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Abstract— Due to iterative matrix multiplications or gradient
computations, machine learning modules often require a large
amount of processing power and memory. As a result, they
are often not feasible for use in wearable devices, which have
limited processing power and memory. In this study, we pro-
pose an ultralow-power and real-time machine learning-based
motion artifact detection module for functional near-infrared
spectroscopy (fNIRS) systems. We achieved a high classification
accuracy of 97.42%, low field-programmable gate array (FPGA)
resource utilization of 38 354 lookup tables and 6024 flip-flops,
as well as low power consumption of 0.021 W in dynamic power.
These results outperform conventional CPU support vector
machine (SVM) methods and other state-of-the-art SVM imple-
mentations. This study has demonstrated that an FPGA-based
fNIRS motion artifact classifier can be exploited while meeting
low power and resource constraints, which are crucial in embed-
ded hardware systems while keeping high classification accuracy.

Index Terms— Field-programmable gate array (FPGA), func-
tional near-infrared spectroscopy (fNIRS), low power, machine
learning, motion artifact detection, real time, support vector
machines (SVMs).

I. INTRODUCTION

FUNCTIONAL near-infrared spectroscopy (fNIRS) is an
emerging modality that aims to characterize cortical

hemoglobin fluctuations through intensity measurements of
diffusely scattered near-infrared light [1], [2]. It can help
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neuroscientists to determine which brain regions are activated
during specific actions. However, preprocessing is essential
for fNIRS data, which can be noisy. Due to the participant’s
motion, nonevoked systemic signal components in recorded
fNIRS signals pose a challenge. This challenge is one of
the main issues affecting fNIRS applications, as it results in
motion artifacts, causing an erroneous detection of functional
cortical activity [1].

Conventional motion detection is processed offline using
benchtop computers, and these methods are based on peaks
or shifts in time-series signals, including spline interpola-
tion, wavelet filtering, and principal component analysis [3],
[4], [5]. However, the performance of these methods largely
depends on a set of assumptions to describe motion artifacts
and the subjective selection of signals with associated tuning
of parameters. Hence, the need for a method that eliminates
the subjective fine-tuning of parameters and avoids relying
on stringent assumptions becomes crucial. To date, the com-
mon machine learning method employed for automatically
learning with the fine-tuning of parameters is based on a
denoised autoencoder architecture which requires the use of
high-power graphics processing units (GPUs), such as a Titian
Xp GPU card [3]. Implementations using GPUs can achieve
high classification accuracies, with [3] quoting a 100% success
rate in removing motion artifacts. However, GPU card is not
suitable for integration into wearable devices. Moreover, GPUs
are not appropriate to power-constrained applications. In the
execution of support vector machine (SVM) algorithms, field-
programmable gate arrays (FPGAs) are quoted to consume
over an order of magnitude less power as compared to GPUs.
This makes FPGA feasible to carry out machine learning
algorithms in low-power applications.

In this work, we deploy SVM as a machine learning method
instead of neural network implements to consider the hardware
constraints for standalone devices for fNIRS motion artifact
detection. Efficient SVM hardware implementations can be
achieved by considering various techniques and optimiza-
tions. One approach is to use reduced precision arithmetic,
such as fixed-point or low-precision floating-point formats,
to perform computations with lower energy consumption [6].
Alternatively, parallel processing units can speed up SVM
computations and reduce power consumption or optimize
memory access patterns and utilize ON-chip memory resources
efficiently. This reduces data transfer and storage requirements,
leading to reduced power consumption [7]. However, past
attempts have several critical limitations. Several simplification
methods were applied when reducing the hardware complexity,
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Fig. 1. Co-design workflow for machine learning deployment in fNIRS
applications: integrating Scikit-Learn, MATLAB/Simulink, and Vivado for
FPGA-based high-performance computing.

consequently sacrificing classification accuracy. Past architec-
tures also lack flexibility and scalability and have exceptionally
high power consumption usage; this is problematic due to
the challenge of achieving a low-power hardware system [8].
A similar problem also occurs when leveraging FPGAs to
achieve a high classification accuracy. Although FPGAs have
flexible digital circuital design and extensive parallel computa-
tion capabilities, the power consumption is still very high [7].
Overall, past implementations of SVMs struggle to meet
important constraints imposed by the FPGAs, such as high
classification accuracy, real-time processing, minimal resource
utilization, and low-power usage [8].

