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A Neanderthal haplotype introgressed into the
human genome confers protection against
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Translational Statement

Membranous nephropathy (MN) is an important
example of a disorder in which careful molecular
analysis furthers the understanding of an autoimmune
pathogenetic mechanism. Much progress has been
done regarding the qualitative (structural) aspects of
antigenicity of the autoantibody, but we believe that
this mechanism is complemented by a quantitative
(level of expression) component, which still needs
further investigation. Our work provides insight into the
structure of the genomic region putatively involved in
the control of the expression of the major autoantigen
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Class 2 HLA and PLA2R1 alleles are exceptionally strong
genetic risk factors for membranous nephropathy (MN),
leading, through an unknown mechanism, to a targeted
autoimmune response. Introgressed archaic haplotypes
(introduced from an archaic human genome into the
modern human genome) might influence phenotypes
through gene dysregulation. Here, we investigated the
genomic region surrounding the PLA2R1 gene. We
reconstructed the phylogeny of Neanderthal and modern
haplotypes in this region and calculated the probability
of the observed clustering being the result of
introgression or common descent. We imputed variants
for the participants in our previous genome-wide
association study and we compared the distribution of
Neanderthal variants between MN cases and controls.
The region associated with the lead MN risk locus in the
PLA2R1 gene was confirmed and showed that, within a
507 kb region enriched in introgressed sequence, a
stringently defined 105 kb haplotype, intersecting the
coding regions for PLA2R1 and ITGB6, is inherited from
Neanderthals. Thus, introgressed Neanderthal
haplotypes overlapping PLA2R1 are differentially
represented in MN cases and controls, with enrichment In
controls suggesting a protective effect.
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I diopathic or primary membranous nephropathy (MN) is a
rare kidney-specific autoimmune disease. The incidence of
MN is 10 to 12 per million persons per year.1,2 Despite its

rarity, it is the leading cause of nephrotic syndrome in Euro-
pean adults.3 MN progresses to end-stage kidney disease in
30% to 40% of cases within 5 years.4–6

MN is an adult-onset disease with a peak age of onset
between the fifth and sixth decades of life. Over 80% of pa-
tients are aged >40 years at presentation, and MN is un-
common in children.7 In contrast to most other autoimmune
diseases, males are more commonly affected by MN than
females.8

MN is an autoimmune disorder in which a structure of the
self (i.e., a fragment of phospholipase A2 receptor [PLA2R],
the most frequent autoimmune target in MN) is recognized as
an antigen with consequent transfer onto the human leuko-
cyte antigen (HLA)-II antigen-presenting groove.9–11 This
triggers a targeted autoimmune response against the molecule
from which the intrinsic epitope originates. The probability of
this occurring likely depends on the level of expression of
PLA2R1: variants predisposing to the development of MN
have been shown to be associated with an increase of PLA2R1
glomerular expression (probably through the modification of
regulatory elements).11

in MN.
1
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Homo sapiens neanderthalensis is an extinct subspecies of
humans who populated Eurasia 200,000 years ago.12 They
extended toward Asia and were present in Europe between
200,000 and 40,000 years ago.13 This allowed plenty of time for
them to become well adapted to the local (geoclimatic and
biological) environment. In contrast, Homo sapiens sapiens
started populating Europe z50,000 years ago.14,15 They
encountered the local population of H sapiens neanderthalensis,
and the interaction between the 2 groups seems to have followed
all possible avenues: avoidance, conflict, and mixing.13,15,16

Sapiens-neanderthalensis interbreeding was a contentious
aspect of the history of the 2 hominin groups, debated in the
scientific community for a long time.17 More recently,
compelling evidence has gathered in its favor, mainly starting
with the sequencing of the Neanderthal genome.12,13,18

