belgique. Mélanges Marguerite Ulrix-
- 672 Closset, Liége, pp. 75-104.

- bibble, H.L., Abodolahzadeh, A., Aldeias, V., Goldberg, P., McPherron, S.P., and Sandgathe, D.M. 2017. How did
 hominins adapt to Ice Age Europe without fire? Current Anthropology 58 (s16): 728-287
- Djakovic, I., Key, A., Soressi, M. 2022. Optimal linear estimation models predict 1400–2900 years of overlap
- between *Homo sapiens* and Neandertals prior to their disappearance from France and northern Spain. Scientific
 Reports 12: 15000
- 678 Du, A., Rowan, J., Wang, S.C., Wood, B.A. and Alemseged, Z. 2020. Statistical estimates of hominin origination
 679 and extinction dates: A case study examining the *Australopithecus anamensis–afarensis* lineage. Journal of
- 680 Human Evolution 138: 102688
- 681 Ellen, R. 2013. "These rude implements": competing claims for authenticity in the eolithic controversy.682 Anthropological Quarterly 86 (2): 445-479
- 683 Ferring, R., Oms, O., Agusti, J., Berna, F., Nioradze, M., Shelia, T., Tappen, M., Vekua, A., Zhvania, D. and
- 684 Lordkipanidze, D. 2011. Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma.
 685 Proceedings of the National Academy of Sciences 108 (26): 10432-10436
- 686 Garcia Garriga, J., Landeck, G., Martinez, K. and Carbonell, E. 2013. Hominin dispersals from the Jaramillo
 687 subchron in central and south-western Europe: Untermassfeld (Germany) and Vallparadís (Spain). Quaternary
 688 International 316: 73-93
- 689 Gilligan, I. 2017. Clothing and hypothermia as limitations for midlatitude hominin settlement during the
 690 Pleistocene: A comment on Hosfield 2016. Current Anthropology 58 (4): 534 535
- 691 Gowlett, J.A.J. 2006. The early settlement of northern Europe: Fire history in the context of climate change and692 the social brain. Comptes Rendus Palevol 5 (1-2): 299-310
- 693 Gowlett, J.A.J. 2016. The discovery of fire by humans: a long and convoluted process. Phil. Trans. Royal Soc. B.694 371 (1696): 20150164
- Hosfield, R. 2016. Walking in a winter wonderland? Strategies for Early and Middle Pleistocene survival inMidlatitude Europe. Current Anthropology 57 (5): 653-682
- 697 Hosfield, R. and Cole, J. 2018. Early hominins in north-west Europe: A punctuated long chronology? Quaternary698 Science Reviews 190: 148-160
- 699 Kahlke, R.-D., García, N., Kostopoulos, D.S., Lacombat, F., Lister, A.M., Mazza, P.P.A., Spassov, N. and Titov, V.V.
- 700 2011. Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene
- inferred from large mammal communities, and implications for hominin dispersal in Europe. Quaternary ScienceReviews 30: 1368-1395
- Key, A., Roberts, D.L., and Jarić, I. 2021a. Reconstructing the full temporal range of archaeological phenomena
 from sparse data. Journal of Archaeological Science, 135: 105479
- Key, A.J.M., Roberts, D., and Jarić, I. 2021b. Statistical inference of earlier origins for the first flaked stone
 technologies. Journal of Human Evolution 154: 102976
- 707 Key, A., Lauer, T., Skinner, M.M., Pope, M., Bridgland, D.R., Nobel, L. and Proffitt, T. 2022. On the earliest
 708 Acheulean in Britain: first dates and in-situ artefacts from the MIS 15 site of Fordwich, Kent (UK). Royal Society
 709 Open Science, doi: 10.1098/rsos.211904
- 710 Landeck, G. and Garcia Garriga, J.G. 2016. The oldest hominin butchery in European mid-latitudes at the
 711 Jaramillo site of Untermassfeld (Thuringia, Germany). Journal of Human Evolution 94: 53-71
- 712 Lewis, S.G., Ashton, N., Field, M.H., Hoare, P.G., Kamermans, H., Knul, M., Mucher, H.J., Parfitt, S.A., Woebrokes,
- 713 W. and Sier, M.J. 2019. Human occupation of northern Europe in MIS 13: Happisburgh Site 1 (Norfolk, UK) and
- 714 its European context. Quaternary Science Reviews 211: 34-58

- 715 Lewis, S.G., Ashton, N., Davis, R., Hatch, M., Hoare, P.G., Voinchet, P. and Bahain, J.-J. 2021. A revised terrace
- **716** stratigraphy and chronology for the early Middle Pleistocene Bytham River in the Breckland of East Anglia, UK.
