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Reference regions are important in laboratory medicine to interpret the test
results of patients, and usually given by tolerance regions. Tolerance regions of
p (≥ 2) dimensions are highly desirable when the test results contains p outcome
measures. Nonparametric hyperrectangular tolerance regions are attractive in
real problems due to their robustness with respect to the underlying distribu-
tion of the measurements and ease of intepretation, and methods to construct
them have been recently provided by Young and Mathew [Stat Methods Med
Res. 2020;29:3569-3585]. However, their validity is supported by a simulation
study only. In this paper, nonparametric hyperrectangular tolerance regions are
constructed by using Tukey’s [Ann Math Stat. 1947;18:529-539; Ann Math Stat.
1948;19:30-39] elegant results of equivalence blocks. The validity of these new
tolerance regions is proven mathematically in [Ann Math Stat. 1947;18:529-539;
Ann Math Stat. 1948;19:30-39] under the only assumption that the underlying
distribution of the measurements is continuous. The methodology is applied to
analyze the kidney function problem considered in Young and Mathew [Stat
Methods Med Res. 2020;29:3569-3585].
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1 INTRODUCTION

Reference intervals, or regions if multiple outcome measures are involved, are powerful tools in laboratory medicine to
aid decision making and their use has become increasingly prevalent in clinical practice.1-6 The comparator limits assist
the clinician in determining a context for an individual value, in order to answer the natural question from the patient
“are my test results typical with respect to a healthy population?”

Incorrectly estimating the reference interval of a sensitive clinical marker of physiological function has enormous
public health implications. For example, underestimating the upper limit of a reference interval would mean clas-
sifying a large number of people as diseased thus affecting the doses of medication prescribed.7,8 Construction of
appropriate reference intervals is therefore crucial in laboratory medicine practice. Well–known general references are
available.1-3,5,9,10
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2 LIU et al.

Reference intervals are constructed from observed sample data and purport to include a pre-specified 100P%
(commonly set to 95%) of the values in the population of interest. Their main point is to classify any future observations
that fall outside these intervals as atypical and thus may warrant further investigation.

As the reference intervals depend on the random sample, the proportion of the population contained in the intervals
is also random. Hence all one can hope for is that the reference intervals contain 100P% of the population with a large
confidence with respect to the randomness in the sample. Since tolerance intervals are constructed to contain 100P%
of the population values with a pre-specified large confidence 𝛾 , they are eminently suitable as reference intervals.9,11-16

Since the first publication on tolerance intervals by Wilks,17 various parametric and nonparametric procedures are readily
available for use as reference intervals.16,18-24

On the other hand, it is argued strongly in References 13-16 that P-confidence prediction intervals (which are also
called P-expectation tolerance intervals) should not be used as reference intervals since prediction intervals contain 100P%
of the population values with a probability as low as half especially when the sample size is large.13 So prediction intervals
or regions are not considered in this paper.

While tolerance intervals for univariate measurements are well-established, multivariate tolerance regions are lim-
ited,9,24 either specifically for multivariate normal distributions 16,25-29 or nonparametric.18,30-33 Young and Mathew 18 and
Lucagbo and Mathew 16 provide excellent and timely reviews of the topic.

It is argued eloquently in Wellek 33 that hyperrectangular reference regions for multivariate measurements are par-
ticularly useful due to their ease of interpretation. Specifically, a hyperrectangular reference region of any dimension
p (≥ 2) can be used to assess straightforwardly whether a future observation is outside the region and so atypical and, if
it is, in which of the p measurements. It is also known 34 that parametric tolerance intervals could have true confidence
level dramatically smaller than the nominal level 𝛾 when the underlying distribution departs only very slightly from the
assumed form of the parametric distribution, which highlights the importance of nonparametric tolerance intervals. It is
therefore timely that Young and Mathew 18 have constructed nonparametric hyperrectangular tolerance regions as ref-
erence regions. However the validity of their method is supported only by a simulation study for the specific underlying
distributions considered in their paper.