As a result of the interbreeding,z1% to 3% of theH sapiens
sapiens genome is believed to be of introgressed Neanderthal
origin.12(p201),13,19,20 with specific loci being particularly prone
to originate from the ancient group. Neanderthal DNA is not
evenly distributed throughout the genome—particularly rich
in some areas, almost absent in others—thus strongly sug-
gesting positive selection pressure as a mechanism involved in
preserving the ancient DNA stretches.13

This scenario would make sense given that the newcomers
(H sapiens sapiens) were less adapted to their new environ-
ment, and that those DNA stretches of the older inhabitants
coding for phenotypic traits advantageous for survival in
European conditions would enhance their ability to survive.
Examples of traits/loci of Neanderthal origin that fit the
positive selection hypothesis include skin thickness and hair
density, which might have been advantageous in the colder
climatic context of Europe versus Africa.21

Immunity has previously been shown to be 1 of the aspects
of the modern human phenotype influenced by Neanderthal
DNA introgression, with links between ancient variants and
infections and autoimmune disorders having been convinc-
ingly established.20 It was shown that Neanderthal haplotypes
influence our susceptibility to coronavirus disease 2019
(COVID-19),22,23 HIV,24 and Helicobacter pylori25 infections.
Variants inherited from Neanderthals were also linked to
autoimmune conditions, such as rheumatoid arthritis, sys-
temic lupus erythematosus, Crohn disease, Grave disease,
biliary cirrhosis, and type 2 diabetes, among others.13,20,26–29

We, therefore, investigated if susceptibility to MN could also
be influenced by Neanderthal variants retained in our modern
genomes.

We define our region of interest to be the 1-Mb genomic
region surrounding the PLA2R1 gene (chromosome 2:160500
000-161500000; reference genome: hg19). Previously pub-
lished ancestral introgression maps suggested Neanderthal
sequence enrichment in the PLA2R1 gene region.18,20,27,30,31

METHODS
Definition of the target genomic region
We investigate a genomic region of z1 million bases centered
around rs4664308, the lead single-nucleotide polymorphism (SNP)
FLA 5.6.0 DTD � KINT3726_proof � 1
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on chromosome 2 from the 2011 MN genome-wide association
study (GWAS).9 This region is defined by coordinates chromosome
2:160500000-161500000 (hg19) and harbors the PLA2R1 gene and
its 50 upstream and 30 downstream regions (Figure 1).

Archaic DNA
Data for 3 Neanderthal genomes (Chagyrskaya 8,32 Vindija 33.19,33

and Altai Denisova 512) were located through the Allen Ancient DNA
Resource version 44.334 and downloaded from the Max Planck
Institute for Evolutionary Anthropology (see Data Statement).

Genotyping
The genotyping for the British cohort of the study by Stanescu et al.
in 2011 has been performed by deCODE genetics on DNA samples
from 335 case patients and 349 ethnically matched controls, as
described in the article.9 Q

Imputation of human variants
We used Beagle 5.1 to phase35 and to impute36 variants for the UK
participants from our previously published study9 (the parameters
used were: burnin ¼ 6, iterations ¼ 12, phase states ¼ 280, imputed
states ¼ 1600, imputed segment ¼ 6.0, step ¼ 0.1, imputed nsteps ¼
7, cluster ¼ 0.005). We used all 2504 genomes from the 1000 Ge-
nomes Project (phase 3 release)37 as the reference panel (see Data
Statement).

For the preimputation quality control, we filtered the samples by
call rate > 0.95, and variants by call rate > 0.99, minor allele fre-
quency > 0.01, and Hardy-Weinberg equilibrium for controls P >
0.0001. We also removed variants that had no variation in either
cases or controls. Imputation quality control was performed by
removing variants below an R2 threshold of 0.8.

