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Abstract

In 2019, Dvořák asked whether every connected

graphG has a tree decomposition T( , ℬ) so thatT is a

subgraph of G and the width of T( , ℬ) is bounded by

a function of the treewidth ofG. We prove that this is

false, even when G has treewidth 2 and T is allowed

to be a minor of G.
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1 | INTRODUCTION

Suppose that a graphG has small treewidth, and consider all tree decompositions T( , ℬ) ofG whose
width is not too much larger than the optimum. To what extent can we choose or manipulate the
“shape” of T?
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For graphs with no long path, we can chooseT to also have no long path [15]*; this gives rise to
the parameter called treedepth. Similarly, for graphs of bounded degree, we can choose T to also
have bounded degree [7]; this relates to the parameters of congestion and dilation. Moreover, for
graphs excluding any tree as a minor, we can choose T to just be a path [1]; this results in the
parameter called pathwidth.

It would be wonderful if we could unify all such results into a single theorem which relates
the shape of T to G. In 2019, Dvořák suggested one way of accomplishing this goal. In the
question below and throughout the paper, we write Gtw( ) for the treewidth of G.

Question 1 (Dvořák [8]).Does there exist a polynomial P such that every connected graphG
has a tree decomposition T( , ℬ) of width at most P G(tw( )) such that T is a subgraph of G?

Unfortunately, we prove that the answer to Question 1 is “no” in the following strong sense.

Theorem 2. For every positive integer k, there is a connected graphG of treewidth 2 such that
if T( , ℬ) is a tree decomposition of G and T is a minor of G, then T( , ℬ) has width at least k.

Intriguingly, in our proof of Theorem 2, it seems crucial that the constructed graphs contain all
trees as minors; perhaps Question 1 could be true when Gtw( ) is replaced by Gpw( ), the pathwidth
ofG. In other words, perhaps there exists a polynomial (or even just some function) P so that every
connected graph G has a tree decomposition T( , ℬ) of width at most P G(pw( )) such that T is a
subgraph ofG. We leave this as an open problem. Another interesting question raised by one of the
reviewers is whether Question 1 can be answered in the positive if one replaces treewidth with
connected treewidth, that is, demands the subgraphs G v V G x T[{ ( ) : }]v∈ ∈ to be connected.

There has been strong interest in obtaining good bounds for treedepth [5, 10, 13], pathwidth
[9], and treewidth [3, 4] as a function of the natural obstructions (which are paths, trees, and
grids, respectively†). These problems were in large part motivated by the desire to obtain better
approximation algorithms and better win–win algorithms based on the obstructions. An
affirmative answer to Question 1 would have unified these approaches, but unfortunately
Theorem 2 shows that this is not possible.

There has also been recent interest in finding the 2‐connected obstructions for treedepth [2]
and pathwidth [6, 12] in 2‐connected graphs. It seems unlikely that requiring G to be
2‐connected would change the answer to Question 1, but the graphs we construct for
Theorem 2 are not 2‐connected, thus leaving this as an open possibility.

We present a self‐contained proof of Theorem 2, however some steps were discovered
independently by Hickingbotham [11]. In particular, Hickingbotham [11, Lemma 7.2.1] noticed
that it is just as hard to ensure T is a subgraph ofG in Question 1 as it is to ensure T is a minor
ofG. Thus our main contribution is Lemma 3.3, which essentially shows that we can also force
each vertex of T to be in its own bag. Hickingbotham [11, Theorem 7.5.1] already proved that
this stronger condition can blow up the width. Moreover, Hickingbotham proved some positive
results, including that the answer to Question 1 is “yes” if G is an outerplanar graph

*The reference gives us an elimination tree F of G of depth k . Then we can obtain a tree decomposition F( , ℬ) of G of
width k by letting the bag of each vertex v V F( )∈ be the set of all ancestors of v in F .
†Formally, a class of graphs has bounded treedepth/pathwidth/treewidth if and only if it does not contain all paths/
trees/grids as minors, respectively. See [15, 1, 16] for the respective proofs. Note that sometimes the obstructions are
considered as subgraphs or subdivisions rather than minors. This occurs when the two definitions are equivalent, for
instance, when considering paths as minors (or equivalently as subgraphs).
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[11, Theorem 7.3.3]. Note that outerplanar graphs are the graphs with simple treewidth at most
2 [14], and so in this sense Theorem 2 is optimal.