Therefore, the main contribution of this article is the devel-
opment of an online machine learning-based motion detection
high-level synthesis (HLS) Simulink model and subsequent
generation of a model at register transfer level (RTL) level
for online motion artifact detection for an fNIRS system with
ultralow-power. Our machine learning module uses exponen-
tial approximation and overcomes the impact of accuracy
degradation when reducing power consumption using a serial
channeling method. This method overcomes resource con-
straints and introduces an online processing technique that
can be miniaturized and seamlessly integrated as a standalone
device. In addition, we conducted a systematic power compar-
ison, which demonstrates the novelty of the proposed approach
and leads to a practical design solution for a fast FPGA-based
prototype. A system development flowchart of this study is
shown in Fig. 1.

II. DIGITAL ARCHITECTURE DESIGN AND SIMULATION

In this section, we present a detailed design of the ultralow-
power, real-time implementation for detecting motion artifacts
in fNIRS. We utilized the Gaussian radial basis function (RBF)
kernel, widely recognized as a powerful and popular choice
for handling nonlinear data [9]. We employed a software
and hardware co-development method. The preprocessing
and motion detection integration stages were implemented
using MATLAB and Simulink. Subsequent models were
then validated through a set of datasets with an in-built
Simulink testbench. The testbench enabled the calculation of

all miss-classification errors, providing a reliable measurement
of the classification rate for each architecture. By adopt-
ing a high-level simulation approach early in the design
cycle, we facilitated the rapid prototyping of designs. Each
solution can be evaluated for its speed, complexity, and accu-
racy, allowing for a thorough assessment of its performance
characteristics.

A. fNIRS Dataset

Raw fNIRS data were obtained from a study wherein
subjects wearing the fNIRS device were given tasks including
“seated-texting” and “walking-texting.” The data was passed
through an fNIRS-specific data processing toolbox called
Homer3 [10] and a function called hmrMotionArtefact to
determine periods of motion artifact [10]. The purpose of
finding these periods of motion artifacts was to train the
SVM model using labeled data where the classifications have
already been identified. Training datasets were created through
the downsampling and balancing of a larger dataset with
99 087 instances and two features.

Balanced and unbalanced datasets were used when testing
the architectural and HLS generated RTL SVM designs. The
tests used balanced datasets so that many segments of data
with motion artifacts could be tested. Unbalanced datasets
were used to test the SVM model on signals that mimic a
naturalistic scenario.

B. Training the SVM Model

The full development cycle of the proposed SVM motion
artifact classifier starts by training a model offline in soft-
ware [9]. The model was trained in Python, and cross
validation was applied with a grid search to find the best
cost parameter and kernel coefficient. An exhaustive search
over various SVM parameters was conducted to fine-tune the
model. The cross validation revealed that the best parameters
for the model were 0 = 1 and regularization λ = 10. Here,
0 = (1/σ), where σ is the variance and 0 represents how
much impact one training point has on its surrounding data
points. The regularization term λ was used to prevent overfit-
ting. The support vectors were extracted upon constructing the
finished model, of which 55 were generated, and the associated
Lagrange multiplier coefficients and bias value were obtained.

C. Digital Architecture Design of Preprocessing

The RBF kernel in the SVM algorithm assumes that incom-
ing data has been centered and scaled. Therefore, the incoming
fNIRS signals need to be preprocessed for normalization pur-
pose. This required each feature to have its mean value equal
to zero and its standard deviation equal to one. To achieve real-
time preprocessing, we calculated an exponentially weighted
running mean and standard deviation. In the time-domain the
exponentially weighted running mean is a statistic calculation
that would consume a large number of FPGA hardware
resources, hence the frequency-domain representation which
is a first-order infinite impulse response (IIR) filter consisting
of a real pole was applied. This is simple to implement in the
time domain and uses far fewer hardware resources. We then
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Fig. 2. Simulink-based preprocessing of fNIRS data: IIR filter design using single-pole z transform method.

Fig. 3. Advanced Simulink architecture for fNIRS data: integrating SVM with kernel realization, inner product accumulation, and threshold comparison
modules for motion artifact detection, yielding binary classification outputs to indicate the presence or absence of motion artifacts.

created an IIR filter circuit, following a z transform, we find
the transfer function:

H(z) =
a

1 − (1 − a)z−1 . (1)

Herein, 0 < a < 1 is a constant that determines the effective
length of the running average. To go to the continuous domain,
we make the substitution z = esT, where T is the sample time.
After solving 1−(1−a)e−sT

= 0, the continuous system has a
pole at s = (1/T ) log (1 − a), where we set a as 1− exp(((2 ·

π · T )/τ)), τ is the averaging time constant. The best value
of τ and subsequently a was found through a comprehensive
brute force search that evaluates classification accuracy as a
result; the final value taken forward was a = 0.01. Given that
the transfer function (1) calculates the exponentially weighted
running mean, the variance and the standard deviation can
be efficiently computed. The Simulink architecture used to
process a single feature of the input fNIRS signal is shown
in Fig. 2.