In this article, nonparametric hyperrectangular tolerance regions of 100P% content and 𝛾 confidence are constructed
by using Tukey’s 30,31 equivalence blocks (EBs). They are distribution–free in that the “100P% content and 𝛾 confidence”
requirement is guaranteed so long as the underlying multivariate distribution of the measurements is continuous. The
gist of our construction method is that the true confidence level can be computed exactly depending on the total number
of EBs without specifying the multivariate probability model assumed to generate the observed data. Besides, as noted
by Di Bucchianico et al 35 and Amerise,36 there is no canonical ordering in higher dimensions thus auxiliary ordering
functions are implied in Tukey’s method. This means that one cannot look at the data and select the best ordering that
results in the smallest hyperrectangle.

Distribution–free hyperrectangular tolerance regions are considered in Section 2. The methods described there are
then applied in Section 3 to the real problem of defining reference regions for kidney function in normal adolescents con-
sidered in Young and Mathew.18 Finally, concluding remarks are given in Section 4. The data and R code for reproducing
all the results in this paper are available at http://www.personal.soton.ac.uk/wl/RefHypeRecta/.

2 DISTRIBUTION–FREE HYPERRECTANGULAR TOLERANCE REGIONS

In this section, distribution–free hyperrectangular tolerance regions of 100P% content and 𝛾 confidence are constructed
using Tukey’s 30,31 EBs.

Let X = (X1, … ,Xp)′ denote a (generic) random vector of p measurements of interest from an individual of the pop-
ulation, which has a continuous p-dimensional distribution with its cumulative distribution function (cdf) denoted as F.
For example, for the kidney function problem considered in Section 3, p = 3 measurements are of interest, given by X1 =
urine albumin–to–creatinine ratio (UACR), X2 = uric acid (UA), and X3 = serum creatinine (SC). A random sample of n
observations from the population is available and denoted by

X1 =
⎛
⎜
⎜
⎜
⎝

X11

⋮

X1p

⎞
⎟
⎟
⎟
⎠

, … ,Xn =
⎛
⎜
⎜
⎜
⎝

Xn1

⋮

Xnp

⎞
⎟
⎟
⎟
⎠

i.i.d.∼ F.
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LIU et al. 3

Let = {X1, … ,Xn} denote the random sample, and we further assume that X is independent of (and also has cdf F).
A tolerance region of 100P% content and 𝛾 confidence is constructed using the sample , is denoted as T(), and satisfies

Pr


{

Pr
X|
{X ∈ T()} ≥ P

}

≥ 𝛾, (1)

where the (inner) probability PrX| {X ∈ T()} is computed taking X as random while  , and so the region T(), is
fixed, and the (outer) probability Pr {} is computed taking  as random. The (inner) probability PrX| {X ∈ T()} is
called the coverage probability or content of T(), which clearly depends on  and so is random. The inequality in (1)
guarantees that the content of T() is at least P with a confidence of at least 𝛾 with respect to the randomness of the
sample  .

The elegant results of Tukey 30,31 state that if T() is the union of k (1 ≤ k ≤ n) EBs (whose construction will be
considered below) then

Pr
X|
{X ∈ T()} ∼ Beta(k,n − k + 1), (2)

where Beta(k,n − k + 1) denotes the beta distribution with parameters k and n − k + 1. The cdf of Beta(k,n − k + 1) is
denoted as k,n−k+1(⋅). Hence if T() is constructed as the union of k EBs then the requirement in (1) becomes

1 − k,n−k+1(P) ≥ 𝛾. (3)

In order to use the fewest EBs to form T() as such union, the smallest k (1 ≤ k ≤ n) that satisfies this constraint, denoted
as k0, will be used. It is straightforward to find k0 from (3) numerically, and it is clear that k0 depends on P, 𝛾 and n only.
Due to the discreteness of the number of EBs k0 used and the sample size n, the true confidence level of the tolerance
region T() is given by 1 − k0,n−k0+1(P) from (3), and most likely to be larger than 𝛾 . This is of course well–known in the
case of distribution–free tolerance intervals for one single measurement.22

It remains to show how the n + 1 EBs of Tukey 30,31 can be constructed based on the sample , from which a tolerance
region T() of hyperrectangular shape can be formed as the union of k0 EBs for p ≥ 2.