Definition of Neanderthal variation and consensus haplotype
We used bcftools 1.10.238 and tabix 1.10.239 to extract the variants
within the region of interest, both from the British cohort of the
study by Stanescu et al. in 2011 and from the 3 Neanderthal ge-
nomes. Variants with known archaic alleles were selected, and
linkage disequilibrium (LD) with rs4664308 (the lead SNP from the
article by Stanescu et al. in 2011) was estimated with LDproxy
(Ldlink 5.1)40 using the British participants to the 1000 Genomes
Project as a reference. We used bcftools to extract haplotypes for the
region of high LD from the 1000 Genomes Project and the 3
Neanderthal genomes, including only variants for which data are
available in both the 1000 Genomes data set and at least 1 of the
Neanderthal genomes, and we converted haplotype data to PHYLIP
format with an in-house Python script.

We created 2 consensus Neanderthal haplotypes for the variants
in the region of interest, at different levels of stringency: a majority
consensus by selecting the allele present in most of the known
Neanderthal haplotypes at each locus, and a unanimous consensus
by selecting only variants where all 3 Neanderthal samples are
available, homozygous, and in unanimous agreement.

Evolutionary tree reconstruction
The reconstruction of the phylogeny of the haplotypes from the 1000
Genomes Project in the region of high LD was performed using
phyml version 3.3.3 with the default parameters (neighbor joining
using the Hasegawa-Kishino-Yano substitution matrix),41 and the
resulting trees were visualized with the ETE toolkit42 and with
iTOL.43 Ancestral allele information from Ensembl, as supplied in
the 1000 Genomes Project data set, was used for rooting the trees.
5 February 2024 � 12:07 am � ce
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Figure 1 | Linkage disequilibrium (LD) plot of the region of interest on chromosome 2, indicating the locations of the genes
contained therein. The x axis shows genomic coordinates (GRCh37); the y axis represents R2 as a measure of LD for the British population in
the 1000 Genomes Project, with respect to the lead membranous nephropathy risk single-nucleotide polymorphism (SNP) on chromosome 2
(rs4664308; marked with crosshairs). The darker gray bar marks the region of high LD (R2 > 0.98) with this SNP, and the lighter gray bar marks
the region of moderate LD (R2 > 0.25). Only variants for which the genome-wide association study identifies a direction of effect are included.
Circle colors show the origin and direction of effect of the alleles: blue means the consensus Neanderthal allele is the risk allele and the
modern allele is protective; orange means the Neanderthal allele is protective and the modern one is the risk allele. Variants are colored gray
where the archaic allele is unknown or ambiguous (no Neanderthal consensus). The size of the circles represents the strength of association
(P value). Mb Q14Q15, xxx.
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Comparing introgression with common ancestry
We used the method published by Huerta-Sánchez et al.44 to
investigate the likelihood of having an extended haplotype origi-
nating from a common ancestor of Neanderthals and present-day
humans, as opposed to the introgression hypothesis. We interpo-
lated the local recombination rate to 0.471 cM per Mb (between
markers D2S156 and D2S2395) from the data set published by Kong
et al.,45 assuming the divergence between Neanderthals and modern
humans took place 550,000 years ago,12 interbreeding between Ne-
anderthals and modern humans took place z50,000 years ago, and
the average generational time is 29 years.46

Direction of effect and archaic/modern origin of alleles
For the cases and controls from the British cohort of the study by
Stanescu et al. in 2011, we performed a basic allele test (additivemodel)
on biallelic variants with minor allele frequency > 0.05, as imple-
mented in PLINK 2.0 (www.cog-genomics.org/plink/2.0/).47 No
adjustment for confounders was used, as the cases and controls are
ethnically matched. This was verified by primary component analysis
(see Supplementary Figure S1). The direction of effect of the alleles was
determined using the odds ratio (odds ratio> 1 [risk] and odds ratio<
1 [protective]) for each variant on the imputed data.

We grouped variants with a known direction of effect in 3 cate-
gories: variants where the risk allele is the consensus Neanderthal
allele; variants where the risk allele is the modern allele (i.e., the
protective allele is the consensus Neanderthal allele); and variants
where the consensus Neanderthal allele is unknown or undefined
(no majority).
FLA 5.6.0 DTD � KINT3726_proof � 1
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We created an LD plot based on the R2, color coded according to
the 3 categories described above.

