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Abstract— Deep Imitation Learning requires a large number
of expert demonstrations, which are not always easy to obtain,
especially for complex tasks. A way to overcome this shortage
of labels is through data augmentation. However, this cannot be
easily applied to control tasks due to the sequential nature of
the problem. In this work, we introduce a novel augmentation
method which preserves the success of the augmented trajecto-
ries. To achieve this, we introduce a semi-supervised correction
network that aims to correct distorted expert actions. To ade-
quately test the abilities of the correction network, we develop
an adversarial data augmented imitation architecture to train
an imitation agent using synthetic experts. Additionally, we
introduce a metric to measure diversity in trajectory datasets.
Experiments show that our data augmentation strategy can
improve accuracy and convergence time of adversarial imitation
while preserving the diversity between the generated and real
trajectories.

I. INTRODUCTION

Imitation learning (IL) leverages sample demonstrations
from an expert to train an autonomous agent on a variety
of complex tasks [1]. The main advantages of learning from
demonstrations are a more “natural” behaviour for the trained
system and no need to design task-specific hand-crafted fea-
tures. This is especially favourable when compared with Re-
inforcement Learning (RL) [2] strategies, which, in contrast,
require a well-designed reward function per task. In an effort
to combine RL elements with supervised learning, generative
adversarial imitation learning (GAIL) [3] developed an ad-
versarial imitation architecture, where a generator competes
with a discriminator to match the distribution of the experts.
While this strategy has obtained promising results, it still
requires a large dataset of diverse expert trajectories. This
process is often challenging, for instance due to the recording
device, as well as the fact that retargeting to the robot domain
often introduces substantial noise [4]. Additionally, expert
recordings often require bespoke equipment [5], making
the recording process very expensive and time-consuming.
This ends up being a major bottleneck for most real-world
applications, especially in deep learning settings, where a
large number of demonstrations is typically needed [6].

In this work we propose a novel strategy to learn to
generate synthetic experts from few examples. Our goal
is to reduce the impact of input noise and generalise to
different conditions when the original dataset size is limited.
Contrary to other data augmentation approaches for control
problems [7], [8], [9], we devise a system that performs
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Fig. 1. Example of our proposed method for trajectorial data augmentation.
Top: the original expert trajectory. Middle: the expert trajectory distorted
by noise. The distortion makes the trajectory unsuccessful. This result is
not guaranteed, therefore this augmentation is unlabelled. Bottom: our
correction network modifies the unlabelled augmentation to produce a
successful trajectory, different from the expert.

random trajectory augmentation. In order to ensure the
success of this randomisation, we introduce a correction
policy which aims to correct these random augmentations
thanks to its adversarial architecture. This policy can generate
potentially infinite synthetic experts, which can be used to
train an imitation agent. However, to ensure the validity of
the synthetic experts, our method utilises a binary success
filter at the end of each trajectory. Whilst this information is
not part of pure imitation, it is easy to obtain, but also not
enough to successfully train an RL agent, as we empirically
demonstrate in Section IV.

Data augmentation is often used in computer vision
tasks [10], [11], [12] by distorting the input images. This
increases the size of the labelled dataset by capturing rel-
evant perturbations (e.g. translations, rotations). However,
data augmentation in control cannot use random distortions
because they can greatly affect the state of the environment.
Instead, it is usually done for specific behaviours [7], [8],
[9]. Additionally, distortions in sequential actions lead to
compounding errors that can distort the final outcome. For
these reasons, simply distorting input actions on a control tra-
jectory does not guarantee the result will remain successful.
Figure 1 shows an example of this effect on a simulated task
where a robot hand needs to open a door. In this example,
an expert trajectory (top row) is randomly distorted with
perturbed actions, leading to a distorted trajectory where the
agent fails to open the door (middle row). The proposed
method described in this work allows us to “correct” this
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trajectory leading to a successful one (bottom row).
As stated above, noise in the acquisition process can affect

expert demonstrations, to the point they become unsuccessful
in the agent’s domain, making them unusable. However,
these sequences still contain useful information and could
potentially become successful with small corrections to their
actions. This scenario is very similar to the artificial distor-
tion of action sequences, as seen in Figure 1. Therefore, a
correction mechanism can not only help augment the dataset
after, but potentially during the acquisition process as well.

