
Disentangling Computed Tomography Pattern and Extent to Estimate
Prognosis in Fibrosing Interstitial Lung Diseases

Clinicians generally have two objectives when evaluating patients
with interstitial lung disease (ILD). The first is to assimilate clinical
and phenotypic information to confer a singular ILD diagnosis,
which broadly informsmedical management and estimated
prognosis. The second objective is to identify personal factors that
necessitate alterations to the standard diagnosis-based management
approach. Several studies have demonstrated that information gained
from computed tomography (CT) can advance both ILD evaluation
goals. The radiographic ILD pattern correlates with the histologic
pattern and is clearly relevant to diagnostic categorization (1–3). In
addition, specific CT features, such as radiographic
honeycombing, can refine the individual prognosis within
diagnostic subtypes (4). However, challenges with human
interpretation of CT scans are well documented and relate to
worldwide shortages of skilled readers, lengthy reads required to
evaluate disease severity/extent, and the often limited agreement
attained by expert readers. Recently, researchers have sought to
overcome these limitations by devising automated systems to reduce
variability and improve reproducibility. Some of these algorithms
have focused on quantifying the extent of involved lung parenchyma
as a surrogate for disease severity (5, 6), although others have focused
on automating pattern recognition to improve ILD classification (7).
Both approaches offer an opportunity to streamline ILD diagnostic
evaluation while still informing downstreammanagement.

In this issue of the Journal, Humphries and colleagues
(pp. 1121–1131) developed and applied a deep learning algorithm
using multi-instance learning (MIL) of ILD CT scans to estimate the
probability of a histologic usual interstitial pneumonitis (UIP) pattern
(8). Their algorithm was trained on a combination of ILD and non-
ILD CTs using histopathologic UIP or confident radiographic UIP
categorization as ground truth. The algorithm was tested and then
validated on two independent cohorts with mixed ILD diagnoses. As
a continuous marker, the MIL-UIP algorithm demonstrated superior
discriminatory power for predicting histologic UIP in both validation
cohorts (area under the receiver operating characteristic curve, 0.77
and 0.79) compared with visual CT assessment alone (area under the
receiver operating characteristic curve, 0.65 and 0.71). Moreover, after
dichotomizing the MIL-UIP score at the 0.5 threshold, the categorical
score produced a higher sensitivity (0.70) than visual CT assessment
(0.61) but comparable specificity (MIL-UIP 0.73 and visual CT
assessment 0.76) for histologic UIP in the Chicago cohort.

The authors also assessed the prognostic ability of MIL-UIP in
the mixed ILD validation cohorts. They found that theMIL-UIP
algorithm was associated with differential survival even after
accounting for disease extent (by data driven texture analysis) and
visual assessment of the radiographic UIP pattern. However, when
evaluating prognostic radiographic features in fibrosing ILD,
radiographic disease extent may provide complementary information to
disease patterns (e.g., UIP pattern [9]) or the presence of particular
features (e.g., traction bronchiectasis or honeycombing [10]). For
example, patients with extensive reticulation and overlaid ground-glass
densities may have a similar prognosis to patients with a limited extent
of disease if, for example, honeycombing coexists. Therefore, the
authors assessed the interaction between disease extent (by data driven
texture analysis) and disease pattern (byMIL-UIP probability) on
mortality and rate of lung function decline. Their results suggest that
higherMIL-UIP prediction scores weremore prognostically useful at
lesser extents of disease, whereas in cases withmore extensive disease,
prediction of UIP was no longer independently associated with
mortality. Similar results were also found when assessing the association
ofMIL-UIP with survival across gender-age-physiology stages and by
evaluating lung function trajectory.

Therefore, quantifying both disease extent and probability of
UIP pattern may help identify patients at risk for progression despite
their limited extent of disease, a conundrum all too familiar to
radiologists evaluating lung cancer screening cohorts.

A curious finding in the study was that a visually assessed UIP
pattern did not independently predict mortality. The authors
dichotomized radiographic UIP patterns by grouping definite and
probable UIP together and compared them to subjects classified as
either indeterminate for UIP or an alternative diagnosis pattern. For
patients with probable or definite UIP, theMIL-UIP score did not
associate withmortality when adjusted for CT disease extent. As these
subjects are likely to have hadmore extensive disease, UIP prediction
may have less prognostic impact. Instead, it was in CTs visually
classified as indeterminate for UIP or alternative diagnosis to UIP for
which theMIL-UIP score wasmost useful. These findings imply a
potential clinical workflowwhereby CTs could be triaged using human
reads of UIP pattern. Then, rather than using the radiologic UIP
classification alone to indicate survival, patients in whom algorithmic
UIP probability prediction would bemost insightful could be
prioritized.

The analyses also presuppose that a radiographic UIP pattern is
associated with worse survival than non-UIP CT patterns across all
ILDs. The fact that these comparisons did not significantly associate
with mortality highlights a limitation of the existing UIP criteria (2),
namely that a radiologic UIP pattern is by default a description of an
idiopathic pulmonary fibrosis (IPF)-UIP pattern. Transposing an IPF-
UIP pattern, developed to aid diagnostic classification for patients
suspected of having IPF, to prognosticate non-IPF ILDs can be
problematic. Non-IPF ILDs often do not display basilar or subpleural
predominant traction bronchiectasis or honeycombing. Indeed,
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regardless of its location, honeycombing identifies patients with non-
IPF ILDwhose disease behaves similarly to patients with IPF (4, 11,
12). It is not difficult to picture a subject with rheumatoid
arthritis–related ILD and extensive upper zone honeycombing being
classified as indeterminate for UIP using IPF-UIP criteria. Yet, their
survival may be similar to a patient with rheumatoid arthritis–related
ILDwith a classical IPF-UIP pattern. Although the application of
radiologic IPF-UIP criteria to patients with non-IPF ILDmay lack the
same prognostic impact if used in isolation, the current study shows
how IPF-UIP criteria could be usefully applied to subjects with non-
IPF ILD.

The study also interrogated the deep learning algorithm using
heatmaps to localize the CT region contributing most strongly to the
algorithmic prediction.When these were examined visually,
counterintuitively, it was the peripheral anterior lung in themiddle
zones that most frequently contributed to a UIP classification.
Furthermore, rather than honeycomb cysts or gross traction
bronchiectasis, it was subpleural irregularities and/or reticulation (often
limited in extent) that most frequently associated with a UIP
classification. Although these might suggest reevaluation of existing
paradigms for identifying UIP visually, the results need to be
interpreted with caution. Heatmaps can be unreliable and localize
seemingly unrelated structures as contributing to prediction by an
algorithm (13). The nonspecific nature of heatmap outputs is visible in
Figure 3B (8), where the chest wall is simultaneously highlighted
together with parenchymal damage as contributing toward UIP
prediction.

We commendHumphries and colleagues (8) for developing an
algorithm that estimates UIP probability and for disentangling the
prognostic impact of both disease extent and ILD pattern. Once
validated and implemented, it is easy to envision that automated CT
quantification could provide valuable information for subsets of
patients with fibrotic ILD who often fall between diagnostic categories
yet are at risk for progressive disease.�
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