D. Digital Architecture of SVM Inference

The underlying theory of the SVM architecture builds a
streaming architecture model based on the functional decom-
position of the SVM kernel [9]. The fundamental arithmetic

operations of the Gaussian RBF kernel K (x⃗ i, x⃗) = e−(∥x⃗ i,x⃗∥
2/σ)

were directly mapped to Simulink arithmetic blocks, where
x⃗ i and x⃗ are two input test points and Gamma 0 = (1/σ) is
defined as a new variable as a metric for how much impact one
training point has on its surrounding data points. The proposed
SVM hardware design was segmented into three principal
blocks: a kernel realization (A), inner product addition with
an adder tree (B), and a threshold comparison (C) [11]. The
support vector values and Lagrange multiplier coefficients
were taken from the trained Python SVM model. Fig. 3
shows the data preprocessing block on the left-hand side
feeding preprocessed fNIRS signal into the SVM algorithm
architecture. The preprocessed fNIRS data were streamed into
square difference units with 55 support vectors where the
square difference between the fNIRS signal and the support
vectors were calculated and then passed to exponential func-
tion units to achieve the RBF kernel function. The adder tree
and multipliers construct the classification function as follows:

f (x) = sign

(
n∑

i=1

αi · K
(
x⃗ i, x⃗

)
+ b

)
. (2)

The α term represents the Lagrange multipliers, and b is a
bias parameter. The bias parameter was not included as it
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TABLE I
OVERVIEW OF KEY HARDWARE RESOURCES ON THE

TARGET FPGA FOR SYSTEM IMPLEMENTATION

was found to increase the usage of FPGA resources while
offering no improvement in classification accuracy. In the last
step, the classification results were forecast using the output of
the adder tree and a relational operator compared to “0”—the
classification that indicates the absence of a motion artifact.

The combined fNIRS data preprocessing and RBF ker-
nel SVM algorithm architecture were designed and simu-
lated within the Simulink environment. This work utilized
MATLAB and Simulink’s automatic HDL code generation to
convert the digital system architecture to HDL code. HDL
code creation methods generally produce Verilog code that
is highly optimized and efficient whilst requiring minimal
changes. These overall methods allow for a fast development
time.

III. HLS GENERATED RTL DIGITAL
DESIGN AND SIMULATION

The HLS generated RTL digital design was evaluated using
Xilinx Vivado [12] and then generated bitstream to download
into Xilinx Zynq Ultrascale + MPSoC (“sfvc784-1-i” family).
The FPGA resources are shown in Table I [13].

Simulink tools generated arithmetic modules and captured
the digital design in Verilog code. RTL was generated in
the IEEE754 32-bit single-precision floating-point format. The
overall architecture utilized a differential clock to run the RTL;
this form of differential signaling employs two complementary
clock signals to transmit one information signal [13]. This sig-
naling system enhances noise resistance and enables reduced
voltage fluctuations, leading to decreased power consumption
in FPGAs. A unified software/hardware codesign method
was then developed. The HLS generated RTL design was to
replace critical blocks designed and tested in the Simulink
architecture with synthesizable Verilog blocks to provide the
same function with less resource requirement. The entire RTL
design employs a streaming architecture where the output of
a subsystem is fed directly to the input of the next subsystem.
The streaming architecture enables a subsystem to initiate
computation once sufficient data has been accumulated. This
approach led to reduced latency, as we directly utilized the
results from each subsystem without storing them in OFF-
chip memory. The only source of latency is the interim time
between starting the device setup and the initial feeding of
the first model’s layer, after which all computations proceed
concurrently.

Data preprocessing of the fNIRS signals principally
revolved around using a single real pole IIR filter. This was

implemented in RTL by breaking the filter into core
floating-point arithmetic operations. A multiplier using a “part
multiplier, part add-shift” mantissa multiplication architecture
was designed, which allows the filter’s functions execution
while preserving accuracy. This architecture revolved around
splitting the 32-bit inputs into their sign, exponent, and
mantissa, then performing simple assignments, binary bit
switching, and shifting of the two inputs. Constants were fed
into this particular multiplication module to create a gain, and
a single input was given twice to create squaring operations.
Addition and subtraction modules were designed using similar
RTL architectures. The preprocessing data section was com-
pleted with standalone floating-point square root and division
modules, which were instantiated to calculate the input data’s
normalization.