The primary contribution of our work is a system that
performs data augmentation on trajectories to alleviate expert
demonstration acquisition and improve imitation. To achieve
this, we introduce a semi-supervised adversarial framework
that corrects distorted action sequences. Additionally, we
present a supervised learning system which performs imita-
tion by using a potentially infinite number of synthetic expert
trajectories. Contrary to standard supervised methods which
use a fixed dataset of labels, our model utilises the correction
network as a synthetic expert generator. This results in a
dynamic creation of experts that improve both accuracy and
stability of imitation. We also introduce a novel way of
measuring diversity in trajectorial datasets, in order to ensure
the variance in the generated trajectories is comparable to
the real expert ones. We test the correction policy’s ability
to correct distorted sequences, as well as its ability to help
imitation by comparing the data augmented policy against
the state-of-the-art GAIL and RL methods in various envi-
ronments, including complex manipulation tasks with real-
life experts, as presented in [5]. Our experiments show that
such architecture can provide more successful corrections
than random distortions, as well as improve stability and
convergence over the state of the art. It also seems to retain
most of the diversity of the expert trajectories without mode
collapsing, thus indicating that random dynamic experts can
offer a better representation of the state-action space. A
general overview of our framework is depicted in Figure 2.

II. RELATED WORK

Generalisation in IL Like many other areas of Machine
Learning, IL has benefited widely from deep learning [1], [3],
[13], [14], [15], [16], [17]. Deep learning, though, usually
requires a large amount of training data to be successful,
due to its non-linearity [10], [11]. One of its most famous
IL methods is Behavioural Cloning (BC) [18], which is
easy to train but suffers from compounding errors and
cannot generalise to unseen states [19]. In an effort to
alleviate this, [3] introduced an approach called generative
adversarial imitation learning (GAIL), which was inspired
by generative adversarial networks (GANs) [20], applied
to control tasks. In their method, [3] sought to combine
imitation with RL [21], [22] in an effort to uncover a robust
policy without the difficult task of defining an RL reward
function. The generalisation problem, though, is still an issue
for GANs [23], and is exacerbated in GAIL due to the limited
number of experts available in control problems. One reason
behind GAIL’s inability to generalise is due to the increased
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Fig. 2. Flow chart of our system, which performs imitation using trajec-
torial data augmentation. Stage 1 presents data augmentation by correcting
distorted trajectories, while stage 2 presents data augmented imitation.

diversity of the expert trajectories. Both [13] and [14] tackled
this problem through the use of a latent space that was able
to interpolate between trajectories.

Few-shot IL and Semi-supervision Since the acquisition
of many expert demonstrations is difficult and not even
always possible, there have been many efforts to successfully
use deep learning with few [24], one [25], [26], and even
no experts [27], [28]. [25] combined one-shot learning with
meta-learning [29] so that only the information related to the
current action and task would be used. While [25] focused
on generalising a task based on its length and number of
stages, [26] focused on generalising based on different set-
tings. Similarly to our work, [24] used an additional network
that produced synthetic samples using noise, but in an image
classification scenario. However, their objective is different
than ours, since they improved the classifier, whereas we
are interested in the generated samples themselves. Another
work related to ours, but in an RL scenario, is the one
in [30]. In this work, [30] designed an RL self-teaching
method in an adversarial architecture, whereas our work
focuses on supervised learning and specifically teaching
using data augmentation. Teacher-student (T/S) networks are
also used in semi-supervised setting with either noisy labels
or unlabelled data [6]. In a recent work, [31] introduced a
student cohort architecture. Similarly to our model, it aims
to match the output distribution of two networks, but, unlike
our work, all the students perform the same task. In terms
of correcting noisy labels, [32] used a correction network,
but only to remove the noise, while we aim to make the
trajectories successful after perturbation.

Data augmentation Data augmentation is the practice
of transforming the original labels in order to increase the
size of the dataset and to describe better the label space.
This practice is widely used in computer vision problems,
such as image classification [10], [11], [12]. In control,
it has mostly been applied to tasks that use images as



input, especially in the autonomous driving setting [7], [8],
[9]. [8] applied data augmentation by distorting the images
and then providing the necessary labels for these instances.
Similarly, [7] emulated erratic behaviour and provided the
necessary correction actions. The work that is mostly related
to ours is [9], where they added random noise without
prior knowledge of the corrective action. However, they did
identify reasons of failure after the perturbation and then
provided corrections. The main difference between all these
works and ours is they either model the perturbation knowing
its result, or involve an expert in the loop to indicate the
appropriate corrections. Our work, on the other hand, has no
such knowledge or resources and instead uses an adversarial
method to match the expert distribution unassisted.