We outline our approach to proving Theorem 2 in more detail in the next section.

2 | PRELIMINARIES

We use the following “subtree view” of tree decompositions. Recall that a subtree of a graphG is
any subgraph of G which is connected and acyclic.

Lemma 2.1. LetG be a graph, letT be a tree, and let B x V Tℬ = { : ( )}x ∈ be a family of
subsets of V G( ) indexed by the vertices of T . For each vertex v of G, we define

T T x v B[{ : }].v x≔ ∈

Then T( , ℬ) is a tree decomposition of G if and only if the following conditions both
hold.

• Each Tv is a nonempty subtree of T .
• If uv E G( )∈ , then V T V T( ) ( )u v∩ ≠ ∅.

We use this notation Tv throughout the paper. When there is no chance for confusion, we
refer to Tv and its vertex set V T( )v interchangeably. The width of T( , ℬ) is then the maximum,
over all x V T( )∈ , of v V G x T{ ( ) : } − 1v ∈ ∈ . The treewidth of G is the minimum width of a
tree decomposition of G. Note that, if we are given a tree T and a collection T v V G( : ( ))v ∈ of
subtrees of T which satisfy the conditions from Definition 2.1, then we can define a tree
decomposition T( , ℬ) of G by setting B v V G x T{ ( ) : }x v≔ ∈ ∈ for each x V T( )∈ .

We now outline our overall strategy for proving Theorem 2. This theorem equivalently says
that Conjecture 2.2 is false, even for connected graphs of treewidth 2. We disprove Conjecture
2.2 by reducing each of the three conjectures below to the next one, and then disproving the
final conjecture. Afterwards, we evaluate the treewidth of the constructed counterexamples
more carefully. Note that in Conjecture 2.4, the condition “for every vertex v of G v T, v∈ ” is
equivalent to “for every vertex x of T x B, x∈ ”.

Conjecture 2.2. There is a function f such that every connected graph G has a tree
decomposition T( , ℬ) of width at most f G(tw( )) such that T is a minor of G.

Conjecture 2.3. There is a function f such that every connected graph G has a tree
decomposition T( , ℬ) of width at most f G(tw( )) such that T is a spanning tree of G.

Conjecture 2.4. There is a function f such that every connected graph G has a tree
decomposition T( , ℬ) of width at most f G(tw( )) such that T is a spanning tree of G and,
for every vertex v of G, we have v Tv∈ .

Hickingbotham proved that Conjecture 2.2 implies Conjecture 2.3 in [11, Lemma 7.2.1]. In
Section 3, we show that Conjecture 2.3 implies Conjecture 2.4; this crucial new step is our main
contribution. Finally, in Section 4, we construct a graph that does not satisfy Conjecture 2.4.
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Hickingbotham [11, Theorem 7.5.1] independently discovered a counterexample to Conjecture
2.4 which actually contains our counterexample. However, we include ours since it is slightly
simpler and makes the paper self‐contained. We now conclude this section by providing a short
proof that Conjecture 2.2 (where T is a minor) implies Conjecture 2.3 (where T is a spanning
tree), for the sake of completeness.

Lemma 2.5. If G is a connected graph with a tree decomposition T( , ℬ) of width k such
that T is a minor of G, then there exists a tree decomposition T( ′, ℬ′) of G of width k such
that T′ is a spanning tree of G.

Proof. Since T is a minor of G, there exists a collection Q x V T( : ( ))x ∈ of pairwise
disjoint nonempty subtrees of G such that, for each edge xy E T( )∈ , there exists an edge
e E G( )xy ∈ with one end in V Q( )x and the other end in V Q( )y . Since G is connected, we
may assume that V G V Q( ) = ( )x V T x( )∪ ∈ . Now, let T′ be the spanning tree of G which is
obtained from Qx V T x( )∪ ∈ by adding the edge exy for all xy E T( )∈ .

For each v V G( )∈ , letT′v be the subtree ofT′which is induced by the union of all sets
V Q( )x such that x Tv∈ . This collection of subtrees of T′ satisfies the conditions of
Definition 2.1 and therefore yields a tree decomposition T( ′, ℬ′). Furthermore, this tree
decomposition has the same width at T( , ℬ), which completes the proof. □

3 | REDUCTION TO CONJECTURE 2.4

In this section we show that Conjecture 2.3 (whereT is a spanning tree) implies Conjecture 2.4
(where, additionally, for every vertex v of G, we have v Tv∈ ).