Statistical assessment of haplotype overrepresentation
We counted the number of positions where the haplotypes in the
study differed from the Neanderthal consensus haplotype and used R
version 4.3.1 to decide on the statistical significance of the difference
in distribution between cases and controls.

Functional annotation of the variants in the introgressed
sequence
We performed detailed functional annotations for all the 1237 var-
iants identified in the introgressed sequence. We used 3 data sets
sourced from the University of California, Santa Cruz, Genome
Browser48 as follows: PhastCons49 Conservation Elements (at a
conservation score > 500; range, 0–1000). This allowed us to detect
queried SNPs that fall within conserved genomic elements. DnaseI
from ENCODE50/OpenChrom was used for identifying queried
SNPs in accessible, open chromatin regions. Transcription factor
chromatin immunoprecipitation–sequencing clusters (spanning 338
factors and 130 cell types) from ENCODE 351 were used to deter-
mine intersections between queried SNPs and transcription factor
binding sites.

We employed the wANNOVAR52 web tool to annotate the
functional consequences (missense, synonymous) of all coding var-
iants. The tool also predicted the potential impact on protein se-
quences based on metrics from SIFT Q, PolyPhen, CADD, and
GERPþþ pathogenicity scores.
5 February 2024 � 12:07 am � ce

3

http://www.cog-genomics.org/plink/2.0/


Q9

10

bas i c re sea r ch CD Voinescu et al.: Autoimmunity and the Neanderthal genome

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
We queried general (GTEx53) and kidney-specific expression
quantitative trait loci (eQTL) data sets (NephQTL54 and the Human
Kidney eQTL Atlas55).

RESULTS
Preimputation/postimputation coverage
In our region of interest, chromosome 2:160500000-
161500000 (hg19), we have 102 genotyped variants (post
quality control, preimputation) and 4355 variants post-
imputation at an R2 threshold of 0.8.

Regions of LD
We found a 105-kb region, chromosome 2:160899566-
161004983 (hg19), to be in high (R2 > 0.98) LD with
rs4664308, the lead SNP from the 2011 GWAS. A 507-kb
region, chromosome 2:160741415-161341364 (hg19), is in
moderate LD (R2 > 0.25) with the same SNP (Figure 1, dark
and light gray bars).

Presence of a Neanderthal-like haplotype in the modern
population
In the phylogenetic tree reconstructed from all 5008 haplo-
types from the 1000 Genomes Project and the 3 Neanderthal
sequences, we observed clustering of all 3 archaic sequences
along with a subset of 1011 modern haplotypes, with a
distinctly long branch length and excellent bootstrap support
of 1.0 (Figure 2, shaded in gray). The self-declared ancestry of
the 1000 Genomes Project participants in this 1011-haplotype
cluster was mainly European (411 haplotypes) and East Asian
(323 haplotypes). There were 43 haplotypes belonging to
individuals of self-declared African ancestry.

The clustering and branch lengths show that, in the region
of high LD, Neanderthals and some modern humans share a
nearly identical haplotype, which is distinct from other
haplotypes present in most modern humans.

Evidence of introgression
We calculated the expected length of an ancestral haplotype
shared by inheritance over a total branch length of 1,050,000
years (t0 ¼ 36,207 generations): L0 ¼ 5864 base pairs. For
comparison, the expected length of a haplotype following
introgression 50,000 years ago, t1 ¼ 1724 generations, is L1 ¼
123,142 base pairs. The probability of shared inheritance of
an ancestral 105.4-kb haplotype is P0 ¼ 2.96 � 10–7; the
shared haplotype is thus almost certainly the result of recent
introgression. This is a conservative estimate of the proba-
bility, as it does not account for the fact that shared inheri-
tance would imply that variants shared between non-Africans
and Neanderthals had to have been lost in Africans.