For the case of p = 1, let the order statistics of the sample of n observations on the only measurement be denoted as
X[1]1 < · · · < X[n]1. Then the n + 1 EBs are given by

(−∞,X[1]1], (X[1]1,X[2]1] , … , (X[n−1]1,X[n]1], (X[n]1,∞).

The union of the first k0 EBs is given by T() = (−∞,X[k0]1], which is a 100P% content and 𝛾 confidence upper tolerance
interval for the population. The union of the last k0 EBs is given by T() = (X[n−k0+1]1,∞), which is a 100P% content and 𝛾
confidence lower tolerance interval for the population. The union of the middle k0 EBs is given by T() = (X[m]1,X[m+k0]1]
which is a 100P% content and 𝛾 confidence two–sided tolerance interval for the population; here m = (n − k0 + 1)∕2 if
n − k0 + 1 is an even number, and m = (n − k0)∕2 or (n − k0)∕2 + 1 if n − k0 + 1 is an odd number. Due to the assumption
that the underlying distribution is continuous, there is no difference to the requirement (1) whether or not a boundary
point X[i]1 is included in the EB. The same is true for a general p (≥ 1).30,31

2.1 The case of p = 2

For p = 2, the n + 1 EBs can be constructed in the following way using Tukey’s method 30,31 in order to form two–sided
tolerance rectangles of the form T() =

{
(x1, x2)′ ∶ L1() < x1 ≤ U1(),L2() < x2 ≤ U2()

}
.

Step 1 Order the n observations on the first measurement X11, … ,Xn1 as X[1]1 < · · · < X[n]1. Construct the first EB as

B1 =
{
(x1, x2)′ ∶ x1 > X[n]1

}
⊂ R2

where R2 denotes the whole (x1, x2)-plane.
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4 LIU et al.

Step 2 Delete the sample observation having the largest first measurement X[n]1 and denote the remaining n − 1 sample
observations as X1,1, … ,Xn−1,1 with Xi,1 = (Xi1,1,Xi2,1)′ for i = 1, … ,n − 1. Order the n − 1 observations on the
second measurement X12,1, … ,X(n−1)2,1 as X[1]2,1 < · · · < X[n−1]2,1. Construct the second EB as

B2 =
{
(x1, x2)′ ∶ (x1, x2)′ ∉ B1 and x2 > X[n−1]2,1

}
⊂ R2

.

Step 3 Delete the sample observation having the largest second measurement X[n−1]2,1 and denote the remaining n − 2
sample observations as X1,2, … ,Xn−2,2 with Xi,2 = (Xi1,2,Xi2,2)′ for i = 1, … ,n − 2. Order the n − 2 observations
on the first measurement X11,2, … ,X(n−2)1,2 as X[1]1,2 < · · · < X[n−2]1,2. Construct the third EB as

B3 =
{
(x1, x2)′ ∶ (x1, x2)′ ∉ B1 ∪ B2 and x1 ≤ X[1]1,2

}
⊂ R2

.

Step 4 Delete the sample observation having the smallest first measurement X[1]1,2 and denote the remaining n − 3 sam-
ple observations as X1,3, … ,Xn−3,3 with Xi,3 = (Xi1,3,Xi2,3)′ for i = 1, … ,n − 3. Order the n − 3 observations on
the second measurement X12,3, … ,X(n−3)2,3 as X[1]2,3 < · · · < X[n−3]2,3. Construct the fourth EB as

B4 =
{
(x1, x2)′ ∶ (x1, x2)′ ∉ B1 ∪ B2 ∪ B3 and x2 ≤ X[1]2,3

}
⊂ R2

.

Step 5 Delete the sample observation having the smallest second measurement X[1]2,3.
Starting now with the remaining n − 4 sample observations, repeat the steps above in the given order until the
n–th EB Bn is constructed. Note that it is possible that not the full cycle of all the four steps above may have been
used by the time that Bn is constructed.
The last EB Bn+1 is simply given by the complement in R2 of the set B1 ∪ · · · ∪ Bn. Hence B1 ∪ · · · ∪ Bn ∪ Bn+1 = R2.

