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Abstract 
Artificial intelligence (AI) methods have been applied to medical imaging for several decades, but in the last few years, the number of publica-
tions and the number of AI-enabled medical devices coming on the market have significantly increased. While some AI-enabled approaches are 
proving very valuable, systematic reviews of the AI imaging field identify significant weaknesses in a significant proportion of the literature. 
Medical device regulators have recently become more proactive in publishing guidance documents and recognizing standards that will require 
that the development and validation of AI-enabled medical devices need to be more rigorous than required for tradition “rule-based” software. 
In particular, developers are required to better identify and mitigate risks (such as bias) that arise in AI-enabled devices, and to ensure that the 
devices are validated in a realistic clinical setting to ensure their output is clinically meaningful. While this evolving regulatory landscape will 
mean that device developers will take longer to bring novel AI-based medical imaging devices to market, such additional rigour is necessary to 
address existing weaknesses in the field and ensure that patients and healthcare professionals can trust AI-enabled devices. There would also 
be benefits in the academic community taking into account this regulatory framework, to improve the quality of the literature and make it easier 
for academically developed AI tools to make the transition to medical devices that impact healthcare.
Keywords: radiological; AI; machine learning; medical device; regulation; bias. 

Introduction
Machine learning and artificial intelligence (AI) methods 
have been applied to medical imaging applications for several 
decades, with publications and dedicated conferences on the 
topic in the 1990s.1-3 In recent years, however, there has been 
a rapid acceleration in activity in this area, both in academic 
research and in the launch of commercial products. AI is 
achieving an ever-higher profile in the mass media, most re-
cently with the high-profile launch of several Generative AI 
tools. The general public is increasingly aware of the poten-
tial impact of AI and machine learning on their lives, and of 
the benefits and risks of AI, and this may be especially the 
case where AI impacts their health.

Because AI imaging tools have applications in the diagnosis 
and management of patients, they come under the definition of 
medical devices, and the medical device regulators are therefore 
key gatekeepers in the arrival of such AI tools on the market. AI 
applications in medical imaging are now entering the healthcare 
market in significant numbers. The US Food and Drug 
Administration (FDA), which currently has the most compre-
hensive database of medical devices, periodically publishes the 
number of AI-enabled medical devices that have received mar-
ket authorizations (eg, 510k clearance, de novo). A review of 
devices cleared between 2019 and 2021 was published by 
Muehlematter et al.4

The most recent FDA publication, published October 19, 
2023,5 reports that, up to the end of July 2023, a total of 692 
AI-enabled medical devices had received marketing authoriza-
tion, of which more than 75% are for radiology applications.

The regulators need to strike a balance between enabling 
innovation in this important area and ensuring that AI tools 
put on the market have a positive benefit: risk ratio for 

patients. This article looks at applications of AI in medical 
imaging, the evolving regulatory landscape for AI-enabled 
medical devices, and the implications of this for the develop-
ers and users of AI medical imaging applications, and the 
medical imaging community more broadly.

State of the art of AI in medical imaging
Given this article focuses on the regulatory landscape for AI 
in medical imaging, it is appropriate to start with a medical 
device regulators definition, recently published by the FDA.6

We will use this definition throughout the rest of this publica-
tion, and we will use “artificial intelligence” (AI) as short-
hand for this definition. 

Artificial Intelligence (AI) and Machine Learning (ML) 
can be described as a branch of computer science, statis-
tics, and engineering that uses algorithms or models to per-
form tasks and exhibit behaviors such as learning, making 
decisions, and making predictions. ML is considered a 
subset of AI that allows models to be developed by train-
ing algorithms through analysis of data, without models 
being explicitly programmed.

Barragan-Montero et al, in a thorough technical review,7 em-
phasize that the most recent innovation in AI in medical imag-
ing has been in that machine learning subset of AI. In machine 
learning, an algorithm learns from data without needing to be 
explicitly programmed with a set of rules. The types of algo-
rithms we are considering in this article are those based on ma-
chine learning, as distinct from rule-based approaches.

In general, the medical images used for training AI models 
have been pre-labelled. This labelling is very often done by 
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experts, who delineate image features by hand. For example, 
an algorithm to find the boundary of the left ventricle in a 
cardiac ultrasound scan may be trained with images that 
have been carefully delineated by a radiologist or ultrasound 
technician using a drawing tool on a workstation. However, 
labelling may also be done based on data that are not in the 
images; for example, an algorithm might be trained to tell the 
difference between patients with rapidly progressing or 
slowly progressing disease by training with longitudinal out-
come data.