In terms of generative data augmentation, [33] applied it
in image segmentation datasets. It concluded that, provided
there is enough information in the original limited dataset,
the generated images boost the performance of image seg-
mentation. As for evaluating the performance between gen-
erated and real samples, [34] showed synthetics have similar
and sometimes even better performance than the original
ones, which supports our main motivation that synthetic data
augmentation can improve performance.

III. PROPOSED METHOD

Background. We consider a Markov Decision Process,
consisting of the tuple (S,A,P ,R), with S = {s1, s2, . . . }
a set of states, A = {a1, a2, . . . } a set of actions, P (s′|s, a)
the probability that action a at state s will lead to state s′ and
R (s, a) is a reward that evaluates action a at state s accord-
ing to the task. We aim to learn a policy π (a|s) describing
the probability of taking an action a when the agent is in state
s, with the ideal goal to maximise the cumulative reward
R across an entire trajectory (i.e. the return). Whereas the
reward function needs to be defined in RL, imitation infers
it from demonstrations instead. Additionally, while Inverse
Reinforcement Learning aims to directly infer the reward
function [35], GAIL uses a discriminator policy that provides
R based on its similarity to the experts. A demonstration
dataset is presented as a set of trajectories T = {τ1, τ2, . . . },
where each trajectory τ = {(s1, a1) , (s2, a2) , . . . } is a
sequence of state-action pairs.

GAIL. Our architecture is based on the adversarial model
of GAIL [3], which combines supervised classification with
RL. Similarly to GANs, the policy network πθ (with param-
eters θ) generates trajectories trying to fool a discriminator
Dw (with parameters w), while the latter tries to distinguish
between the real expert policy πE and the generated samples.
Therefore, the discriminator’s loss is

Lw = −EπE [logDw(s, a)]−Eπθ [log(1−Dw(s, a))] , (1)

while the generator’s loss is

Lθ = Eπθ [log(1−Dw(s, a))] . (2)

In order to get the expectation of Dw with respect to πθ,
GAIL models it as an RL cost function and approximates it
with a gradient such as TRPO [21].

State

reward
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Fig. 3. Detailed overview of stage 1, which performs Corrected Augmenta-
tion For Trajectories. The architecture is semi-supervised since it is guided
by unlabelled distorted actions.

A. Framework Overview

Our framework, presented in Figure 2, is separated into
two stages. In stage 1, we introduce a way to augment
trajectory datasets. That is achieved through an adversarial
architecture that performs Corrected Augmentation for Tra-
jectories (CAT), which aims to correct actions of experts that
have been distorted. In stage 2, we use the CAT network of
stage 1 to dynamically generate synthetic experts, in order
to train a Data Augmented Generative Imitation (DAugGI)
agent.

CAT’s objective is to produce successful demonstrations
from experts. The main difference between this semi-
supervised model and standard imitation is the fact that this
network has access to noisy sequences of expert actions and
its objective is to correct them, as shown in the example
in Figure 1. Due to the stochastic nature of the policy, the
resulting semi-supervised network can produce an infinite
amount of corrected trajectories, which can then be used to
augment small datasets of expert trajectories.

The DAugGI network leverages these augmented datasets
to perform imitation learning. More precisely, rather than
using a limited expert dataset (such as GAIL), we use CAT
to dynamically produce synthetic experts. Ideally, by having
access to a much larger (and potentially infinite) set of
experts, DAugGI should be significantly faster and more
stable to train.

B. Corrected Augmentation for Trajectories (CAT)

Using data augmentation in supervised approaches in-
creases the diversity of the samples and the dataset’s cov-
erage of the input space. The benefits of this regularisation
technique are a better robustness and an improved resistance
to overfitting [36]. It is difficult to perform data augmentation
in control, though, due to the fact that distorting the input
(i.e. adding noise to the actions) can very easily change the
label of the trajectory (i.e. it becomes unsuccessful when
the original was not). Finding the right amount of noise that



Algorithm 1: Corrected Augmentation for Trajecto-
ries Algorithm

Input: Set of expert trajectories TE , regularisation λ
noise σ, initial policy φ0 and discriminator
u0, N number of perturbed action sequences.

// produce randomly perturbed augmented

action sequences Q
1 Q = {}
2 for each τE in TE do
3 Generate N perturbed action sequences

Q′ = {q1, . . . , qN} from τE according to (3).
4 Q = Q

⋃
Q′.

5 end
// correct augmented trajectories so they are

successful

6 for i = 0, 1, 2, . . . do
7 Sample trajectory τi ∼ πφi(qi), with qi sampled

uniformly from Q.
8 ui+1 ← ui −∇uLui using GAIL’s (1).
9 φi+1 ← φi −∇φLφi using (5).