Figure 1 gives an illustration on the construction of the n + 1 = 8 EBs from a given sample of n = 7 observations. The
n = 7 observations are plotted in the figure as crosses.

0 1 2 3 4 5 6

0
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5
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x1

x 2 B1

B2
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B4

B5

B6

B7 B8

F I G U R E 1 The 8 EBs forming two–sided tolerance rectangles constructed from the 7 observations denoted by crosses.
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LIU et al. 5

Now the union of the last k0 EBs, given by T() = Bn−k0+2 ∪ · · · ∪ Bn+1, is a 100P% content and 𝛾 confidence tolerance
region for the population. For the example in Figure 1, if k0 ≤ 4 then T() is a rectangle; if k0 > 4 then T() is not a
rectangle. In general, k0 must be no larger than n − 3 in order that T() is a rectangle. The existence of such a k0 is
guaranteed only if the sample size n is sufficiently large such that the inequality in (3) is satisfied with k = n − 3, that is,

1 − n−3,4(P) ≥ 𝛾. (4)

This minimum sample size can easily be computed numerically (eg, using our R code provided), and it depends on the
given P and 𝛾 only. For example, for P = 95% and 𝛾 = 0.95, the sample size n must be at least 153 in order that T()
is a rectangle. If the available sample size is smaller than the minimum sample size then P or 𝛾 has to be reduced in
order that T() is a rectangle. For example, for P = 45% and 𝛾 = 0.60, the minimum sample size n is reduced to 7 in
order that T() is a rectangle. This consideration of minimum sample size requirement is similar to that developed
for the one single measurement case discussed in Reference 22 in relation to constructing distribution–free tolerance
intervals.

For given P, 𝛾 , and sample size n that is no smaller than the minimum sample size, we therefore are able to find k0
from (3) and construct a distribution–free tolerance rectangle T() of 100P% content and 𝛾 confidence as given above.
As already pointed out, the true confidence level of the tolerance rectangle is given by 1 − k0,n−k0+1(P), which is likely
to be larger than 𝛾 . For example, when P = 95%, 𝛾 = 0.95 and n = 200, k0 is computed from (3) to be 196 and the true
confidence level is 1 − k0,n−k0+1(P) = 0.974 which is larger than the nominal 𝛾 = 0.95. As another example, when P =
45%, 𝛾 = 0.60 and n = 7, k0 is computed to be 4 and the true confidence level is 0.608 which is larger than the nominal
𝛾 = 0.60. Hence for the example in Figure 1 which has sample size n = 7, the rectangle formed by the union of the last
k0 = 4 EBs, given by T() = B5 ∪ B6 ∪ B7 ∪ B8, is a P = 45% content and 𝛾 = 0.60 confidence tolerance region for the
population.

It is noteworthy that there are numerous alternative ways to construct the EBs. For example, the order of the four
steps above can be changed to any one of the 4! permutations of the four steps in one full cycle. Or, the orders of the
four steps in different cycles could be altered. All these alternative constructions will result in valid EBs and tolerance
rectangles so long as the orders are chosen independently of the sample  .30,31 That is, one cannot look at the data and
select the best ordering in order to have the smallest rectangle T(). When the sample size n is sufficiently large, one can
envisage that the difference between the resultant tolerance rectangles from these alternative constructions of EBs should
be small. So this will not be pursued further in this paper.

Next we consider the construction of EBs in order to form one–sided tolerance “rectangles” of the form T() ={
(x1, x2)′ ∶ x1 ≤ U1(), x2 ≤ U2()

}
(or upper semi-space in [1]).

Step 1 Order the n observations on the first measurement X11, … ,Xn1 as X[1]1 < · · · < X[n]1. Construct the first EB as

B1 =
{
(x1, x2)′ ∶ x1 > X[n]1

}
⊂ R2

.