One particular type of machine learning, referred to as 
deep learning, has recently become extremely widespread in 
medical imaging applications. Deep learning is used to de-
scribe methods in which more sophisticated AI models, typi-
cally multiple-layer neural networks, are trained to classify 
input data. They have been shown to provide better perfor-
mance than more traditional data-driven machine learning 
methods. Barragan-Montero et al’s review provides a helpful 
summary of the various deep learning approaches and high-
lights that convolution neural networks are currently viewed 
as state of the art for many medical imaging applications.

Recently, generative AI has received a lot of publicity be-
cause of its use in natural language processing, and the 
launch of generative AI applications such as OpenAI’s 
ChatGPT based on large language models. Such applications 
can generate content that may be indistinguishable from 
human-generated content and has been shown to be able to 
pass third-year medical student exams.8

Gong et al9 have reviewed the application of Generative AI 
in medical imaging, and its use to create models trained on 
existing medical image data to generate new images with sim-
ilar underlying properties to real-world images. While made- 
up medical images might provide opportunities for fraud in 
medical research, it is not yet clear how these might be rele-
vant to patient management. Gong et al, however, point out 
that they do provide a way of generating large volumes of 
training images for training traditional deep learning algo-
rithms, from a smaller set of hand-annotated images. 
Generative AI may, therefore, be seen as a solution to the 
challenge of obtaining sufficient labelled images to train AI 
algorithms for medical applications. We will return to this 
topic later in the review, as it highlights the challenge of 
obtaining truly representative images for training and testing.

Regardless of the underlying algorithmic approach, there 
are a wide variety of applications of AI in medical imaging 
that are proposed in the literature. This variety of applica-
tions can be illustrated by dividing AI applications into the 
following five categories, based on the output they generate 
and the way this output is then used in a clinical setting:

1. Automatic delineation of a structure of interest in an im-
age, where that structure is known to be present. This 
structure might be one or more chambers of the heart 
from MRI,10 a liver from abdominal CT,11 the hippo-
campus from volumetric MRI.12

2. Detecting abnormalities in a medical image, for exam-
ple, detecting lesions in mammograms,13 or glioma in 
MRI.14 Unlike the first category, this approach involves 
detecting whether an abnormality is present in the im-
age, rather than measuring a structure that is known to 
be present. 

3. Image Enhancement such as improving the resolution of 
reconstructed images such as deep learning super- 

resolution, for example, to reduce examination time 
while preserving image diagnostic quality.15

4. Identifying a disease-specific signature, learned from 
multiple image features, that could be used in the diag-
nosis of a disease, for example, an imaging signature of 
Alzheimer disease (AD) from MRI.16 Unlike categories 1 
and 2, this application of AI goes beyond automating a 
task that could be done by a radiologist on a worksta-
tion. These approaches may use information from sour-
ces other than just the images to generate their output. 

5. Predicting outcomes based on medical images, for exam-
ple, predicting outcomes from ischaemic stroke,17 intra-
cranial aneurysm rupture, in COVID-19,18 or in 
oncology.19 These approaches may also use information 
from sources other than just the images to generate 
their output. 

These five categories of imaging AI could be considered to 
be in order of increasing potential to positively impact health-
care: the first two categories involve automating a task that 
might currently be performed by a radiologist. The third cate-
gory uses AI to provide radiologists with higher-quality 
images than would otherwise have been available. The fourth 
and fifth categories, however, are more disruptive as they 
provide information that could not be obtained from a tradi-
tional radiology read, and such approaches might be used to 
streamline clinical workflows, with AI review of images being 
used to directly impact patient management decisions with-
out the input of a radiologist.

Within all these categories, it is possible to have AI algo-
rithms that are trained once, validated, and then used (“train- 
then-validate”), or algorithms that, once they enter clinical 
use, re-train themselves using additional data received 
(“continuous learning”). The “train-then-validate” approach 
is more consistent with the traditional way that medical de-
vice software is written, with the software developed, 
“frozen”, and then validated, with the validated device then 
submitted for regulatory review prior to being put on the 
market. Any significant subsequent update in the software 
would require a re-review of the technical file. The 
“continuous learning” approaches do not fit into this tradi-
tional medical device framework. While they provide a means 
to continuously improve the performance of AI tools once 
they enter clinical use, safeguards would be needed to ensure 
that the performance does not worsen with additional train-
ing, and in particular, the algorithms do not get better at gen-
erating incorrect output. As a consequence, continuously 
learning algorithms are at a much earlier stage in terms of 
impacting medical practice.