A principal component analysis of the fNIRS data was used
to identify which input features contributed the most variation
in the data and, thus, which features best captured the data’s
structure. This revealed only two features that were required.
Each feature of these two input features has a preprocessing
RTL channel following the architecture given in Fig. 2. The
two preprocessing channels were operating in parallel, and for
any dataset, with more features, these can be easily extended
to include more channels.

The underlying principle of the SVM classifier architecture
was to exploit the FPGA’s parallel computational power and
resources to execute the decision function (2) most efficiently;
computation of this function involves highly parallelizable
vector operations. Consequently, the RBF function was parti-
tioned into small arithmetic blocks that form parallel Support
Vector channels. The proposed FPGA architecture for the
SVM classifier at RTL-level HDL design follows the digital
Simulink architecture given in Fig. 3. The RBF kernel to
FPGA architecture mapping allows each of the 55 support
vector channels to run synergistically, achieving a parallelized
classification system. Internal FPGA memory was employed
solely for the support vectors and Lagrange multiplier coef-
ficients. The raw fNIRS signal was streamed into the FPGA
and fed into the data-preprocessing units. Upon preprocessing,
we tackled the kernel calculation, the most fundamental part of
the SVM algorithm’s RTL, which would be the most resource
and power-intensive part of the RTL design. The RTL model’s
compact size offered the advantage of accommodating all
SVM parameters, including support vectors, within ON-chip
memory. This eliminates the need for slower OFF-chip memory
access, leading to improved overall efficiency.

The problem of the RBF kernel calculation in RTL mimics
that seen in the digital architecture as it is distributed into
smaller parallel arithmetic units that are executed in larger
blocks as modules. These processing units employ the inherent
parallelism of the FPGA to accelerate any computation of
the decision function substantially. The parallel implementa-
tion of the RBF kernel with 32-bit single precision across
all 55 support vector channels can provide fast processing
speed. However, it simultaneously overused FPGA hardware
resources. Given the target FPGA board hardware resource
limitations, we considered utilizing the oversampled channel
method in a serialized fashion.
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TABLE II
COMPARISON OF KEY FPGA RESOURCE UTILIZATION AND CLASSIFICATION ACCURACY FOR FOUR SVM ALGORITHMS

IV. IMPLEMENTATION
Several methods were attempted to reduce the RTL

FPGA area usage. First, a common technique of applying
a fixed-point numerical representation was trialed. However,
the model uses an immense scale of numbers, and therefore,
this approach severely reduced the classification accuracy
due to a restriction of numbers representable by fixed-point
notation. Any 32-bit fixed-point data with a value higher than
231

− 1 = 2 147 483 647 cannot be processed and expressed
precisely and often the internal RTL values did exceed
this precision. In contrast, the 32-bit floating-point number
can accurately represent values up to ≈3.4028235 × 1038.
Next, it was found that the SVM’s most computationally
demanding task was the kernel’s exponential function. This
function used different approximations taking advantage of
its mathematical relationships. We employed a trigonomet-
ric calculation approach that utilized a Coordinate Rotation
Digital Computer (CORDIC) for hardware-efficient trigono-
metric calculations, including a Taylor series approximation
and experimented with a table-driven calculation module. The
most efficient technique found for our design was to use
the autogenerated HDL code that Simulink gives for the
exponential function. This method, similar to the addition
and subtraction modules, breaks the exponential function
down into a long series of simplistic bit operations on the
floating-point input’s mantissa and exponent. To evaluate the
effectiveness of various techniques employed to reduce FPGA
resource utilization, we conducted an analysis of different
SVM algorithms and their respective resource consumption.
Table II summarizes the resource consumption and respective
classification accuracy of four distinct SVM implementations:
1) an initial floating-point model; 2) a fixed-point model; 3) a
new exponential function using an LUT stored in memory
rather than a mathematical implementation of the exponential
function; and 4) a single oversampled channel. This compar-
ison highlights the development trajectory of the final SVM
algorithm, where the fixed-point model compromised classi-
fication accuracy and the single oversampled channel gave a
lower resource utilization compared to the new exponential
function. Hence, algorithm 4) was opted for as it achieved
the best resource-efficient FPGA implementation of the four
implementations.