Direction of effect of Neanderthal variants
After imputing the 2011 study data and performing the GWAS
on the imputed genotypes, we found 361 biallelic single-
nucleotide substitutions within the high LD interval, chro-
mosome 2:160899566-161004983 (hg19), for which the GWAS
identifies a direction of effect. For 199 of these, we have data in
at least 1 of the 3 Neanderthal genomes, and a Neanderthal
FLA 5.6.0 DTD � KINT3726_proof � 1
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majority consensus can be determined (see Supplementary
Figure S2 and Supplementary Tables S1 and S2).

Within the larger genomic region, chromosome
2:160500000-161500000 (hg19), Figure 1 indicates the
origin of the risk and protective alleles, showing enrichment
of Neanderthal variants with protective effect. Within the
high LD interval, using the majority consensus, 193 Nean-
derthal alleles are protective and 6 are deleterious with
respect to MN (see Supplementary Figure S3 and
Supplementary Table S3 for the result of the more stringent
unanimous Neanderthal consensus).

Evidence of a protective Neanderthal haplotype
There are 320 biallelic single-nucleotide variants within the
high LD interval where a Neanderthal majority consensus
can be determined, and there is variation within the 2011
study cohort (these include the 199 variants discussed
above). The number of differences between the haplotypes
in the study and the Neanderthal majority consensus
sequence at these loci follows a strongly bimodal distribu-
tion. We defined haplotypes with 0 to 10 differences to be
Neanderthal-like and those with >10 differences to be
modern, but any cutoff between 7 and 80 gives essentially
the same result (see Supplementary Figure S4). We found
that 166 of the 668 haplotypes belonging to cases (24.9%)
and 279 of the 698 belonging to controls (40.0%) are
Neanderthal-like, and 502 haplotypes belonging to cases
(75.1%) and 419 belonging to controls (60.0%) are modern
(Fisher exact test P ¼ 2.5 � 10–9) (see Supplementary
Table S3 for the result of the more stringent unanimous
Neanderthal consensus).

Functional annotation of the variants in the introgressed
sequence
Among the 1237 variants identified in the introgressed
sequence, there are 11 exonic variants, 5 of which are non-
synonymous, with only 1 having a CADD score slightly higher
than the suggested cutoff of 20 (rs2271381; CADD phred-like
score ¼ 22.8; in the exon 5 of LY75).

We also identified 2 glomerulus-specific eQTLs in the
extended Neanderthal haploblock (rs13408963 and
rs72957586). These 2 variants are part of the set of 303
genome-wide significant glomerular eQTLs (at FPR Q