- 717 Quaternary Science Reviews, 269: 107113
- **718** Lisiecki, L.E. and Raymo, M.E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 180
- **719** records. Paleoceanography and Paleoclimatology 20 (1): 1 17
- de Lombera-Hermida, A., Bargallo, A., Terradillos-Bernal, M., Huguet, R., Vallverdu, J., Garcia-Anton, M.-D.,
- 721 Mosquera, M., Olle, A., Sala, R, Carbonell. E. and Rodriguez-Alvarez, X.-R. 2015. The lithic industry of Sima del
- Final Field Content of Early and Middle Pleistocene technology in Europe. Journalof Human Evolution 82: 95-106
- Lorenzo, C., Pablos, A., Carretero, J.M., Huguet, R., Valverdu, J., Martinon-Torres, M., Arsuaga, J.L., Carbonell, E.,
 Bermudez de Castro, J.M. 2015. Early Pleistocene human hand phalanx from the Sima del Elefante (TE) cave site
 in Sierra de Atapuerca (Spain). Journal of Human Evolution, 78: 114-121
- López-García, J.M., Luzi, E., Berto, C., Peretto, C. and Arzaello, M. 2015. Chronological context of the first
 hominin occurrence in southern Europe: the Allophaiomys ruffoi (Arvicolinae, Rodentia, Mammalia) from Pirro
- 729 13 (Pirro Nord, Apulia, southwestern Italy). Quaternary Science Reviews 107: 260-266
- 730 MacDonald, K., Martinon-Torres, M., Dennell, R.W., Bermudez de Castro, J.M. 2012. Discontinuity in the record
- for hominin occupation in south-western Europe: Implications for occupation of the middle latitudes of Europe.
- 732 Quaternary International 271: 84-97
- 733 McNabb, J. 2005. Hominins and the Early-Middle Pleistocene transition: evolution, culture and climate in Africa734 and Europe. Geological Society, London, Special Publications 247(1): 287-304
- 735 McNabb, J. 2020. Problems and pitfalls in understanding the Clactonian. In: Groucutt H. (ed) Culture History and
 736 Convergent Evolution. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. pp. 29-53
- 737 McNabb, J., Hosfield, R.T., Dearling, K., Barker, D., Strutt, K., Cole, J., Bates, M., Toms, P., 2012. Recent work at
 738 the Lower Palaeolithic site of Corfe Mullen, Dorset, England. Proceedings of the Prehistoric Society 78: 35-50
- 739 Meltzer, D.J. 2009. First peoples in a new world: colonizing ice age America. University of California Press,740 Berkeley.
- 741 Moncel, M.-H., Despriée, J., Voinchet, P., Tissoux, H., Moreno, D., Bahain, J.-J., Courcimault, G. and Falguéres, C.
- 2013. Early evidence of Acheulean settlement in Northwestern Europe La Noira site, a 700 000 year-old
 occupation in the centre of France. PLOS One 8 (11): e75529
- 744 Moncel, M.-H., Landais, A., Lebreton, V., Combourieu-Nebout, N., Nomade, S. and Bazin, L. 2018. Linking
 745 environmental changes with human occupations between 900 and 400 ka in Western Europe. Quaternary
 746 International 480: 78-94
- 747 Moncel, M.-H., Antoine, P., Hurel, A. and Bahain, J.-J. 2021. Reassessment of the 'Abbevillien' in the perspective
- of new discoveries from the Lower Palaeolithic and Quaternary sites of Abbeville (Somme, northern France).Journal of Quaternary Science 36 (6): 1122-1136
- 750 Muttoni, G., Scardia, G., and Kent, D.V. 2010. Human migration into Europe during the late Early Pleistocene
 751 climate transition. Palaeogeography, Palaeoclimatology, Palaeoecology 296 (1-2): 79-93
- 752 Muttoni, G., Scardia, G., Kent, D.V., Morsiani, E., Tremolada, F., Cremaschi, M. and Peretto, C. 2011. First dated
 753 human occupation of Italy at ~ 0.85 Ma during the late Early Pleistocene climate transition. Earth and Planetary
 754 Science Letters 307 (3-4): 241-252
- 755 Muttoni, G., Scardia, G. and Kent, D.V. 2018. Early hominins in Europe: The Galerian migration hypothesis.