A fundamental concept in considering the application of AI 
in imaging is the assessment of the performance of the AI tool 
in a realistic clinical environment.

Evaluating the performance of AI-based 
medical imaging applications
There are increasing numbers of publications in the academic 
literature that assess the performance of AI methods in medi-
cal imaging, and report that AI methods can perform as well 
or better than normal clinical practice. Examples include 
breast cancer detection in mammography20 and stroke.21

However, there are also publications that point out the lim-
itations of AI methods and find that radiologists outperform 
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AI tools. A study comparing four commercially marketed AI 
tools for assessment of chest radiographs found concerning 
rates of false positives.22

During the COVID-19 pandemic, there was very rapid im-
plementation and publication of AI-based methods to try to 
help manage patients, including through predicting outcomes 
from chest CT scans. Wynants et al’s review of these publica-
tions18 reported that most were poorly reported and at high 
risk of bias, therefore potentially of very limited clini-
cal value.

The volume of academic literature on AI in medical imag-
ing is vast, with tens of thousands of papers being published 
per year,7 but systematic reviews of these approaches often 
exclude the great majority for methodological reasons, sug-
gesting only a small fraction of the work in this area may be 
close to clinical applicability.23 There are increasing numbers 
of papers that highlight the risks that many AI products may 
not be sufficiently safe and effective for clinical use, and en-
courage the development of suitable “comprehensive guide-
lines for their implementation”.24

This demonstrates the importance of considering how the 
performance of AI imaging tools should be evaluated both 
before, and after, they are put on the market. It is quite possi-
ble that the performance an AI tool achieves while under de-
velopment is not replicated when it enters clinical use.

The main challenge facing the field is often identified as the 
difficulty in obtaining sufficient high-quality labelled data to 
train the AI models. In breast imaging, for example, it has 
been shown that algorithms perform best when trained with 
large volumes of highly annotated data, with key image fea-
tures all meticulously labelled by an expert annotation.20

There are two distinct phases in developing an AI tool: train-
ing and then testing. These tasks are distinct and make use of 
training data and test data, respectively. While there are huge 
numbers of medical images collected each day in clinical 
practice, the need for high-quality annotations means that 
image data for training and testing algorithms are often in 
short supply. As a result, developers frequently use the same 
dataset for both training and testing, using a method called 
“cross-validation”. A common approach is to divide the 
dataset into k equal-sized subsets, then repeat the train-test 
cycle k times, in each case using a different subset for testing, 
and the remaining k-1 subsets for training. Performance is 
assessed by averaging the performance over the k repeats. In 
this approach, the data used for training is different from the 
data used for testing, but it is not truly independent, as all the 
training and test data come from the same original dataset. 
The alternative approach is to train the algorithm on one 
dataset, and test it on an independently acquired dataset, for 
example, collected from different hospitals or over a different 
time period. The systematic review by Borchert et al25

reported that “studies using an independent dataset for vali-
dation, as opposed to cross-validation, reported much lower 
accuracy particularly when community-based population 
was used”. This has led many to question whether cross- 
validation provides a reliable measure of the performance of 
AI tools in clinical practice.

Medical device regulators, aware of this literature and of 
concerns around the performance of products on the market, 
have been busy over recent years responding to the rapid in-
crease in AI applications by providing additional clarity on 
how medical device regulations apply to AI-enabled devices.

The AI regulatory landscape
Medical device regulations do not specifically deal with the 
use of AI in medical devices, often because the regulations 
were put in place before AI became widely used. The regula-
tory landscape is therefore defined by those regulations that 
apply to software, augmented by publications from regula-
tors, such as guidance documents, discussion documents, and 
recognized standards that help manufacturers apply the med-
ical device regulations to their products.

From a medical device regulatory point of view, the 
amount of performance data required to show that a medical 
device is safe and effective is dependent on what the manufac-
turer claims the device can do. These claims are captured not 
only in the device’s specific regulatory documentation as 
intended use, intended purpose, or instructions for use, but 
also in associated marketing material, whether in hard copy, 
on the website, or in social media posts, all of which are con-
sidered by regulators to be part of the device “labelling”. 
Earlier in this article, we illustrated 5 different categories of 
AI applications that illustrate the variety of intended use: the 
type and amount of performance data required to show ade-
quate performance will clearly vary. Rapid innovation in AI 
applications has resulted in increasing interest from medical 
device regulators, and in some cases, significant changes in 
the documentation required before AI imaging tools can be 
put on the market.