10 end

preserves the labels can be arduous and limiting in terms of
diversity in the dataset. Therefore, data augmentation through
action distortion in control can only be performed if there is
a guarantee the label does not change.

To tackle this, we propose a semi-supervised CAT frame-
work which aims to correct naively distorted expert actions,
thus producing new successful synthetic demonstrations. As
shown in Figure 3, CAT’s input is the environment’s state s
concatenated with distorted expert actions a′ from distorted
expert action sequences

q = {a′1, a′2, a′3, . . . } , where a′t = aEt + ν

and τE = {(sE1
, aE1

), (sE2
, aE2

), . . . } .
(3)

The distorted actions a′ are produced by perturbing the
expert actions aE of expert trajectories τE with uniform
noise ν (with standard deviation σ).

The resulting states of the distorted trajectories suffer from
compounding errors, therefore they cannot be used as a
representation of a successful demonstration. The distorted
actions a′t, on the other hand, present a valid action sequence
q and their noise does not depend on the noise of previous
steps. Hence, they can be used to represent an approximation
of an expert action sequence. The aim of the CAT policy
network πφ(a|s, a′) is to produce successful action sequences
by following these sequences of distorted actions and min-
imising the difference |a−a′| between the two. The form of
these corrected trajectories is the following:

τc = {(sE1
, ac1), (sc2 , ac2), (sc3 , ac3), . . . } ,

where act ∼ πφ(sct , a′t).
(4)

The loss function for the correction generator is defined
as follows:

Lφ = Eπφ [log(1−Du(s, a))] + λ||a− a′||22. (5)

Correction 
Network πφ

Fig. 4. Detailed overview of stage 2, which performs Data Augmented
Generative Imitation, including the success filtering mechanism.

The main differences between (5) and GAIL’s (2) are the
policy’s input and the addition of the second term, which
utilises the unlabelled actions a′. This alters the objective
of the generator to minimising the difference between its
actions and distorted expert action sequences, in addition to
maximising the discriminator reward. Therefore, a′ are used
as auxiliary state. The discriminator’s objective is to separate
the generated samples from the fixed real experts. Since the
unlabelled data are not part of its objective, its loss remains
the same as GAIL’s, which is presented in (1). A description
of the CAT process is presented in Algorithm 1.

C. Data Augmented Generative Imitation (DAugGI)

The ultimate goal of trajectorial data augmentation is to
improve upon imitation. Data augmentation methods usually
produce a fixed augmented dataset. However, CAT has
already modelled the distribution of the corrected state-action
pairs. Therefore, similarly to [37], we can use the guided
CAT policy to produce dynamic experts, as Figure 4 shows,
instead of sub-sampling its distribution in a fixed dataset.

Even though our method uses the output of CAT to
teach an imitation network, it is not a Teacher/Student
(T/S) network. Indeed, usually T/S networks have the same
objective [31], [38] (or at least same type of input [39]).
They can therefore share weights, at least up to a point,
since they try to learn similar features. In contrast, in our
setting the two networks have different objective – one is
to correct, the other is to imitate – and different inputs.
However, they do share the same output space and their
resulting trajectories are comparable. That is why, in our
architecture, the connection between the two networks is
only in the output space, where we use the CAT network to
dynamically produce synthetic experts which, in turn, teach
a Data Augmented Generative Imitation (DAugGI) network
to perform the task from scratch.

An important difference between the corrected trajectories
τc and the real expert ones τE is that the former are not
guaranteed to be successful, despite the correction. Using
every output of CAT to train DAugGI is beneficial only when
CAT itself has a very high success rate (See Section IV).
If this is not the case, a selective mechanism is needed to
filter out unsuccessful corrections so as not to confuse the



generator. In most real-world applications, we usually have
a-priori knowledge of the success criterion for each task and
therefore we can easily use it as a filter. This information
is binary and sparse, since it is provided only at the end
of each trajectory and is, therefore, easy to implement in
practice. Whereas its simplicity and sparsity make using it
as a reward in RL very difficult, as seen in [5] as well as
Section IV, it is very beneficial in our case.