 756 Quaternary Science Reviews 180: 1-2

- 757 Ollé, A., Mosquera, M., Rodríguez, X.P., de Lombera-Hermida, A., García-Antón, M.D., et al. 2013. The Early and
- 758 Middle Pleistocene technological record from Sierra de Atapuerca (Burgos, Spain). Quaternary International
- **759** 295: 138-167
- 760 Parfitt, S.A., Barendregt, R.W., Breda, M., Candy, I., Collins, M.J., Coope, G.R., Durbidge, P., Field, M.H., Lee, J.R.,
- 761 Lister, A.M., Mutch, R., Penkman, K.E.H., Preece, R.C., Rose, J., Stringer, C.B., Symmons, R., Whitaker, J.E.,
- 762 Wymer, J.J. and Stuart, A.J. 2005. The earliest record of human activity in northern Europe. Nature 438: 1008-763 1012
- 764 Parfitt, S.A., Ashton, N.M., Lewis, S.G., Abel, R.L., Coope, G.R., Field, M.H., Gale, R., Hoare, P.G., Larkin, N.R.,
- 765 Lewis, M.D., Karloukovski, V., Maher, B.A., Pegler, S.M., Preece, R.C., Whittaker, J.E. and Stringer, C.B. 2010.
- 766 Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe. Nature 466: 229-233
- 767 Peretto, C. 2006. The first peopling of southern Europe: the Italian case. Comptes Rendus Palevol 5: 283–290
- Pimiento, C. and Clements, C.F. 2014. When did *Carcharocles megalodon* become extinct? A new analysis of thefossil Record. PLoS One, 9 (10): e111086
- 770 Pirson, S. and Di Modica, K., 2011. Position chronostratigraphique des productions lithiques du Paléolithique
- ancien en Belgique: état de la question. In: Toussaint, M., DiModica, K., Pirson, S. (Eds.), Le Paléolithique moyen
- 772 en Belgique. Mélanges Marguerite Ulrix-Closset, Liége, pp. 105-148.
- 773 Prasciunas, M.M. and Surovell, T.A. 2015. Reevaluating the duration of Clovis: The problem of non-
- 774 representative radiocarbon. In: Smallwood, A.M. and Jennings, T.A. (Ed.) Clovis: on the edge of a new
- vinderstanding. Texas A&M University Press, College Station. pp. 21-35
- Preece, R.C. and Parfitt, S.A. 2012. The Early and early Middle Pleistocene context of human occupation and
 lowland glaciation in Britain and northern Europe. Quaternary International 271: 6-28
- 778 R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical
 779 Computing, Vienna, Austria. URL https://www.R-project.org/
- 780 Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, R.G., Toucanne, S. 2015. An optimized scheme of lettered
- 781 marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and
 782 substages. Quaternary Science Reviews 111: 94-106
- 783 Rivadeneira, M.M., Hunt, G. and Roy, K. 2009. The use of sighting records to infer species extinctions: an
 784 evaluation of different methods. Ecology 90 (5): 1291-1300
- 785 Roberts, M.B. and Parfitt, S.A. 1999. Boxgrove: A Middle Pleistocene Hominid Site at Eartham Quarry, Boxgrove,
 786 West Sussex. English Heritage Archaeological Report 17
- 787 Roberts, D.L. and Solow, A.R. 2003. When did the dodo become extinct? Nature 426: 245
- 788 Rodríguez, J., Willmes, C. and Mateos, A. 2021. Shivering in the Pleistocene. Human adaptations to cold
 789 exposure in Western Europe from MIS 14 to MIS 11. Journal of Human Evolution 153: 102966
- 790 Roe, D.A. 1968. A Gazetteer of British Lower and Middle Palaeolithic Sites. Research report 8. York: The Council791 for British Archaeology.