A particular feature of software medical devices, as distinct 
from traditional “hardware” medical devices such as a joint 
implant, is that the performance of the device can be signifi-
cantly changed by upgrading the software, which can be un-
dertaken much more rapidly than updating the design and 
performance of a hardware medical device, and with the up-
grade deployed entirely remotely. And unlike traditional 
hardware devices, software upgrades could also change the 
intended use of the device, for example, from providing a ra-
diologist with decision support through prompting for lesions 
in a radiograph, to finding the lesions automatically and gen-
erating a treatment plan, with no input from a radiologist.

Medical device regulators worked together under the aus-
pices of the International Medical Device Regulatory Form 
(IMDRF) to publish guidance on the Clinical Evaluation of 
Software as a Medical Device (SaMD) that provided a risk 
framework and guidance on validation, for SaMD.26 This 
introduces important concepts for manufacturers, including 
the “clinical association” between device output and the tar-
geted clinical condition, as part of the clinical evaluation pro-
cess required before putting the device on the market 
(reproduced in Table 1), and a two-dimensional risk-catego-
rization framework that takes account both of the signifi-
cance of the information provided by the software on the 
healthcare decision, and the state of healthcare situation or 
condition (reproduced in Table 2). While this guidance 
applies to machine learning software, it does not treat it in a 
fundamentally different way from other medical de-
vice software.

The rapid evolution of AI means that regulators are in-
creasingly wanting to treat AI differently from traditional 
software, and we are therefore seeing regular publications 
from regulators focused on AI-enabled devices.

In a further example of collaboration between medical de-
vice regulators, the US FDA, UK MHRA, and Health Canada 
jointly published “Good Machine Learning Practice: guiding 
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principles” in October 2021.27 This is a short document that 
captures some aspects of good practice in the development of 
medical devices that incorporate machine learning. Table 3 
reproduces these guiding principles.

While these guiding principles are helpful, for example, 
stating that independent test data (rather than cross-validated 
methods) should be used, it is not in all cases clear how to 
show compliance. In order to provide greater clarity to devel-
opers, the FDA recognized as a “consensus standard”, a guid-
ance document published by AAMI CR34971:2022 for the 
application of the established medical device risk manage-
ment standard, ISO14971, to medical devices incorporating 
AI and machine learning. This document has subsequently 
been released by BSI as BS/AAMI 34971:2023, demonstrat-
ing its international impact. This publication starts with a 
cautionary note: 

Despite the sophistication and complicated methodologies 
employed, machine learning systems can introduce risks to 
safety by learning incorrectly, making wrong inferences, 
and then recommending or initiating actions that, instead 
of better outcomes, can lead to harm.

The amplification of errors in an AI system has the poten-
tial to create large scale harm to patients.

With medical devices without AI, risk can be assessed 
from real-world experience with that technology. With 
AI-enabled medical devices, however, that experience is 
lacking … . it may be more complex to identify risks and 
bias since the algorithmic decision pathways may be chal-
lenging to interpret.

Risk management in medical devices is already focused on 
possible harm to patients and the hazardous situation that 
can give rise to that harm. This AAMI publication highlights 
the fact that AI introduces new possible hazards that are not 
properly covered by current product development methodol-
ogy for “rule-based” algorithms, and provides a detailed rec-
ipe for how to handle risk in AI software. Table 4 gives the 
risks highlighted in this document.

The FDA is arguably the leading medical device regulator 
for providing guidance for device developers and manufac-
turers in their AI-enabled devices. While technically the FDA 
jurisdiction is limited to the United States, several other juris-
dictions provide fast-track means for FDA-cleared or ap-
proved devices to be put on the market in their own 
countries. Most recently, the UK MHRA has announced 
plans for such a recognition route to enable FDA-cleared and 
approved devices to be sold in the UK.

A paper authored by employees at the FDA was recently 
published, focusing specifically on regulatory concepts and 
challenges for AI-enabled medical imaging devices.28 This ar-
ticle emphasizes how radiology has been a pioneer in adopt-
ing AI-enabled medical devices in a clinical environment, but 
also highlights how these devices “come with unique 
challenges” including the need for large and representative 
datasets, dealing with bias, understanding impact on clinical 
workflows, and maintaining safety and efficacy over time.

One key innovation from the FDA is the concept of 
“Predetermined Change Control Plans for Artificial 
Intelligence/Machine Learning-enabled Medical Devices”. This 
idea was proposed in the FDA “Artificial Intelligence/Machine 
Learning Software as a Medical Device Action Plan” in 
January 2021,29 and in 2023 a draft guidance was published30

that describes how this approach would be used to provide 

Table 1. Clinical evaluation process.