We use the following well‐known fact about tree decompositions of paths. We include a
proof for the sake of completeness. The bounds are not optimal; we aim for simplicity instead.

Lemma 3.1. For any positive integers h and k, if P is a path with at least k( + 2)h vertices
and T( , ℬ) is a tree decomposition of P of width at most k, then T contains a path of
length h.

Proof. We consider a tree decomposition T( , ℬ) where T is rooted at an arbitrary vertex
r V T( )∈ . The height ofT is then the maximum length of a path which has r as one of its
ends. For fixed k, we prove by induction on h that, under the same hypothesis, we
actually obtain the following stronger conclusion: that the height of T is at least h.

The base case of h = 1 holds since P has more than k + 1 vertices and therefore T( , ℬ)

has more than one bag. So we may assume that h > 1 and the claim holds for h − 1.
Observe that we can partition V P( ) into k + 2 sets, each of which induces in P a path
with at least k( + 2)h−1 vertices. Since T( , ℬ) has width at most k, one of these sets is
disjoint from the root bag Br. Thus, by the inductive hypothesis, one of the components of
T r− { }, when rooted at its neighbour of r , has height at least h − 1. So T has height at
least h, as desired. □

We use the following construction to show that Conjecture 2.3 implies Conjecture 2.4.
Given a positive integer k, a graphG, and an arbitrary ordering of the vertices ofG, we define a
new graph denoted G

∼
. This graph G

∼
is obtained from G by attaching one rooted tree to each

4 | BLANCO ET AL.

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23083 by T

est, W
iley O

nline L
ibrary on [19/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



vertex of G; soG
∼

has the same treewidth asG (unless E G( ) = ∅). Moreover, in Lemma 3.3, we
prove that if G

∼
satisfies Conjecture 2.3 with a tree decomposition of width k, then G satisfies

Conjecture 2.4 with a tree decomposition of width k + 1.
The attached trees are chosen such that no two have “comparable” tree decompositions.

More formally, given two treesT1 andT2, there is no tree decomposition T( ′ , ℬ′ )2 2 ofT2 of width k

such that T′2 is a subgraph of T1, and likewise with the roles of T1 and T2 reversed. We do not
frame the argument in this way, but it is the underlying reason our proof works. We accomplish
this condition by, up to symmetry between T1 and T2, making height of T2 much larger than the
height of T1, and the width of T1 much larger than V T( )2 . See Figure 1 for a depiction.

With this intuition, we are ready to state the main definition.

Definition 3.2. Fix a positive integer k, a graphG, and an arbitrary ordering a a, …, n1 of
the vertices of G. Then let G

∼
be the graph which is constructed from G as follows.

• First define integers h h h2 = n1 2≪ ≪ ⋯≪ as follows. Given hj−1, we define
h k( + 2) + 1j

h2 j−1≔ . Thus, by Lemma 3.1, if P is a path on at least h − 1j vertices
and T( , ℬ) is a tree decomposition of P of width at most k, then T contains a path of
length h2 j−1.

• Next define integers k n w w w( + 1) + 1 = n n−1 1≪ ≪ ⋯≪ and corresponding rooted
trees S S S, , …,n n−1 1 as follows. Given wj, define Sj to be the complete rooted wj‐ary tree
of height hj. Then, given w w w, , …,n n j−1 +1 and S S S, , …,n n j−1 +1, define

w k n V S( + 1) + ( ) + 1.j

i j

n

i

= +1



  



≔

FIGURE 1 The graph G
∼

which is obtained from G by attaching the complete wj‐ary tree Sj of height hj to
each vertex a V G( )j ∈ . [Color figure can be viewed at wileyonlinelibrary.com]
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Finally, letG
∼
be the graph which is obtained from the disjoint union ofG S S S, , , …, n1 2 by,

for each j n{1, 2, …, }∈ , identifying aj with the root of Sj.

Note that the graph G
∼

from Definition 3.2 can be obtained from G by adding pendant
vertices one at a time. It follows that G Gtw( ) = max(tw( ), 1)

∼
. The next key lemma therefore

completes the reduction from Conjecture 2.3 to Conjecture 2.4.

Lemma 3.3. Let k be a positive integer, let G be a connected graph, let a a, …, n1 be an
ordering of the vertices of G, and let G

∼
be the resulting graph constructed using Definition

3.2. Suppose that G
∼

has a tree decomposition T( , ℬ) of width at most k such that T is a
spanning tree of G

∼
.