- 792 Roebroeks, W. 2001. Hominid behaviour and the earliest occupation of Europe: an exploration. Journal of793 Human Evolution 41 (5): 437-461
- 794 Roebroeks, W. 2006. The human colonisation of Europe: where are we? Journal of Quaternary Science 21 (5):795 425-435
- 796 Roebroeks, W. and van Kolfschoten T. 1994. The earliest occupation of Europe: a short chronology. Antiquity 68797 (260): 489-503

- 798 Roebroeks, W., Gaudzinski-Windheuser, S., Baales, M. and Kahlke, R.-D. 2018. Uneven data quality and the
 799 earliest occupation of Europe-the case of Utermassfeld (Germany). Journal of Palaeolithic Archaeology 1: 5-31
- Scott, R.V. and Hosfield, R. 2021. Fire in the round: A holistic approach to the Lower Palaeolithic record. Journalof Archaeological Science: Reports 37: 102938
- 802 Solow, A.R. 2005. Inferring extinction from a sighting record. Mathematical Biosciences 195 (1): 47-55
- Surovell, T.A., Brantingham, P.J., 2007. A note on the use of temporal frequency distribution in studies of
 prehistoric demography. Journal of Archaeological Science 34 (11), 1868–1877
- Surovell, T.A., Finley, J.B., Smith, G.M., Brantingham, P.J., Kelly, R., 2009. Correcting temporal frequency
 distribution for taphonomic bias. Journal of Archaeological Science 36 (8), 1715–1724
- 807 Toro-Moyano, I., Barsky, D., Cauche, D., Celiberti, V., Gregoire, S., Lebegue, F., Moncel, M.-H., de Lumley, H.
- 808 2011. The archaic stone tool industry from Barranco León and Fuente Nueva 3, (Orce, Spain): Evidence of the
- 809 earliest hominin presence in southern Europe. Quaternary International 243 (1): 80-91
- 810 Toro-Moyano, I., Martinez-Navarro, B., Agusti, J., Souday, C., Bermudez de Castro, J.M., Martinon-Torres, M.,
- 811 Fajardo, B., Duval, M., Falgueres, C., Oms, O., Pared, J.M., Anadon, P., Julia, R., Garcia-Aguilar, J.M., Moigne, A.-
- 812 M., Espigares, M.P., Ros-Montoya, S. and Palmqvist, P. 2013. The oldest human fossil in Europe, from Orce
- 813 (Spain). Journal of Human Evolution 65 (1): 1-9
- 814 Vallverdú, J., Saladié, P., Rosas, A., Huguet, R., Cáceres, I., et al. 2014. Age and date for early arrival of the
 815 Acheulian in Europe (Barranc de la Boella, la Canonja, Spain). PLOS One 9 (7): e103634
- 816 Voinchet, P., Moreno, D., Bahain, J.-J., Tissoux, H., Tombret, O., Falgueres, C., Moncel, M.-H., Schreve, D., Candy,
- 817 I., Antoine, P., Ashton, N., Beamish, M., Cliquet, D., Despriee, J., Lewis, S., Limondin-Lozouet, N., Locht, J.-L.
- 818 Parfitt, S. and Pope, M. 2015. New chronological data (ESR and ESR/U-series) for the earliest Acheulean sites of819 north-western Europe. Journal of Quaternary Science 30 (7): 610-622
- Wagner, G.A., Krbetschek, M., Degering, D., Bahain, J.J., Ahao, Q., Falgueres, C., Voinchet, P., Dolo, J.M., Garcia,
 T. and Rightmire, G.P. 2010. Radiometric dating of the type-site for Homo heidelbergensis at Mauer, Germany.
- 822 Proceedings of the National Academy of Sciences 107 (46): 19726-19739
- Wagner, G.A., Maul, L.C., Loscher, M. and Schreiber, H.D. 2011. Mauer the type site of Homo heidelbergensis:
 palaeoenvironment and age. Quaternary Science Reviews 30 (11-12): 1464-1473
- 825 Wang, S.C. and Marshall, C.R. 2016. Estimating times of extinction in the fossil record. Biology Letters 12:826 20150989
- 827 Wroe, S., Parr, W.C.H., Ledogar, J.A., Bourke, J., Evans, S.P., Fiorenza, L., Benazzi, S., Hublin, J.-J., Stringer, C.,
- 828 Kullmer, O., Curry, M., Rae, T.C. and Yokley, T.R. 2018. Computer simulations show that Neanderthal facial
- 829 morphology represents adaptation to cold and high energy demands, but not heavy biting. Proceedings of the
- 830 Royal Society B, 285 (1876): 20180085
- 831 Wymer, J.J. 1999. The Lower Palaeolithic occupation of Britain. Salisbury: Wessex Archaeology.