threshold < 0.05). The first variant, rs13408963, is included
in the high LD region. It lies 37 kb upstream of the tran-
scription start site of PLA2R1 and is not annotated by
ENCODE as a known regulatory site. There is strong evidence
that the “G” allele of the rs13408963 variant has an enhancing
effect (all 4 studies listed in Human Kidney eQTL Atlas).
There are no direct Neanderthal data for this variant, but it is
in strong LD (R2 ¼ 0.93) with 3 protective Neanderthal
variants (rs4076844, rs4470295, and rs4522556). We notice
that the direction of effect of the Neanderthal introgressed
allele (“A”), that is, decreased expression of PLA2R1, is
consistent with the protective effect observed in the GWAS
(–log10 P ¼ 5.78). The second variant, rs72957586, is situated
5 February 2024 � 12:07 am � ce
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Figure 2 | Phylogenetic tree of modern and Neanderthal haplotypes (all 5008 haplotypes from the 2504 participants in the
1000 Genomes Project, plus the 3 Neanderthal sequences available to date), based on the 105-kb region of chromosome 2
in association with membranous nephropathy risk. The tree represents the reconstructed structure of the relationships between
the individuals considered (black dots), including their putative ancestors (branch points). The inferred common ancestor is in the
center. Arrows indicate the 3 Neanderthal sequences (Altai, Chagyrskaya, and Vindija). Branch lengths (radial lines) represent
genetic distance (number of substitutions per variant, see bar); longer radial paths imply a lower degree of relatedness. To convey
the frequencies of the haplotypes, duplicates have not been removed: sets of identical haplotypes appear as trains of partially
overlapping dots. The surrounding color tracks depict the self-reported ancestry from the 1000 Genomes Project participants; from
the innermost track outward as follows: blue, African (AFR); yellow, American (AMR); green, East Asian (EAS); red, European (EUR);
and violet, South Asian (SAS). Gray shading highlights a cluster including all 3 Neanderthals joined together by short branches and
connected to the rest of the tree by a long branch. It clearly indicates that these haplotypes are similar to each other and distinct
from the rest. Note the underrepresentation of African ancestry and the overrepresentation of European and East Asian ancestries
among these Neanderthal-like haplotypes.
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1.5 kb upstream of LY75, in the predicted promoter flanking
region of LY75 (for the HepG2 cell line). It also has no direct
Neanderthal data, but it is in perfect (R2 ¼ 1) LD with 9
protective (–log10 P ¼ 5.26) Neanderthal variants (rs3806603,
rs3792198, rs925407, rs57771571, rs6735923, rs72957578,
rs72957576, rs7601374, and rs55977890). It is also an eQTL
for whole blood according to GTEx. In this case, the assumed
Neanderthal allele (“A”) enhances the expression of LY75. All
the functional annotations for the variants identified in the
introgressed sequence can be found in the Supplementary
Data S1.
FLA 5.6.0 DTD � KINT3726_proof � 1
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DISCUSSION
Here we describe a genomic region associated with MN,9

where clustering in the phylogenetic tree reconstruction
shows Neanderthal sequence enrichment in modern-day
humans. Although previously published ancestral introgres-
sion maps suggested archaic sequence enrichment in the
PLA2R1 gene region,18,20,27,30,31 we show that the
Neanderthal-like haplotypes in this region are enriched for
variants protective against MN.

The most stringently defined haploblock in this region is
105 kb long. On the basis of the length of this haploblock and
5 February 2024 � 12:07 am � ce
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the recombination rate in the region, we show that this is far
more likely to be the result of relatively recent introgression
(z50,000 years ago), than being inherited from a common
ancestor of Neanderthals and modern humans.

This is also reinforced by the near absence of the
Neanderthal-like haplotype in the 661 individuals of self-
reported African ancestry in the 1000 Genomes Project
(1322 haplotypes). Of the 43 such occurrences, 31 are in
individuals from the Caribbean and the US South-West,
where partial non-African ancestry is likely.

The larger region of introgression contains 4 genes: the
beginning of LY75 (5’ end: exons 1 to 6 of 34), PLA2R1,
ITGB6, and RBMS1 (with the exception of its first exon).

The PLA2R protein (Uniprot Q13018), a member of the
C-type lectin superfamily of still unclear function, is the most
important autoantigen involved in MN pathogenesis.56 LY75
(Uniprot O60449), also a member of the C-type lectin su-
perfamily, is a myeloid C-type lectin receptor, putatively
involved in pathogen recognition and modulation of the
immune host response. Its ligands are HIV, Yersinia pestis, and
endogenous dead cells.57 The ITGB6 gene encodes the
integrin b 6 protein (Uniprot P18564), 1 of the 2 subunits of
the integrin a-v:b-6 heterodimer. Integrin avb6 is a receptor
with roles in cell adhesion and innate immune surveillance
modulation.58 It is also an attachment factor for viruses of the
Coxsackie/Enterovirus B family59 and of the Herpes family.60

RBMS1 (Uniprot P29558) is a protein that binds single-
stranded DNA/RNA that can potentially suppress transcrip-
tion of target genes.61 It is considered to be 1 of the key
regulators of the c-myc proto-oncogene expression62 and
appears to be involved in a large variety of biological func-
tions (replication, transcription, cell cycle control, and
apoptosis).