Then there exists a tree decomposition T( ′, ℬ′) ofG of width at most k + 1 such thatT′ is
a spanning tree of G and for every v V G( )∈ , we have v T′v∈ .

Proof. We use the notation introduced in Definition 3.2, except that we view each tree Sj
as an induced subgraph of G

∼
which is rooted at the vertex a V G( )j ∈ . For the sake of

convenience, we do not distinguish between Sj and its vertex set.
In the first few claims we deduce roughly where each subtree Tv (as defined in

Definition 2.1) lies. We say that two sets meet if their intersection is nonempty.

Claim 3.3.1. For every j n{1, 2, …, }∈ and every nonleaf vertex v of Sj, the set Tv meets
S S V G S S a a( ) ( ) = ( ) { , …, }j j n1 1 1∪ ⋯ ∪ ⧹ ∪ ⋯ ∪ ⧹ .

Proof. Consider the union of the bags of T( , ℬ) that contain v. Each bag has size at most
k + 1, so this union has size at most k V T( + 1) ( )v . On the other hand, this union
contains every neighbour of v in G

∼
and so, by the choice of wj,

k V T v v w k V G V S( + 1) ( ) deg ( ) deg ( ) > ( + 1) ( ) + ( ) .v G S j

i j

n

i

= +1
j

 


   



⩾ ⩾ ⩾∼

In particular, Tv is not a subgraph of S S Gj n+1 ∪ ⋯ ∪ ∪ . The claim follows. □

We say that a vertex v of G
∼

is free if Tv meets V G( ) or, equivalently, if
v B Ba an1
∈ ∪ ⋯ ∪ . Otherwise, we call v constrained. Note that if v is constrained, then

Tv is a subgraph of some S a−j j since Tv is a subtree of G
∼
. The number of free vertices is

at most

B B k n( + 1) ,a an1
 ∪ ⋯ ∪ ⩽

and so almost all vertices are constrained.

Claim 3.3.2. For every j n{1, 2, …, }∈ , the vertex aj has a child bj in Sj such that Tbj is a
subgraph of S a−j j.

6 | BLANCO ET AL.
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Proof. As Sj is a complete wj‐ary tree of height hj, there are wj vertex‐disjoint paths that
start at the children of aj and end at parents of leaves of Sj. Since w k n> ( + 1)j , at least
one of these paths contains no free vertices – call this path P. Let T T=P v V P v( )∪ ∈ . So TP is
a subtree ofG

∼
. Each v V P( )∈ is constrained, and so for each v there is an i such thatTv is

a subgraph of S a−i i. But, as TP is connected and there is no edge between different
S a−i i, this i must be the same for all v V P( )∈ . That is, there is some i such that TP is a
subgraph of S a−i i. Let bj be the child of aj that is a vertex of P (since h 21 ⩾ , such a bj
exists).

By Claim 3.3.1, we have that Tbj meets S a S a( − ) ( − )j j1 1 ∪ ⋯ ∪ . Since Tbj is a
subgraph of TP, we have i j⩽ . Next focus on the tree decomposition T( , ℬ )P P of P where
ℬP is ℬ restricted to the vertices of P. This tree decomposition has width at most k. The
path P contains h − 1j vertices and so, by the choice of hj and Lemma 3.1, the tree TP
must contain a path of length at least h2 j−1. However, TP is a subgraph of S a−i i whose
longest paths have length less than h2 i. In particular, this implies that h h>i j−1 and so
i j⩾ . Thus i j= and bj is as required. □

We say that a vertex a V G( )j ∈ is grounded if Taj contains aj.

Claim 3.3.3. If a vertex a V G( )j ∈ is not grounded, then Taj is a subgraph of S a−j j and
every neighbour a V G( )i ∈ of aj is both grounded and satisfies a Tj ai∈ .

Proof. Assume that a V G( )j ∈ is not grounded. Then a Tj aj∉ . Let bj be the child of aj
given by Claim 3.3.2. As aj and bj are adjacent, Taj meets Tbj. But Tbj is a subgraph of
S a−j j, and so Taj meets S a−j j. However, Taj is connected and does not contain aj, so Taj
must be a subgraph of S a−j j as well.