Valid clinical association Analytical validation Clinical validation

Is there a valid clinical association between 
your SaMD output and your SaMD’s targeted 
clinical condition?

Does your SaMD correctly process input data 
to generate accurate, reliable, and precise out-
put data?

Does use of your SaMD’s accurate, reliable, 
and precise output data achieve your intended 
purpose in your target population in the con-
text of clinical care?

Table 2. SaMD risk categories intended medical purpose (horizontal) vs targeted healthcare condition (vertical).

State of healthcare situation 
or condition

Significance of information provided by SaMD to the healthcare decision

Treat or diagnose Drive clinical management Inform clinical management

Critical IV III II
Serious III II I
Nonserious II I I

Table 3. Good machine learning practice for medical device development: guiding principles.

Multi-disciplinary expertise is leveraged throughout the total product 
life cycle

Good software engineering and security practices are implemented

Clinical study participants and datasets are representative of the 
intended patient population

Training datasets are independent of test sets

Selected reference datasets are based upon available methods Model design is tailored to the available data and reflects the intended 
use of the device

Focus is placed on the performance of the Human-AI team Testing demonstrates device performance during clinically rele-
vant conditions

Users are provided clear and essential information Deployed models are monitored for performance and re-training risks 
are managed
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what the FDA describes as “a science-based approach to ensur-
ing that AI/ML-enabled devices can be safely, effectively, and 
rapidly modified, updated, and improved in response to new 
data”. Predetermined change control plans do not provide for 
“continuous improvement” in the way many AI proponents ar-
gue for, but does provide a means by which manufacturers of 
AI-enabled medical devices can optionally submit with their 
510k or de novo submission, a document which describes the 
sorts of change that can be made to the device without re- 
review by the FDA, including how risks are mitigated.

The FDA also published a “discussion document” in 2023 
on the use of AI and Machine Learning in the development of 
drugs and biological.6 While this document is not focused on 
medical devices, and as a discussion document, is less formal 
than a Guidance document, it does give further insights into 
thinking within the FDA on the role of regulators in the applica-
tion of AI in medical applications and raises the issues that need 
to be addressed in ensuring safe and effective use of AI tools. 
These are summarized in the categories listed in Table 5.

The UK MHRA, which is in the process of updating its 
medical device regulatory structure following the UK’s depar-
ture from the European Union, is also considering the impli-
cations of AI on medical device pathways. One possible route 
they are considering is the so-called “airlock process”,31

which provides a means to put some devices on the market 
with limited pre-market performance data: 

Some manufacturers of innovative products that meet a criti-
cal unmet clinical need may struggle to generate evidence in 
the premarket phase. Accordingly, this process will allow 
software to generate real world evidence for a limited period 
of time while being continuously monitored.

This proposal is not yet implemented, and to have great 
value to device developers, it will need to link in with other 
international regulatory approaches.

In addition to taking account of publications from medical 
device regulators on AI-enabled devices, developers need to take 
account of other relevant regulations such as data privacy and 
the European Union Artificial Intelligence act, which rather like 
the FDA discussion paper referred to above, puts in place 
requirements for transparency and governance around AI.

AI-enabled medical imaging devices on 
the market
As stated in the Introduction section, data published by the 
FDA5 show that more than three-quarters of AI-enabled medi-
cal devices that received marketing authorization up to the end 
of July 2023 are for applications in radiology, with cardiology 
applications such as arrhythmia detection from ECG being sec-
ond largest application at 10% of devices. Two-thirds of the ra-
diology devices received their marketing authorization in the 
three years between August 2020 and July 2023. A spreadsheet 
of these 350 AI-enabled radiology devices was downloaded 
from the FDA website, and sorted based on the FDA product 
code. The FDA product classification database was then used to 
cross-reference product code against the type of device, to deter-
mine whether the devices are hardware based (eg, image acqui-
sition devices) or software only, and whether these product 
codes are specific to AI-enabled products. The FDA 510(K) and 
513(f) de novo databases32,33 were then searched to find indica-
tions of use for selected devices to identify the intended radio-
logical application, and how they are intended to fit into 
clinical workflows.

In Tables 6 and 7, we summarize the result of this analysis. 
For each type of device, we tabulate the number of such devi-
ces cleared or approved by the FDA, and the associated prod-
uct code. Table 6 lists the 124 AI-enabled hardware devices. 
None of these types of devices are AI specific, but some man-
ufacturers are incorporating AI in these devices to provide 
features such as automatic delineation of image features.