The network architecture of DAugGI is similar to GAIL’s,
as seen in Figure 4. After Stage 1, we freeze the CAT policy
network and include it in the training process of the imitation
network. The objective of the DAugGI policy πθ is to match
the expert distribution, therefore its loss function is the same
as GAIL’s generator, presented in (2). The discriminator
Dw, on the other hand, tries to distinguish samples between
πφ and πθ, which are the CAT and DAugGI generators
respectively, instead of πθ and πE as in GAIL. Therefore,
the loss of discriminator Dw is

Lw = −Eπφ [logDw(s, a)]− Eπθ [log(1−Dw(s, a))] . (6)

Despite completing the same task, the motivation of the
imitation and correction networks is distinctively different.
Imitation networks, such as DAugGI and GAIL, aim to per-
form tasks without any supervision during the task execution.
Our correction network, on the other hand, is guided during
execution by an estimation of how the trajectory should be.
It is then asked to micro-correct the individual actions to
ensure the final outcome is a successful one (see Figure 1 for
an example). In terms of training, the CAT network is more
stable and can learn faster, since it is given more information.
This is supported by the experiments in Section IV. In terms
of diversity though, the imitation network has greater variety
in trajectories, since it is free to explore the entire state-action
space. The guided CAT network, on the other hand, limits its
exploration around the sub-optimal trajectories and focuses
around their state-action space.

IV. EXPERIMENTS

This section describes the experiments conducted to evalu-
ate the effectiveness of trajectorial augmentation in imitation.
This includes the evaluation of the success and diversity of
the CAT and DAugGI networks.

A. Experimental Setup

We test our method on two types of tasks. One is the
classic control environments of OpenAI [40] and the other is
more complex dexterous object manipulation tasks presented
in [5], which use real expert demonstrations.

OpenAI Tasks we test our framework on two OpenAI
tasks, InvertedPendulum and HalfCheetah. Whereas these
two tasks were successfully trained with ample experts and
environment steps in GAIL’s original presentation [3], we
increase the difficulty of the tasks by dramatically reducing
the expert demonstrations to 3 and the steps of each iteration
by more than 16 times. That way we test the environments
in harsher conditions, where the number of resources and
experts are limited. Since the CAT network manages to

TABLE I
CAT EVALUATION AND DATASET DIVERSITY

CAT Success % Dataset Diversity score dtwn

Task Random
Aug/tion

Corrected
Aug/tion

CAT
original

DAugGI
original

GAIL
original

HalfCheetah 0.7 97.6 0.54 0.68 0.73
Inv. Pendulum 4 100 0.91 1.13 1.11

Door 21 56 1.11 0.26 0.25
Pen 58 46 0.93 1.12 1.06

Hammer 62 63 1.00 0.26 0.24

achieve highly successful results, no filtering mechanism is
needed for the synthetic experts in DAugGI.

Dexterous Object Manipulation Tasks these tasks in-
volve object manipulation with a dexterous anthropomorphic
hand and include a) the opening of a door, b) hammering a
nail and c) pen manipulation. Due to the complexity of the
tasks, all of them require binary filtering on the synthetic
experts while training DAugGI. The filtering criteria used
are the same as the success criteria for evaluation. All
Door experiments were also pretrained with BC for 10000
iterations to speed up training.

All expert trajectories from [5] were acquired using a
CyberGlove III and an HTC headset and tracker. In order
to evaluate imitation with these datasets, we first train the
unstable GAIL baseline, and then evaluate the effects our
augmentation has on stability, success and diversity. Since
we make use of a binary filter at the end of each trajectory,
we also compare it to the Deep Deterministic Policy Gradient
(DDPG) RL method [41]. For a fair comparison, the DDPG
agent is trained using only the binary filter as a sparse binary
reward at the end of each trajectory.

Regarding diversity, we test the entire original expert
dataset, as well as generated datasets of 100 successful trajec-
tories from GAIL and our two generators CAT and DAugGI.
All the networks used consist of two hidden layers with 64
neurons and all the environments use λ = 0.1. The iteration
sizes were 210 for InvertedPendulum and HalfCheetah, 214

for Door and Hammer and 212 for Pen. The simulation
environment used in this work is Mujoco Pro [42] and all
experiments are performed using an Intel Xeon E5-2650 v2
@ 2.60GHz CPU, an NVIDIA GeForce GTX 1080 Ti GPU
and 256 GB of RAM.