The final digital design that we adopted incorporates a
resource-aware scheme, which translates the initial fully par-
allel design into a hybrid architecture that combines both

parallel and serial processing. In order to optimize FPGA
area utilization, we focused on the 55 support vector channels,
running them in an oversampled channel, enabling the opera-
tions of multiple channels to a single hardware unit. We first
converted the parallel support vectors and processed fNIRS
signals into a singular stream of samples time-multiplexed
onto a singular channel. Through this method, we opti-
mized the hardware of the resource-costly kernel and inner
product accumulation RTL. A singular subtraction, squaring,
and exponential function RTL were written for the kernel.
Lagrange coefficients were still stored in FPGA memory;
however, their multiplication operation was included within
the shared FPGA RTL. In the streaming design, the timing
of each channel is critical, a synchronization between the
serial and parallel sections of the design and channels is
needed for accurate operation of the RTL. To share these
resources without adding significant cycles of latency, the RTL
of the singular shared channel was oversampled at 55 times
at the base clock rate of the overall model. Consequently,
the model only has one extra cycle of latency of the base
rate. The RTL operated at the maximum power-optimized
clock speed of 2.5 MHz. However, with this new architecture,
the base rate was significantly reduced to 45.45 kHz. This
adjustment accommodated the 55-fold increase in clock speed
for the oversampling channel method avoiding this with only
an additional latency of approximately 330 ns. Considering
that neural activities function on a timescale of tens of seconds,
coupled with the response activation times for measuring
oxygenation and deoxygenation, an internal clock is necessary
for serial data processing. The new architecture of the SVM
kernel and inner product accumulation RTL with their singular
channel is shown in Fig. 4.

The proposed streaming architecture alongside the partially
parallel, partially serial model offers many advantages and
is crucial for a low-power design desired by neuroimaging
technologies. However, it demands meticulous design to avoid
bottlenecks that could impair the entire system’s performance.
Fig. 5 shows the timing diagram of the architecture that
ensures there is no such bottleneck whilst giving further
explanation to the operation of the parallel-serial model.
A pseudocode showing the general flow and logic of the HDL
realization and subsequent HLS generated RTL design for the
combined data preprocessing and SVM algorithm is shown
in Fig. 6. The block diagram showing the FPGA module layout
is shown in Fig. 7.
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Fig. 4. Refined RTL architecture of the SVM for serial singular and oversampled channel. This block diagram details the serialization and deserialization
processes in a single-channel implementation of the SVM, incorporating key components as depicted in Fig. 3.

Fig. 5. Timing diagram of low-level design highlighting bottleneck avoidance. The diagram illustrates the parallel-serial model’s operation, showing the
base clock and raw input data along with their oversampled equivalents. It emphasizes the oversampled clock’s speed, which is 55 times slower than the base
clock, and includes both oversampled input data and an example of the resultant clean output signal, which signifies the detection of a motion artifact, labeled
as an “error.”

Fig. 6. Pseudocode for HDL and RTL logic flow in fNIRS data preprocessing and SVM algorithm. This figure presents a structured overview of the process,
divided into three algorithms: the top-level SVM module (Algorithm 1), a submodule for oversampling (Algorithm 2), and the submodule for executing SVM
arithmetic operations (Algorithm 3).

V. RESULTS AND DISCUSSION

After validating the functionality of the SVM design
through behavioral software simulation, the next phase
involves the translation of functional hardware description
language (HDL) code to an operational FPGA, specifically, the

Zynq system-on-chip (SoC). This transition typically occurs
in several sequential stages, with the most crucial phases
encompassing synthesis, place and route, and the generation
of the programming file. All of these processes were executed
within the Vivado tool.
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Fig. 7. Block diagram of the proposed FPGA system.

Fig. 8. RTL behavioral simulation outputs and classification accuracy evaluation. “Out1” indicates the detected motion artifact signal from SVM RTL, and
its comparison with “Out1_ref” from traditional motion artifact detection software Homer3, demonstrating an accuracy rate of 97.42%.

In this context, the constraints file plays a pivotal role.
It defined a 6-ns clock cycle with a 3-ns switching
period and maps the register-transfer level (RTL) general-
purpose input–output (GPIO) to FPGA universal asynchronous
receiver–transmitter (UART) pins, which, in this configuration,
are configured as peak-to-peak 3.3-V low-voltage comple-
mentary metal–oxide–semiconductor (LVCMOS) pins. The
mapping, place and route, and static timing analysis were
automated procedures within Vivado. These operations took
place during the synthesis process as integral components of
the implementation phase.

Following successful navigation through these stages, the
place and route operation assessed the final resource utilization
and generated a netlist tailored for the FPGA. Finally, the RTL
design was exported to a bitstream for configuration within the
FPGA hardware.