Table 7 summarizes how the 226 AI-enabled software 
medical devices are broken down by type of device and prod-
uct code. Most of these types of software devices, unlike the 
hardware devices in Table 6, have an associated definition in 
the FDA product code database, which is summarized in the 
right-hand column. For product code LLZ, which is older 
than the others, there is no such definition provided in the 
FDA product code database so we have provided one in 
italics for comparability. In addition, most of these product 
codes are specific to AI-enabled devices.

Tables 6 and 7 illustrate the wide variety of radiology 
hardware and software products that have recently been 
cleared or approved by the FDA. They cover a variety of im-
aging modalities and clinical applications, and some treat-
ment devices.

Table 4. Risk categories for AI/ML medical devices, to be incorporated in ISO14971 risk analysis.

Data quality Bias Data storage/security/privacy Overtrust

Incorrect data Selection bias Privacy failures Overconfidence
Incomplete data Confounding variables Bias due to privacy Perceived risk
Subjective data Non-normality Inability to contact patient User workload
Underfitting Proxy variables Self-confidence
Overfitting Implicit bias Variation in social trust
Proxy Measure Group attribution bias

Experimental bias

Table 5.  Issues to be addressed in ensuring safe and effective use of 
AI tools.

Human-led governance, accountability, and transparency
Ensure adherence to legal and ethical values, where 
accountability and transparency are essential for the 
development of trustworthy AI

Quality, reliability, and representativeness of data
Bias
Privacy and security
Provenance of data
Relevance
Replicability

Model development, performance, monitoring, and validation
In balancing performance and explainability, it may be 
important to consider the complexity of the AI model
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A largest number of devices are for product codes QIH 
(Automated Radiological Image Processing Software) and 
LLZ (System, Image Processing, Radiological: the product 
code historically used for PACS workstations). These AI- 
enabled devices provide more sophisticated image segmenta-
tion, enhancement, manipulation, and visualization tools 
than traditional radiology PACS workstations.

The product code with the third greatest number of devices in  
Table 7 is QAS, Radiological Computer-Assisted Triage And 
Notification Software. Examination of the indication for use of 
these devices showed that 69% of these are for analysis of head 
CT for the purpose of triage of patients with acute brain injury 
(intracranial haemorrhage, stroke, brain trauma, large vessel oc-
clusion), with most of the rest for use of chest CT for triage of 
patients with possible pulmonary embolism or aortic dissection. 
The indications for use of these devices, however, emphasize 
that they need to be used under the supervision of imaging 
experts, with statements such as: “not intended to be used as a 
primary diagnostic device”, “notified clinicians are ultimately 
responsible for reviewing full images per the standard of care”, 
and to be used “in parallel with standard of care”. This indi-
cates how, for AI-enabled medical imaging devices, risks of in-
adequate performance currently need to be mitigated by 
ensuring significant clinical supervision.

While we are seeing increasing numbers of AI-enabled radi-
ology devices coming onto the market, this analysis shows 
that the impact of these recently marketed devices on clinical 
practice is likely to be more incremental than disruptive, 
more as an adjunct to current radiological workflows, than 
significantly changing workflows.

Discussion
There have been large numbers of publications on applica-
tions of AI and machine learning to medical imaging and ra-
diology, and hundreds of medical devices placed on the 
market that are based on machine learning and AI tools. This 
rapid innovation, however, has highlighted some important 
challenges that the field needs to address in order for these in-
novative tools to be trusted by patients and healthcare profes-
sionals. In particular, there is increasing evidence that poorly 
implemented AI could lead to patient harm, and there is a 
need to identify and mitigate the underlying risks.

Two key challenges for the field are dealing with bias that 
might detrimentally impact real-world performance, and en-
suring that the output is relevant to clinical care, that is, clini-
cally meaningful. These challenges are illustrated by the role 

that publicly available datasets have played in catalysing in-
novation in AI algorithms. There is now a wide range of pub-
licly available datasets that can be used to train machine 
learning image analysis algorithms, and here we will in par-
ticular consider the UK Biobank and the Alzheimer Disease 
Neuroimaging Initiative (ADNI). These datasets have driven 
a lot of high-quality science, but they do not include a repre-
sentative sample of the general population, and illustrate the 
problem of bias in algorithms used to train imaging 
AI models.