B. CAT Evaluation

We fist evaluate CAT by testing its ability to successfully
correct the distorted action sequences. This is done by
comparing the success rate of a number of corrections,
compared to the success of the original random perturbations.
The result of this is presented in Table I (left). Regarding
the OpenAI tasks, CAT is almost always able to correct
successfully, even under severe distortion. The dexterous
manipulation tasks were more challenging, but it still man-
aged to surpass the random perturbations in most cases. The
most challenging task was the pen, potentially due to its
success being more difficult to infer than the others, leading
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Fig. 5. a) Performance results of various tasks at different training steps. It includes easier OpenAI tasks (HalfCheetah and InvertedPendulum) with
3 experts, as well as more challenging dexterous manipulation tasks (Door, Hammer, Pen) with 25 experts. DAugGI is trained using the augmented
CAT trajectories and generally outperforms GAIL, trained with the original limited trajectories. b) Ablation studies with different number of experts for
HalfCheetah and Door tasks. DAugGI consistently outperforms GAIL, especially when the expert dataset is limited.

to unhelpful corrections. Still, its trajectories do not collapse
since CAT’s diversity is very close to the original, as seen in
Table I (right). This indicates that even when a CAT policy
is a “bad” teacher, it is still good enough to train a DAugGI
policy successfully, as seen in Figure 5.

C. DAugGI Evaluation

We further evaluate the CAT augmentation in terms of
success and stability in imitation. This is done by using CAT
to train DAugGI policy networks and then comparing them to
GAIL and sparse binary DDPG policies. They are evaluated
by generating samples at different environmental steps, using
multiple seeds, as shown in Figure 5. Due to lack of available
experts, the same experts are used for all the seeds.

Figure 5 a) shows that tasks respond differently based on
their difficulty. Very easy or difficult tasks, like InvertedPen-
dulum and Pen respectively, seem to behave very similarly
to GAIL. That is because the tasks are either already easily
solvable (InvertedPendulum) or the “bad” teacher does not
provide any additional information (Pen). But even then,
it seems to not only retain the original information, but
also increase stability. Tasks with medium difficulty, like
HalfCheetah and Door, are the ones that benefited the
most, with DAugGI showing clear improvement. Regarding
Hammer, another medium difficulty task, DAugGI manages
to greatly improve its stability. GAIL, on the other hand,
proved very unstable in its ability to converge.

All the DDPG runs were unable to converge, meaning
that the minimal binary success filter at the end of each
trajectory is not enough information for pure RL methods.
Similar findings were also reported in [5], which used sparse
rewards. Additionally, we evaluate the significance of the size
of the expert dataset. Figure 5 b) shows that DAugGI can
improve overall performance even in extreme situations with
very few experts, where GAIL typically struggles.

D. Diversity

Diversity is a criterion often tested in GANs for computer
vision tasks [43], but it is more difficult to do so in control,
due to the sequential nature of generated trajectories. In an
effort to quantify the diversity capabilities of our generators,
we introduce a dataset metric that utilises the Dynamic Time

Warp (DTW) score between trajectories. As [44] stated,
DTW offers a better metric than distance for comparison
between trajectories, but can only perform pairwise com-
parison. In order to produce a score for an entire dataset
T = {τ1, . . . , τN}, we calculate the mean dtw score of
all the possible pairs of trajectories in a dataset and further
normalise it with the diversity of the experts:

dtwn (Tg) =
dtw (Tg)
dtw (TE)

,

where dtw(T ) =
∑N−1
i=1

∑N
j=i+1 dtw(τzi , τzj )

(N − 1)N/2
.

(7)

Similarly to [45], τzi is the z-normalised τi trajectory.
The diversity ratio for each generator, using (7) with

FastDTW [46], are shown in Table I (right). The diversity of
CAT is smaller than the other networks, which is expected,
since it is guided by a plethora of similar trajectories. But
we still expect it to offer a better representation of the space
between the different experts. To test that, we compare the
diversity results of GAIL and DAugGI, which were trained
with the original experts and CAT trajectories respectively.
Encouragingly, the diversity of the DAugGI network is not
only very close to that of GAIL, but it even slightly surpasses
it in most of the instances. That is an indication that CAT
can potentially generalise slightly farther than the original
expert dataset.

V. CONCLUSION
In this work, we present a data augmentation framework

for control systems. Due to the nature of trajectories, it is
not guaranteed that input distortion will preserve their labels.
Hence, we develop a semi-supervised correction network
that is guided by distorted expert actions and produces
synthetic expert trajectories. Our experiments show that the
correction network not only captures an at least equal, and
usually better, representation of the action-space, but can also
provide a faster, more stable and equally diverse training
environment for imitation agents. Potential extensions of
the present work are i) turning it into mutual-learning so
both networks help each other, ii) incorporating the diversity
metric into training, and iii) applying the framework in real-
life settings, on near-expert trajectories with structured noise.
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