A. Results

The primary evaluation criterion employed for assessing the
models was classification accuracy. Each of the four training
datasets was applied to the models, and the quantification of
motion artifacts, as determined by the digital architectural
or RTL error counter (depending on the model’s stage of
development), was used to evaluate their performance. A low
number of incorrectly identified motion artifacts indicate supe-
rior model performance, as shown in Table II. In addition,
complementary metrics, such as FPGA resource allocation
and power consumption, were utilized to evaluate the models,
especially concerning the objectives of low-power operation
and real-time capabilities, as demonstrated in Fig. 5. Never-
theless, given the medical application of the SVM models,
classification accuracy was considered the paramount metric
of importance.

The single-channel oversampled model illustrated in Fig. 4
was taken to the hardware implementation of the tested
models. Table II illustrates the stark decrease in the FPGA

resource utilization between the initial 1) and final 4) models,
where the resource utilization includes the data preprocessing
and kernel implementation circuitry.

Using the “LUT as a logic” metric as the most critical
indicator of resource utilization, a 151.49% decrease in the
area from 232 069 to 32 026 LUTs can be seen—due to
the application of the resource-cutting methods described in
the design methodology section. The investigation did not
record the change in FPGA power consumption. We analyzed
the classification accuracy further by looking at the output
signals produced by the RTL behavioral simulations, as shown
in Fig. 8. This primarily shows the “error_count” counter
that was instantiated in the testbench. Here, “Out1” was the
output motion artifact signal of the SVM RTL, where 1 (high)
indicated the presence of a motion artifact and 0 (low) indi-
cated the absence of a motion artifact. “Out1_ref” was an
ideal real-world classification of the fNIRS input as labeled by
the Homer3 software. Importantly, the overall data points for
the testbench demonstrated a remarkably high accuracy rate
of 97.42%. This level of accuracy underscores the reliability
and effectiveness of the RTL simulations in classifying motion
artifacts in fNIRS data, leveraging the robustness of the SVM
algorithm.

Within resource utilization, the most valuable resource can
vary between digital designs and project requirements. Based
on the neuroimaging FPGA’s real-time and low-power project
objectives, the use of specific resources could be minimized.
Utilization of memory logic was intentionally very low and
was split relatively evenly across LUT RAM (1.20%), Flip-
Flops (4.27%), and BRAM (1.85%) to achieve the hardware
objectives. As LUT RAM and Flip-Flops used for memory
are fast, and a value can be obtained immediately instead of
waiting for the next clock edge. However, it would use more
power than the BRAM, which has higher latency. A similar
issue was found for the DSP blocks as they may allow
an RTL design to employ the parallel architecture of an
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TABLE III
FPGA RESOURCE UTILIZATION OF THE PROPOSED DESIGN

Fig. 9. Visual depiction of the key FPGA resource utilization of the proposed
design.

FPGA better, hence meeting the real-time objective; however,
this method utilized more power. Given the broadly serial
nature of the FPGA design and its medical fNIRS application,
we have opted to limit the utilization of DSP modules. These
modules were specialized and complex components designed
for intricate signal processing, and they often consume more
resources and power and can increase both the RTL synthesis
time and operating time of the FPGA. Hence, they have been
limited to a utilization of 3.3%. This was decided based on
the recognition that the inherent advantages of DSP modules
would not be fully harnessed in this RTL model. Moreover,
restricting DSP module usage allows for future enhancements
and features to be added ensuring that the current design is
scalable and flexible. The overall FPGA resource utilization
is summarized in Table III and depicted visually in Fig. 9.
It shows that only around 50% of resources were utilized.

The power consumption of the final HLS generated RTL
model implementation was synthesized and reported using the
Vivado software to provide benchmark tests of the design. The
power simulation was run in a “worst-case” scenario to gen-
erate the highest estimated power consumption. This scenario
includes a high ambient temperature of 40 ◦C, an airflow of
250 linear feet per minute, and a maximum process intensity.