Bias
Petrick et al28 reported that a particular concern of regulators 
is how studies used to evaluate performance are “often based 
on limited patient, group and site diversity”, and it is not 
clear how these generalize to actual clinical practice.

Large publicly available datasets, such as the UK Biobank 
and ADNI dataset, are skewed in terms of demographics. Fry 
et al reported that “UK Biobank participants were more 
likely to be older, to be female, and to live in less socioeco-
nomically deprived areas than nonparticipants”.34 Borchert 
et al25 undertook a systematic review in which they consid-
ered the role of ADNI in published algorithms using AI for 
diagnosis and prognosis in neurodegenerative disease. They 
reported that 71% of these algorithms rely on the ADNI 
data, which introduces multiple sources of bias. They go on 
to argue firstly “potential ethnic and socio-economic 
biases … that may hamper generalization”, and in addition 
that the image acquisition may be unrepresentative of current 
clinical data collection, introducing a bias related to the data. 
Similar issues with bias in training sets have been raised for 
AI-enabled computer-aided diagnosis (CAD) in mammogra-
phy35 including unrepresentative patient populations and im-
age acquisition protocols and vendors.

The skewed nature of these training datasets illustrates the 
importance of considering the sources of bias presented in  
Table 4 in the development and validation of AI-enabled 
medical devices, and the need to use independent training 
and test datasets, with the test datasets being representative 
of the intended population, to ensure that relevant perfor-
mance data are obtained. While artificial data can be used as 
part of the assessment of AI-enabled device performance (eg, 
FDA product code QIH in Table 7), there is a risk that if gen-
erative AI is used to simulate large numbers of additional 
training or test data based on these biased datasets, this bias 
will be amplified.

Clinical meaningfulness
The widespread availability of well-curated public databases 
has catalysed the innovation of AI tools, but a perverse conse-
quence is that they encourage algorithm developers to focus 
on problems implicit in the datasets, rather than challenges in 
clinical care. For example, many authors developing algo-
rithms trained on the ADNI dataset demonstrate that they 
can separate subjects who are “normal”, “mild cognitive 
impairment” (MCI), or “Alzheimer’s Disease” or that they 
can accurately predict conversion of MCI to early AD. 
However, not only do the patients enrolled in ADNI not rep-
resent the typical patient population in a community memory 
clinic, but these sorts of classifiers may not be relevant to 
addressing a clinically meaningful question. For example, if a 
patient arrives in a memory clinic with impaired memory, the 
question is not likely to be “does this patient have MCI or 

Table 6. AI-enabled hardware radiology devices cleared by FDA August 
2021 to July 2024.

Type of device Number product code

Ultrasonic pulsed Doppler imaging system 28 IYN
Ultrasonic pulsed echo imaging system 1 IYO
Mobile X-ray system 1 IZL
Computed tomography X-ray system 38 JAK
Emission computed tomography 8 KPS
Magnet resonance diagnostic device 26 LNH
Stationary X-ray system 3 MQB
Densitometer, bone 1 KGI
Image-intensified fluoroscopic X-ray system 2 OWB
Optoacoustic imaging system 1 QNK
Medical charged-particle radiation 
therapy system

15 MUJ
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AD”, but “what is the underlying pathology causing these 
symptoms”, as that can impact subsequent management. 
Borchert et al reported that in their systematic review “We 
found no studies that assessed the common clinical challenge 
of differential diagnosis from among multiple (>2) possible 
diagnoses”, which is quite a strong critique of the field.

The regulatory framework for AI-enabled medical devices 
described in this article has relevance to addressing these sorts 
of limitations in academic AI tool development. The Clinical 
Evaluation SaMD framework helps clearly define the need to 
evaluate performance in the context of clinical care; Good 
Machine Learning Practice makes clear the importance of in-
dependent datasets for testing and validating (you should not 
use a single dataset like UK Biobank or ADNI for both train-
ing and testing), and the FDA recognized consensus standard 
AAMI CR34971:2022 provides a detailed framework for 
identifying and mitigating risks such as bias in AI- 
enabled devices.

Conclusions
Artificial intelligence has already demonstrated it has great 
potential to enable novel and valuable medical technologies, 
and the great majority of AI-enabled medical devices 

marketed are for medical imaging applications. However, as 
the examples given earlier in this article illustrate, the litera-
ture contains many papers that justify the medical device reg-
ulators’ position that these methodologies introduce risks 
that are different, and in many cases greater, than the risks 
present in traditional “rule-based” software medical devices. 
As a consequence, AI-enabled devices on the market mitigate 
these risks with indications for use that require they be used 
under expert supervision, often in parallel with current clini-
cal practice, reducing their likely impact on clinical practice.