Let a V G( )i ∈ be a neighbour of aj. Suppose that ai is not grounded, then Tai is a
subgraph of S a−i i. But then Tai and Taj do not meet, which is impossible as ai and aj are
adjacent. Thus ai is grounded. NowTai andTaj meet and soTai meets S a−j j. So, sinceTai is
connected, Tai contains aj. □

We now define a tree decomposition of G which satisfies Lemma 3.3. First, let T′ be
the subgraph of T induced by V G( ); notice that T′ is a spanning tree of G since T is a
spanning tree of G

∼
. Next, delete all bags Bx where x V T( ′)∉ and delete all vertices of G

∼

that are not vertices ofG. Finally, if a vertex aj is not grounded, then add aj to the bag Baj.
Call the resulting collection of bags Bℬ′ = ( ′ )a j n1j ⩽ ⩽ . We claim that T( ′, ℬ′) is a tree
decomposition of G. This completes the proof of Lemma 3.3 since T( ′, ℬ′) has width at
most k T+ 1, ′ is a spanning tree of G, and for every a V G( )j ∈ , we have a T′j aj∈ .

Notice that if a vertex a V G( )j ∈ is grounded, then T′aj is just the induced subgraph of
Taj restricted to V G( ); so T′aj is still connected. Likewise, if aj is not grounded, then by
Claim 3.3.3, T a′ = { }a jj

is connected. We are left to check that for every edge a a E G( )i j ∈ ,
the subtrees T′ai and T′aj meet. First suppose that aj is not grounded. Then, by Claim 3.3.3,
T′ai andT′aj both contain the vertex aj. The case that ai is not grounded is symmetric, so we

may assume that both ai and aj are grounded. As ai and aj are adjacent in G
∼
, the trees Tai

and Taj meet in G
∼
. If they meet in V G( ), then so do T′ai and T′aj as desired. So let

BLANCO ET AL. | 7
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nℓ {1, 2, …, }∈ be such that Tai and Taj meet in Sℓ. Now Tai contains ai and is connected
and Taj contains aj and is connected, so Tai and Taj both contain aℓ. So both T′ai and T′aj
contain aℓ, as required. This completes the proof of Lemma 3.3. □

4 | CONSTRUCTION

In this section we disprove Conjecture 2.4 and then combine the previous reductions to prove
Theorem 2.

We begin by defining the relevant graphs. Then we prove that they are counterexamples in
Lemmas 4.2 and 4.3.

Definition 4.1. The second reflected‐tree G2 is the cycle of length four with vertices
v v v v v, , , ,1 2 3 4 1, in order. We call v v,1 3 the roots ofG2. Then, for any positive integer r 3⩾ ,
the rth reflected‐tree Gr is constructed recursively as follows:

• Let H and H′ be two disjoint copies ofGr−1, and let u and v be two new vertices, which we
call the root vertices ofGr . To constructGr, we start with H and H′, then make u adjacent
to a root vertex of H and a root vertex of H′. Finally, we make v adjacent to the remaining
root vertex of H and the remaining root vertex of H′. See Figure 2 for a depiction.

Now we prove a lemma about the spanning trees of the reflected‐tree. Whenever T is a
spanning tree of a graph G, we denote the fundamental cycle of an edge e E G E T( ) ( )∈ ⧹ with
respect to T by CT

e ; thus CT
e is the unique cycle in the graph obtained from T by adding e.

Lemma 4.2. For any integer r 2⩾ and any spanning tree T of Gr, there is a matching
M E G E T( ) ( )r⊆ ⧹ of size r − 1 such that

( )V C .
e M

T
e ≠ ∅

∈

FIGURE 2 The fourth reflected‐tree G4 (right, with root vertices larger and in red) being constructed from
the third reflected‐tree G3 (left). [Color figure can be viewed at wileyonlinelibrary.com]
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Proof. Let u and v be the root vertices ofGr, and denote the path between them inT by Puv.
Under the same conditions, we prove the following stronger outcome holds by induction:

( )E C E P( )
e M

T
e

uv ∩ ≠ ∅
∈

for some matching M E G E T( ) ( )r⊆ ⧹ of size r − 1. For the base case of r = 2, the graph
Gr is a cycle on four vertices; then any spanning treeT ofG2 is a path on four vertices, and
we can take M to be the 1‐edge matching E G E T( ) ( )2 ⧹ .