Power is divided into two categories and governed by the
sum of its static (fixed) and dynamic (variable) power con-
sumptions. Static power originates from the FPGA technology
silicon design and dynamic power is derived from the digital
designs’ distinctive utilization. Initial power consumption val-
ues wherein the clock frequency was set to 166.67 MHz gave
a total power of 1.605 W, as seen in Fig. 10(b). Although
such a power can be regarded as low and rivals that of similar
devices seen in the literature. This research aimed to prioritize
energy efficiency as it becomes vital in low-power applications

Fig. 10. Detailed representation of the SVM RTL power consumption, both
dynamic and static. (a) Initial and final optimized power consumption at a
clock frequency of 2.5 MHz. (b) Initial and optimized power consumption
after the clock frequency was increased to 166.67 MHz.

of the fNIRS technology. A tradeoff between energy efficiency
with throughput existed, so by lowering the baseline clocking
frequency to 2.5 MHz, the power consumption was drastically
reduced. Post the clock frequency reduction our targeted
device consumed 0.264 W, of which 0.243 W (92%) was
reported for the static power and 0.021 W (8%) for the
dynamic power consumption, all dissipating through the PL
side of the Zynq. The most power-hungry sections of the RTL
design were the signals at 0.007 W (33%) and the logic, which
consumed 0.009 W (44%) of the total dynamic power. This
is expected because the core power rail consumes most of the
power, which uses RTL signals to drive the logic, a central
aspect of FPGA design. A more detailed breakdown of these
power figures is shown in Fig. 10(b) and gives a clear picture
of one of the more fundamental contributions of this work. The
FPGA underwent simulation at two different clock frequencies
166.67 and 2.5 MHz. The final lower frequency of 2.5 MHz
assumed typical conditions where the ambient temperature
was 28.6 ◦C, while at 166.67 MHz, maximum power sim-
ulation settings were employed with an ambient temperature
of 33.8 ◦C. These simulations yielded insights into how the
design performs under different operational conditions. Our
study uncovers insights that are often overlooked in fNIRS
and FPGA-SVM artifact rectification approaches. In addition,
the literature on fNIRS lacks substantial focus on real-time,
low-power hardware implementations using machine learning
algorithms. Hence, a comparison between the SVM digital

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University College London. Downloaded on February 16,2024 at 02:51:13 UTC from IEEE Xplore.  Restrictions apply. 



ERCAN et al.: ULTRALOW-POWER REAL-TIME MACHINE LEARNING 9

TABLE IV
COMPARISON OF DIFFERENT FPGA SVM IMPLEMENTATION

design with other fNIRS-based approaches was not able to be
conducted. Instead, the successes and limitations of the FPGA
SVM design presented with other available hardware SVM
models found in the literature were compared to the proposed
design. One notable criticism of the FPGA SVM models in
existing literature is the lack of comprehensive reporting on
key metrics such as power consumption, resource utilization,
and classification accuracy. Within the scope of this work,
several papers failed to address one or more of these important
factors. Six studies were selected with a thorough report on
power consumption and resource utilization and were detailed
in Table IV [14], [15], [16], [17], [18].

To validate the efficacy of the proposed module, extensive
simulations have been designed and conducted, evaluating
the accuracy, timing, power, and resource utilization of the
algorithm within a controlled environment. These simulations
laid a strong foundation for both the theoretical and practical
aspects of the proposed work. It should be noted that the
results were primarily a reflection of simulated performance
evaluations. The validation of these results through a physical
implementation on an FPGA board is a crucial next step and
is planned as the future work.

B. Discussion

Taking advantage of the single-channel oversampled core,
we saw vast hardware resource saving in the FPGA’s com-
puting resources while preserving its classification accuracy.
However, a more detailed analysis of the partially serial
architecture’s effects supports the earlier theory that only a
single cycle of latency will be added to preserve the real-time
objective need for further investigation. Usually, an fNIRS
signal that represents a task performed by a patient is produced
over a 2–7-s window [1]. Thus, an added latency is unlikely
to be detrimental to our real-time goal.

The second objective, which suffered at a higher cost, was
the goal of creating a low-power hardware accelerator. Power
is a fundamental cost directly linked to FPGA resource utiliza-
tion. Hence, effort dedicated to the project in reducing resource
utilization was also actively decreasing power consumption.
The two objectives are linked as many transistors used in
the configurable logic blocks (CLBs) that enact the logic of
the RTL all require power to operate. The more CLBs, the
greater the power consumption. Hence, the dynamic power
is a product of each CLB depending on the number utilized

and their individual use within the design. Consequently, more
densely utilized FPGA designs will consume more power.
Utilizing the spread of dynamic power shown in Fig. 10,
we can hypothesize that the resources and power of this RTL
design can be further reduced if the computational load of the
digital circuit is taken off from the dynamic memories found
in the “Logic” component of dynamic power and redistributed
to the “BRAM” resources.