Step 2 Delete the sample observation having the largest first measurement X[n]1 and denote the remaining n − 1 sample
observations as X1,1, … ,Xn−1,1 with Xi,1 = (Xi1,1,Xi2,1)′ for i = 1, … ,n − 1. Order the n − 1 observations on the
second measurement X12,1, … ,X(n−1)2,1 as X[1]2,1 < · · · < X[n−1]2,1. Construct the second EB as

B2 =
{
(x1, x2)′ ∶ (x1, x2)′ ∉ B1 and x2 > X[n−1]2,1

}
⊂ R2

.

Step 3 Delete the sample observation having the largest second measurement X[n−1]2,1.
Starting now with the remaining n − 2 sample observations, repeat the steps 1 and 2 above in the given order until
the n–th EB Bn is constructed. Note that it is possible that not the full cycle of all the two steps above are used
when Bn is constructed.
The last EB Bn+1 is simply given by the complement in R2 of the set B1 ∪ · · · ∪ Bn.

This construction basically deletes the steps 3 and 4 in the construction of the two–sided tolerance rectangle in order
not to have lower bounds on x1 and x2. Figure 2 gives an illustration on the construction of the n + 1 = 8 EBs from the
same sample of n = 7 observations in Figure 1.
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6 LIU et al.
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F I G U R E 2 The 8 EBs forming one–sided tolerance rectangles from the same sample of n = 7 observations in Figure 1.

Now the union of the last k0 EBs, given by T() = Bn−k0+2 ∪ · · · ∪ Bn+1, is a 100P% content and 𝛾 confidence tolerance
region for the population as before. For the example in Figure 2, if k0 ≤ 6 then T() is a one–sided “rectangle” required;
if k0 > 6 then T() is not a one–sided “rectangle”. It is clear that, in general, k0 must be no larger than n − 1 in order that
T() is a one–sided “rectangle”. Similar to the two–sided case above, the existence of such a k0 is guaranteed only if the
sample size n satisfies (3) with k = n − 1, that is, 1 − n−1,2(P) ≥ 𝛾 . For example, for P = 95% and 𝛾 = 0.95, the sample
size n must be at least 93 in order that T() is a one–sided “rectangle”. For given P, 𝛾 , and n that is not smaller than the
minimum sample size required, k0 is computed from (3) as before. For the example in Figure 2 with sample size n = 7,
P = 45% and 𝛾 = 0.60, k0 is computed to be 4 as before. The one–sided “rectangle” formed by the union of the last k0 = 4
EBs, given by T() = B5 ∪ B6 ∪ B7 ∪ B8, is therefore a P = 45% content and 𝛾 = 0.60 confidence tolerance region for the
population. As before, its true confidence level is 0.608 which is larger than the nominal confidence level 𝛾 = 0.60.

The constructions for two–sided or one–sided tolerance “rectangles” given above can clearly be adapted to con-
struct mix-sided tolerance “rectangles” of the form, say, T() =

{
(x1, x2)′ ∶ L1() < x1 ≤ U1(), x2 ≤ U2()

}
. Details

are omitted to save space.

2.2 The case of p ≥ 2

For a general p ≥ 2, the n + 1 EBs can be constructed in the following way in order to form two–sided p–dimensional
tolerance hyperrectangles (ie, boxes) T() =

{
(x1, … , xp)′ ∶ Li() < xi ≤ Ui(), i = 1, … , p

}
.

Step 1 Order the n observations on the first measurement X11, … ,Xn1 as X[1]1 < · · · < X[n]1. Construct the first
EB as

B1 =
{
(x1, … , xp)′ ∶ x1 > X[n]1

}
⊂ Rp

where Rp denotes the whole (x1, … , xp)-space.
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LIU et al. 7

Step 2 Delete the sample observation having the largest first measurement X[n]1 and denote the remaining n −
1 sample observations as X1,1, … ,Xn−1,1 with Xi,1 = (Xi1,1,Xi2,1, … ,Xi p,1)′ for i = 1, … ,n − 1. Order the
n − 1 observations on the second measurement X12,1, … ,X(n−1)2,1 as X[1]2,1 < · · · < X[n−1]2,1. Construct the
second EB as

B2 =
{
(x1, … , xp)′ ∶ (x1, … , xp)′ ∉ B1 and x2 > X[n−1]2,1

}
.