The stringently defined introgression region contains the
beginning of PLA2R1 (50 end: first and second exon) and the
end of ITGB6 (30 end: exons 8 to 15, with both genes being
encoded on the negative strand), as well as the respective
intergenic region.

Traits related to most chronic kidney disease are not under
direct evolutionary pressure because they typically manifest
later in life, after the reproductive years, and therefore do not
directly impact reproductive fitness. Thus, where renal loci
appear to be under selection, this is more likely to be caused
by neighboring nonrenal loci.63

The phylo-ontogenetic development of the immune sys-
tem, by creating either resistance or tolerance, has resulted in
a finely balanced system that, if disrupted, can lead to im-
munodeficiency or autoimmunity. One of the most sub-
stantial adaptive pressures a biological population faces in its
interaction with the environment is the 1 from infectious
agents. The permanent arms race between invaders (nonself)
and defenders (self; i.e., their immune systems) leads to the
constant refining of both defense mechanisms and defense
evasion mechanisms. From an evolutionary point of view, it is
a relatively fast process.64
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Neanderthals, by long preceding H sapiens sapiens in
Europe, were probably better adapted to the local regional
pathogen spectrum; hence, introgression might have
contributed to the adaptation of the latter to the newly
encountered infections.65 Thus, risk factors for autoimmune
diseases could have originated as adaptations to the infectious
diseases of the time, but what we see today might be an
unfortunate rebalancing of the immune system.

A variant on an archaic haplotype could have conferred an
adaptive advantage in the arms race between pathogens and
ancient humans, leading to the enrichment of the archaic
variant at the corresponding locus. The sequence introgressed
into the modern human genome also contains the regulatory
region upstream of PLA2R1. Transcriptional regulatory ele-
ments, either directly adaptive or “hitchhiking” on the archaic
haplotype, could have modified the expression of PLA2R in a
way that made it less prone to act as an autoantigen under the
conditions that might otherwise have triggered MN.

We have been able to identify 2 variants within the
extended Neanderthal haploblock that are glomerulus-
specific eQTLs: rs13408963, an eQTL for PLA2R1 (situated
upstream of it); and rs72957586, an eQTL for LY75 (situated
in its promoter flanking region). The PLA2R1 variant is
consistent with the protective effect noticed for the intro-
gressed sequence, with the Neanderthal allele corresponding
to lower PLA2R1 expression.

We are aware of some general limitations of paleogenomic
studies, such as the difficulty of distinguishing between
introgression and positive selection. Introgressed material in
noncoding, regulatory regions has been shown to be mainly
under negative selection pressure, whereas positive selection
pressure tends to act on coding regions.66 As our region of
near-perfect LD includes both, a neutral assumption ruling
out positive selection in this case appears justified. Another
limitation of human introgression studies is archaic sequence
availability. This is partially alleviated by the growing under-
standing of the fact that archaic populations were less variable
than modern ones and will hopefully improve with the
publication of more high-quality sequenced ancient genomes.
In the same vein of sequence availability and quality, it has to
be mentioned that imputation (as opposed to direct
sequencing) could be a potential source of errors.

Our study intended to begin the exploration of the
structure of archaic introgression in the PLA2R1 region. As
such, it did not explore a more diverse set of populations, and
it did not consider epistatic interactions between the PLA2R1
gene and other loci, such as HLA. We also acknowledge that
functional annotation is not a substitute for experimental
confirmation, and the proposed mechanisms are speculative.

Human evolution has recently been the focus of detailed
scientific investigation involving the acquisition, storage,
dating, and curation of referenced genome sequences and
their variation across archaic humans.13,67–71

Until recently, the relationship between introgression and
autoimmunity has been assumed to involve variants that
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enhance fitness in reproductive age at the cost of an altered
immune system balance later in life.

Ours is an interesting example where autoimmunity-related
introgressed variants have the opposite effect (protective in
later life) in modern humans, as has been recently shown for
other immune-modulating traits by McArthur et al.67
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