There are tens of seconds of delay in neural signals and
measurement activations due to the oxygenation and deoxy-
genation of neural activities. The latency is a major concern
when using fNIRS as brain–computer interface. Portability is a
key point for a wearable device, and therefore, the device may
operate on batteries. While FPGAs are typically not ideal for
battery-powered devices, we aim for low power consumption
to maximize battery life. The low power consumption, in the
range of milliwatts as reported in this work, represents a
significant contribution. It addresses the challenge of power
consumption, which is particularly important when consider-
ing that the motion artifact classifier is just one subsystem
within the larger neuroimaging device.

In the evaluation of various FPGA-based SVM designs from
the literature, it is evident that the final RTL model presented
here exhibits lower power consumption compared to other
implementations. When examining studies that reported power
consumption on the lower end of the spectrum, it was observed
that these SVM designs all utilized a Xilinx Zynq board.

The RTL design presented here utilizes lower resource uti-
lization in comparison to many models found in the literature.
However, as seen in Table IV, there is room for further
reduction in resource utilization without necessarily sacrificing
classification accuracy. It is important to note that studies
achieving high classification accuracy with low power and
resource usage employed more expensive FPGAs that offered
larger and more sophisticated CLBs and faster clocks.

Finally, to our knowledge, the hardware-embedded system
using an FPGA-based SVM classifier of motion artifacts is
considered the first in the literature for fNIRS technology.
In addition, the implementation presented here effectively
overcame the challenges previously listed in the literature
of satisfying FPGA low power and area restrictions while
providing effective classification accuracies.

Prior research reports have demonstrated a propensity for
superficial application of offline and software-based techniques
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would yield an improvement in the accuracy of fNIRS sig-
nal processing [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29]. However, it has been noted that attempts
to implement real-time hardware-based approaches, incorpo-
rating additional hardware components such as acceleration
sensors, often lack comprehensive discussions regarding hard-
ware and power constraints. These metrics are of utmost
importance in the realm of hardware design, particularly in the
context of the technology’s practical application in the field of
medical science.

Moreover, an examination of previous endeavors revealed
instances where fNIRS data, including motion artifacts
employed for model training and testing, had been solely
generated through simulation, rather than being derived from
real-world scenarios [21]. This practice is notably detrimental,
given the intricate, variable, and challenging nature of accu-
rately simulating motion artifacts.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

Numerous methodologies have been proposed to address the
challenge of motion artifacts in fNIRS signals. This research
marks a pioneering effort in introducing a novel solution—
an FPGA-based machine learning platform—specifically
designed and tested for the fNIRS modality, with a primary
focus on achieving ultralow power consumption. Our approach
involves a seamless integration of software and hardware,
offering a practical and efficient means to incorporate machine
learning algorithms into FPGA hardware for fNIRS applica-
tions. At the model training stage, we initiated the process with
high-level model training using Python. Subsequently, we tran-
sitioned to high-level MATLAB and Simulink architectural
designs. After a diverse set of architectures underwent rapid
prototyping with rigorous performance evaluations, assess-
ing classification accuracy and FPGA resource usage, the
architecture that emerged as the “best-performing” option
involved data preprocessing through single real-pole IIR filters,
followed by the execution of the SVM RBF kernel in a
singular oversampled channel. The post-synthesis hardware
system demonstrated high performance, achieving this without
compromising the core objectives of maintaining a low area
footprint, minimal power consumption, and low latency. Our
results demonstrated that we overcome the persistent challenge
of motion artifacts in fNIRS signals by introducing an inno-
vative FPGA-based machine learning platform. This platform
represents a significant step toward enhancing the utility and
practicality of fNIRS technology in various domains, including
neuroscience and clinical applications. Further exploration and
development of this platform holds the potential to revolution-
ize fNIRS data processing and analysis.

B. Future Work

A critical evaluation considering the literature assessed in
this study demonstrates that advancements in research must
be made before we could implement a real-time, low-power
neuroimaging motion artifact detector. The first would be to
evaluate segments of the RTL design to look for possible

power consumption-saving improvements. This would serve
the study’s real-time and low-power objectives. A potential
method would be to evaluate FPGA design methods that
link and harness the PL and PS sides of the board simul-
taneously. The second area of required future work would
be to complete the hardware integration. This would involve
functional RTL simulations, implementing the bitstream onto
the FPGA and testing the SVM model on the FPGA in
real life. Nevertheless, the quality of the simulation results
validated this investigation’s utility and established its potential
use in a real experimental scenario. Moreover, this research
has achieved innovations to modernize and drive research
trends for wearable fNIRS and FPGA-based machine learning
implementations in the right direction, which could have wider
implications for neuroscience and clinical applications.
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