· · ·
Step p Delete the sample observation having the largest (p − 1)–th measurement X[n−(p−2)](p−1),p−2 and

denote the remaining n − (p − 1) sample observations as X1,(p−1), … ,Xn−(p−1),(p−1) with Xi,1 =
(Xi1,(p−1),Xi2,(p−1), … ,Xi p,(p−1))′ for i = 1, … ,n − (p − 1). Order the n − (p − 1) observations on the p–th
measurement X1 p,(p−1), … ,X(n−(p−1)) p,(p−1) as X[1]p,(p−1) < · · · < X[n−(p−1)]p,(p−1). Construct the p–th EB as

Bp =
{
(x1, … , xp)′ ∶ (x1, … , xp)′ ∉ ∪p−1

i=1 Bi and xp > X[n−(p−1)]p,(p−1)

}
.

Step p+ 1 Delete the sample observation having the largest p–th measurement X[n−(p−1)]p,(p−1) and denote the remaining
n − p sample observations as X1,p, … ,Xn−p,p with Xi,p = (Xi1,p,Xi2,p, … ,Xi p,p)′ for i = 1, … ,n − p. Order
the n − p observations on the first measurement X11,p, … ,X(n−p)1,p as X[1]1,p < · · · < X[n−p]1,p. Construct the
(p + 1)–th EB as

Bp+1 =
{
(x1, … , xp)′ ∶ (x1, … , xp)′ ∉ ∪p

i=1Bi and x1 ≤ X[1]1,p
}
.

Step p+ 2 Delete the sample observation having the smallest first measurement X[1]1,p and denote the remaining
n − (p + 1) sample observations as X1,(p+1), … ,Xn−(p+1),(p+1) with Xi,(p+1) = (Xi1,(p+1),Xi2,(p+1), … ,Xi p,(p+1))′
for i = 1, … ,n − (p + 1). Order the n − (p + 1) observations on the second measurement
X12,(p+1), … ,X(n−(p+1))2,(p+1) as X[1]2,(p+1) < · · · < X[n−(p+1)]2,(p+1). Construct the (p + 2)–th EB as

Bp+2 =
{
(x1, … , xp)′ ∶ (x1, … , xp)′ ∉ ∪p+1

i=1 Bi and x2 ≤ X[1]2,(p+1)

}
.

· · ·
Step 2p Delete the sample observation having the smallest (p − 1)–th measurement X[1](p−1),2p−2 and denote

the remaining n − (2p − 1) sample observations as X1,(2p−1), … ,Xn−(2p−1),(2p−1) with Xi,(2p−1) =
(Xi1,(2p−1),Xi2,(2p−1), … ,Xi p,(2p−1))′ for i = 1, … ,n − (2p − 1). Order these n − (2p − 1) observations on the
p–th measurement X1 p,(2p−1), … ,X(n−(2p−1)) p,(2p−1) as X[1] p,(2p−1) < · · · < X[n−(2p−1)] p,(2p−1). Construct the
(2p)–th EB as

B2p =
{
(x1, … , xp)′ ∶ (x1, … , xp)′ ∉ ∪2p−1

i=1 Bi and xp ≤ X[1] p,(2p−1)

}
.

Step 2p+ 1 Delete the sample observation having the smallest p–th measurement X[1] p,(2p−1).
Starting now with the remaining n − 2p sample observations, repeat the steps above in the given order

until the n–th EB Bn is constructed. Note that it is possible that not the full cycle of all the 2p steps above are
used when Bn is constructed.

The last EB Bn+1 is simply given by the complement in Rp of the set B1 ∪ · · · ∪ Bn. Hence B1 ∪ · · · ∪ Bn ∪
Bn+1 = Rp.