Next, we may assume that r > 2 and the claim holds for r − 1. By definition,
G u v− { , }r has exactly two connected components both of which are isomorphic to Gr−1.
We denote these components by H and H′. Exactly one of T T V H u v[ ( ) { , }]H ≔ ∪ and
T T V H u v[ ( ′) { , }]H′ ≔ ∪ is connected in T ; without loss of generality, we assume that TH
is connected in T . We can apply the inductive hypothesis on T V H[ ( )], which is a
spanning tree of H , to find a matching M E H E T V H( ) ( [ ( )])H ⊆ ⧹ of size r − 2 with

E C E P u v( ) ( − { , })e M T
e

uvH
 ∩ ≠ ∅∈ . The other subgraph TH′ is not connected. In fact, it

contains exactly two components: one containing u, and the other containing v. Thus
there exists an edge e E G E T′ ( ) ( )r∈ ⧹ with one end in each of these two components of
TH′. Observe that e′ lies in G V H u v[ ( ′) { , }]∪ which is vertex‐disjoint from H . Thus
M e{ ′}H ∪ is a matching since M HH ⊆ .

For convenience, let us define M M e{ ′}H≔ ∪ . M is a matching of size r − 1, and we

have E P E C( ) ( )uv T
e′⊆ . From here, it follows that

( )E C E P( ) .
e M

T
e

uv ∩ ≠ ∅
∈

Thus M is our desired matching. □

We are now ready to prove the following lemma, which shows that reflected‐trees are a
counterexample to Conjecture 2.4.

Lemma 4.3. For every k ℕ∈ , if T( , ℬ) is a tree decomposition of Gk+2 such that T is a
spanning tree of Gk+2 and, for every v V G( )k+2∈ , we have v Tv∈ , then the width of T( , ℬ)

is at least k.

Proof. We begin by finding a matching M u v u v E G E T{ , …, } ( ) ( )k k k1 1 +1 +1 +2≔ ⊆ ⧹ of
size k + 1 satisfying the properties in Lemma 4.2. Let x V C( )e M T

e∈ ∈ . By construction,

x is in the path Pu vi i
between ui and vi inT for every i k{1, …, + 1}∈ . From Definition 2.1,

the trees Tui and Tvi meet; furthermore, since Tui and Tvi are connected in T , with
u V T( )i ui∈ and v V T( )i vi∈ , we find that every vertex of Pu vi i

is in V T V T( ) ( )u vi i
∪ . As a

result, x V T V T( ) ( )u vi i
∈ ∪ . That is, u Bi x∈ or v Bi x∈ for all i k{1, …, + 1}∈ . Since M is

a matching, we have that B k + 1x  ⩾ and the width of T( , ℬ) is at least k. □

We are now ready to prove the main theorem, which is restated below for convenience.

Theorem 2. For every positive integer k, there is a connected graphG of treewidth 2 such that
if T( , ℬ) is a tree decomposition of G and T is a minor of G, then T( , ℬ) has width at least k.

BLANCO ET AL. | 9
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Proof. For convenience, we fix an integer k 2⩾ . Now consider the k( + 3)rd reflected‐tree
Gk+3. Let a a, …, n1 be an arbitrary ordering of V G( )k+3 , and let Gk+3

∼
be the graph obtained

from the integer k − 1, the graphGk+3, and the ordering a a, …, n1 by applying Definition 3.2.
We now prove that Gk+3

∼
satisfies the conditions of Theorem 2. First, recall that Gk+3

∼

has treewidth equal to Gmax(tw( ), 1)k+3 . Moreover, Gtw( ) = 2k+3 since Gk+3 is series
parallel and not a tree. Thus Gk+3

∼
is a connected graph of treewidth 2, as desired.

Next, suppose towards a contradiction that Gk+3
∼

has a tree decomposition T( , ℬ) of
width at most k − 1 such that T is a minor of Gk+3

∼
. Since Gk+3

∼
is connected, Lemma 2.5

says that Gk+3
∼

has a tree decomposition T( ′, ℬ′) of width at most k − 1 such that T′ is a
spanning tree ofGk+3

∼
. Thus, sinceGk+3 is connected, Lemma 3.3 says thatGk+3 has a tree

decomposition T( ″, ℬ″) of width at most k such thatT″ is a spanning tree ofGk+3 and for
every v V G( )k+3∈ , we have v T″v∈ . However, Lemma 4.3 also says that T( ″, ℬ″) has
width at least k + 1. This contradiction completes the proof of Theorem 2. □
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