For AI to have a greater clinical impact, developers of AI- 
enabled medical imaging tools need to provide more rigorous 
risk analysis and performance assessment than traditional 
software methods that are already on the market. 
Radiologists and their professional bodies have a key role to 
play in helping imaging AI researchers and device developers 
to put in place more rigorous frameworks for developing 
medical imaging AI devices, and monitoring their perfor-
mance on the market in clinical practice. Radiologists and 
their radiographer and medical physics colleagues have a de-
tailed understanding of the variation in patient presentation, 
impact of artefacts, variability due to radiographic practice, 
and variability caused by different imaging device manufac-
turers and acquisition parameters, which is of great value in 

Table 7. AI-enabled software radiology devices cleared by FDA August 2021 to July 2024.

Type of device Number Product code AI specific Definition summary

System, image processing, radiological 56 LLZ N Image visualization, enhancement, and 
segmentation

Lung CT computer-aided detection 2 OEB N To assist radiologists in the review of multi-slice CT 
of the chest and highlight potential nodules that the 
radiologist should review

Liver iron concentration imaging 
companion diagnostic for deferasirox

1 PCS N The determination of iron in the liver for any 
indication where an assessment of liver iron 
concentration is needed

Medical image analyser 9 MYN N Now mainly reclassified to Class II
Computer-assisted diagnostic 
software for lesions suspicious 
for cancer

5 POK N Assist users in characterizing lesions identified on 
acquired medical images

Radiological computer-assisted triage 
and notification software

26 QAS Y Aid in prioritization and triage of time-sensitive 
patient detection and diagnosis based on the 
analysis of medical images

Radiological computer-assisted 
prioritization software for lesions

19 QFM Y To aid in prioritization and triage of time-sensitive 
patient detection and diagnosis based on the 
analysis of medical images acquired from 
radiological signal acquisition systems

Radiological computer-assisted 
detection/diagnosis software for 
lesions suspicious for cancer

10 QDQ Y To aid in the detection, localization, and 
characterization of lesions suspicious for cancer on 
acquired medical images (eg, mammography, MR, 
CT, ultrasound, radiography)

Automated radiological image 
processing software

68 QIH (Y) Automated radiological image processing and 
analysis tools. Software implementing artificial 
intelligence including non-adaptive machine 
learning algorithms trained with clinical and/or 
artificial data

Radiological image processing 
software for radiation therapy

23 QKB Y Semi-automatic or fully automated radiological 
image processing and analysis tools for 
radiation therapy

Radiological computer-assisted 
detection/diagnosis software 
for fracture

4 QBS Y Aid in the detection, localization, and/or 
characterization of fracture on acquired medical 
images (eg, radiography, MR, CT)

Image acquisition and/or optimization 
guided by artificial intelligence

2 QJU Y Aid in the acquisition and/or optimization of images 
and/or diagnostic signals

Radiological machine learning-based 
quantitative imaging software with 
change control plan

1 QVD Y Software-only device which employs machine 
learning algorithms on radiological images to 
provide quantitative imaging outputs

BJR, 2024, Volume 00, Issue 0                                                                                                                                                                                                    7 
D

ow
nloaded from

 https://academ
ic.oup.com

/bjr/advance-article/doi/10.1093/bjr/tqae002/7510846 by guest on 20 February 2024



helping identification and mitigation of risks in AI medical 
imaging tool development.

Also, as the technology evolves, the regulatory landscape is 
likely to continue to evolve, and in particular, ways in which 
AI software can be updated once on the market, and ways in 
which the balance of pre-market and post-market perfor-
mance data can be used to demonstrate safety, are likely to 
evolve in the near future.

The evolving regulatory landscape can be criticized for pro-
viding developers with a “moving target” by rapidly chang-
ing the documentation required before AI-enabled medical 
devices can be put on the market, thus providing a barrier to 
innovation. However, it is also arguable that regulators are 
being agile in providing developers with increasing clarity on 
how to manage risk and assess the performance of these 
evolving technologies, so as to enable safe and effective AI- 
enabled medical devices to reach patients. As always with the 
regulation of medical devices, there is a balance to be struck 
between enabling innovation and ensuring patient safety, and 
AI will continue to challenge the existing regulatory frame-
works. Academic researchers developing AI-enabled devices 
should also familiarize themselves with this regulatory frame-
work to improve the quality of their publications, and facili-
tate the transition of research output into products that can 
positively impact patient management.
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