As before the union of the last k0 EBs, given by T() = Bn−k0+2 ∪ · · · ∪ Bn+1, is a 100P% content and 𝛾 confidence
tolerance region for the population. If k0 ≤ n − (2p − 1) then T() is a two–sided p–dimensional tolerance hyperrectangle
(ie, box) as required. Similarly as before, the existence of such a k0 is guaranteed only if the sample size n is sufficiently
larger such that 1 − n−(2p−1),2p(P) ≥ 𝛾 . For example, for P = 95%, 𝛾 = 0.95 and p = 3, the sample size n must be at least
208 in order that T() is a three dimensional box.

For the real problem considered in Section 3 below, it is required to construct a three-dimensional rectangular
tolerance region of the form
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8 LIU et al.

T() =
{
(x1, x2, x3)′ ∶ x1 ≤ U1(), and Li() < xi ≤ Ui() for i = 2, 3

}
. (5)

For this, the EBs can be constructed in a similar way as above but with p = 3, and Step p + 1 = 4 is deleted in order not to
have a lower bound on the measurement X1.

It is clear that the construction given in this section can also be extended to construct distribution–free 100P% content
and 𝛾 confidence hyperrectangular tolerance regions of one–sided or two–sided or mix-sided for a general p(≥ 2).

It is worth to emphasize that the hyperrectangular tolerance regions constructed above using k0 EBs have a confi-
dence level of at least 𝛾 from the requirement (3), with the exact confidence level given by 1 − k0,n−k0+1(P), under the
only assumption that the underlying distribution of the p measurements is continuous. This is mathematically proven
in References 30,31. On the other hand, the hyperrectangular tolerance regions of Young and Mathew 18 are constructed
not using EBs. The two key ingredients are (1) the number of observations k′0 to be retained based on which the tolerance
regions are constructed, and (2) the identification of the n − k′0 observations to be deleted (or trimmed). It is noteworthy
that k′0 (involving some ad hoc adjustment) is an asymptotic approximation to k0 as n →∞ while ingredient (2) utilizes
data depth (cf. Reference 33). But the true confidence levels of these tolerance regions are shown to be reasonably close to,
and more likely on the conservative side of, the nominal level 𝛾 only by simulation studies under the very limited under-
lying joint distributions considered in Reference 18. It should be noted that neither liberal nor conservative confidence
level (in comparison with the nominal level 𝛾) is desirable. A too conservative confidence level indicates that the tolerance
region could be bigger than necessary and so has reduced sensitivity in detecting out of range individuals or observa-
tions in applications. The simulation study in Reference 37 on the true confidence levels of the hyperrectangular and
upper-semi tolerance regions of Young and Mathew 18 under various bivariate mixed normal and mixed t distributions
shows that the true confidence levels could be considerably larger than 𝛾 sometimes. For example, when P = 90%, 𝛾 = 0.90
and n = 1000, the true confidence level of the hyperrectangular tolerance region (using simplicial depth) of Young and
Mathew 18 is estimated to be 0.944 from simulation (Reference 36, p. 26, tab. 4.3). But the true confidence level of the
hyperrectangular tolerance region constructed in this paper is 1 − k0,n−k0+1(P) = 1 − 913,1000−913+1(0.9) = 0.908, which
is much closer to 𝛾 = 0.90.

We also point out that nonparametric hyperrectangular tolerance regions have also been proposed and studied
in Reference 38 (Sects. 5.6 and 5.7), even though their true confidence levels could be well short of the nominal level 𝛾
especially when p is large and the sample size n is not in thousands based on the simulation results for a multivariate
lognormal distribution.38

3 REFERENCE REGIONS FOR KIDNEY FUNCTION IN NORMAL
ADOLESCENTS

This problem is addressed in Young and Mathew 18 which provides detailed background information. In essence, accurate
reference regions about kidney function are important for detecting the presence and cause of, and for treating, kidney
disease. The reference population of healthy adolescents is defined to be “US adolescents between 12 and 17 years old,
not pregnant, having a blood pressure <120/80 mmHg, without diabetes, not using prescription medications within the
previous 30 days, and a Z–score for weight-to-height ratio ≤ 2, which is a healthy level according to the World Health
Organization”.18 The three important measurements of kidney function are: X1 =UACR, X2 =UA and X3 = SC. A sample
of 5255 observations is extracted from the survey NHANES 1999–2014. This sample is further broken down by gender,
resulting in nm = 2529 males and nf = 2726 females.

