UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Multi-task localization of the hemidiaphragms and lung segmentation in portable chest X-ray images of COVID-19 patients

Morís, DI; de Moura, J; Aslani, S; Jacob, J; Novo, J; Ortega, M; (2024) Multi-task localization of the hemidiaphragms and lung segmentation in portable chest X-ray images of COVID-19 patients. Digital Health , 10 10.1177/20552076231225853. (In press). Green open access

[thumbnail of moris-et-al-2024-multi-task-localization-of-the-hemidiaphragms-and-lung-segmentation-in-portable-chest-x-ray-images-of.pdf]
Preview
Text
moris-et-al-2024-multi-task-localization-of-the-hemidiaphragms-and-lung-segmentation-in-portable-chest-x-ray-images-of.pdf - Published Version

Download (2MB) | Preview

Abstract

BACKGROUND: The COVID-19 can cause long-term symptoms in the patients after they overcome the disease. Given that this disease mainly damages the respiratory system, these symptoms are often related with breathing problems that can be caused by an affected diaphragm. The diaphragmatic function can be assessed with imaging modalities like computerized tomography or chest X-ray. However, this process must be performed by expert clinicians with manual visual inspection. Moreover, during the pandemic, the clinicians were asked to prioritize the use of portable devices, preventing the risk of cross-contamination. Nevertheless, the captures of these devices are of a lower quality. OBJECTIVES: The automatic quantification of the diaphragmatic function can determine the damage of COVID-19 on each patient and assess their evolution during the recovery period, a task that could also be complemented with the lung segmentation. METHODS: We propose a novel multi-task fully automatic methodology to simultaneously localize the position of the hemidiaphragms and to segment the lung boundaries with a convolutional architecture using portable chest X-ray images of COVID-19 patients. For that aim, the hemidiaphragms’ landmarks are located adapting the paradigm of heatmap regression. RESULTS: The methodology is exhaustively validated with four analyses, achieving an 82.31% 2.78% of accuracy when localizing the hemidiaphragms’ landmarks and a Dice score of 0.9688 0.0012 in lung segmentation. CONCLUSIONS: The results demonstrate that the model is able to perform both tasks simultaneously, being a helpful tool for clinicians despite the lower quality of the portable chest X-ray images.

Type: Article
Title: Multi-task localization of the hemidiaphragms and lung segmentation in portable chest X-ray images of COVID-19 patients
Open access status: An open access version is available from UCL Discovery
DOI: 10.1177/20552076231225853
Publisher version: https://doi.org/10.1177/20552076231225853
Language: English
Additional information: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Keywords: COVID-19, chest X-ray, heatmap regression, lung segmentation, hemidiaphragm localization
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Respiratory Medicine
URI: https://discovery.ucl.ac.uk/id/eprint/10187455
Downloads since deposit
3Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item