The aim is to establish P = 95% content and 𝛾 = 0.95 confidence reference regions of the form in (5) separately for
males and females using the available reference samples of sizes nm and nf .

Using the method given in Section 2.2, the required reference regions are easily computed and given in the column
“Mix–sided region (new)” of Table 1. In particular, for nm = 2529, we have k0m = 2421 and so the reference region for
males is the union of 2421 EBs. The exact confidence level is 1 − k0m,nm−k0m+1(P) = 0.9518 irrespective the distribution of
the three measurements. The only assumption required is that the underlying distribution of the three measurements is
continuous, which is entirely plausible. It is also noteworthy that the marginal distributions of UACR and SC are clearly
not normal. The corresponding reference region of Young and Mathew 18 is given in the column “Mix–sided region (YM)”
of Table 1, and taken from tab. 3 of their paper.

For the reference region for females we have nf = 2726 and k0f = 2609 so the exact confidence level is
1 − k0f ,nf−k0f+1(P) = 0.9532
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LIU et al. 9

T A B L E 1 Three-dimensional rectangular reference regions for UACR, UA and SC.
Mix-sided
region (YM)

Mix-sided
region (new)

Two-sided
region (new)

Upper one-sided
region (new)

Male

UACR ≤3.2 mg/g ≤4.417 0.012–5.417 ≤ 2.732

UA 2.8–8.2 mg/dL 2.800–8.200 2.700–8.400 ≤ 8.000

SC 0.3–1.2 mg/dL 0.300–1.200 0.300–1.200 ≤ 1.120

Female

UACR ≤4.3 mg/g ≤5.241 0.017–5.622 ≤ 3.964

UA 2.4–6.5 mg/dL 2.400–6.700 2.400–6.800 ≤ 6.400

SC 0.3–1.0 mg/dL 0.300–0.970 0.300–1.000 ≤ 0.900

The two–sided and upper one–sided reference regions (boxes) are also computed and given in Table 1. From Table 1,
it can be seen that, for this particular application, the reference limits for UA and SC are hardly different between the two
methods. But the upper limits on UACR of the new method are considerably larger than those of Young and Mathew’s 18

method. Due to the (mathematical) validity of the new method (while the validity of the tolerance region of Young and
Mathew 18 is only supported by simulation results), the new tolerance regions are certainly reliable to use. As expected, the
two–sided regions have larger upper limits and smaller lower limits, and the upper one–sided regions have the smallest
upper limits.

4 CONCLUSIONS

Reference regions of p(≥ 2) dimensions are important in laboratory medicine when several measurements on a patient
are available. Nonparametric reference regions are attractive due to their robustness with respect to the underlying dis-
tribution. Nonparametric hyperrectangular reference regions have the additional advantage of being simple to interpret
in real problems. Hyperrectangular reference regions have been recently given by Young and Mathew.18 However, the
validity of these reference regions is supported only by simulation results for limited underlying joint distributions and
limited configurations of p,P, 𝛾 , and n.

The nonparametric hyperrectangular reference regions provided in this paper are distribution–free in the sense that
their validity is proved mathematically with the only assumption that the underlying distribution is continuous. These
reference regions are constructed by using the beautiful results on EBs developed by Tukey.30,31 R code is available for
easy computation of the new reference regions, which is demonstrated with the real problem of constructing reference
regions for kidney functions of adolescences.

A non–rectangular two dimensional tolerance region is constructed under the bivariate normality assumption in Liu
et al 39 as a reference region for detecting growth hormone misuse by elite athletes. We note that distribution–free tolerance
regions of that particular shape can also be constructed by using the ideas in this paper.

Finally, we note that nonparametric hyperrectangular prediction regions can also be constructed by using Tukey’s 30,31

EBs. However, following the view in Reference 13 that prediction regions are not suitable as reference regions, the
construction of prediction regions falls beyond the scope of this paper.
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