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A B S T R A C T 

The Lyman- α three-dimensional correlation functions have been widely used to perform cosmological inference using the baryon 

acoustic oscillation scale. While the traditional inference approach employs a data vector with several thousand data points, we 
apply near-maximal score compression down to tens of compressed data elements. We show that carefully constructed additional 
data beyond those linked to each inferred model parameter are required to preserve meaningful goodness of fit tests that guard 

against unknown systematics, and to a v oid information loss due to non-linear parameter dependences. We demonstrate, on suites 
of realistic mocks and Data Release 16 data from the Extended Baryon Oscillation Spectroscopic Surv e y, that our compression 

approach is lossless and unbiased, yielding a posterior that is indistinguishable from that of the traditional analysis. As an early 

application, we investigate the impact of a covariance matrix estimated from a limited number of mocks, which is only well 
conditioned in compressed space. 

Key words: methods: data analysis – cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

n recent decades, the L yman- α (L y α) forest gained popularity as
 probe of the distribution of matter at redshifts z > 2. The forest
onsists of a sequence of absorption lines in high-redshift quasar 
QSO) spectra, caused by neutral hydrogen placed along the line of
ight, and hence it is a tracer of the intergalactic medium. Therefore, it
ontains cosmological information, and in particular Ly α clustering 
hows the distinct baryon acoustic oscillations (BAOs) feature. This 
eature was first detected in the Ly α autocorrelation function using 
he Baryon Oscillation Spectroscopic Surv e y (BOSS) Data Release 
 (DR9) data (Busca et al. 2013 ; Kirkby et al. 2013 ; Slosar et al.
013 ), and subsequently extracted from the Ly α cross-correlation 
ith QSOs using DR11 data (Font-Ribera et al. 2014 ). 
The Ly α forest autocorrelation and its cross-correlation with 

uasars have been widely used to place constraints on the cosmolog- 
cal model (e.g. Aubourg et al. 2015 ; Alam et al. 2017 , 2021 ; Cuceu
t al. 2019 , 2023a ). These two correlation functions are typically
omputed on a two-dimensional (2D) grid in comoving coordinates 
long and across the line of sight, resulting in high-dimensional data 
ectors, usually 2500 long for the autocorrelation and 5000 for the 
ross-correlation. Ho we ver, standard BOSS and Extended Baryon 
scillation Spectroscopic Surv e y (eBOSS; du Mas des Bourboux 

t al. 2020 , hereafter dMdB20 ) Ly α forest analyses have so far
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ocused on extracting cosmological information from the BAO peak, 
hich is well localized to a smaller subset of bins. This means that

he vector can be reduced to a smaller dimensionality, encoding the
nformation we wish to capture. Hence, in this context, applying a
ata compression scheme could be useful to optimize the inference. 
n addition, the accuracy of the parameter estimates is tightly linked
o the covariance matrix of the data vector, under the assumption of
 Gaussian likelihood. As the true covariance � of the correlation 
unction is inaccessible, standard analyses usually estimate it either 
rom large set of mocks or analytically from models of the covariance
atrix (Kitaura et al. 2016 ; Wadekar, Ivanov & Scoccimarro 2020 ).

n Ly α analyses, producing mocks can be a highly computationally 
 xpensiv e process, therefore only a limited number is available, 
00 in the case of dMdB20 . Ho we ver, if the number of samples
s significantly lower than the number of data points, the estimate
f the covariance is singular and has no inverse (Hartlap, Simon &
chneider 2007 ; Dodelson & Schneider 2013 ; Taylor & Joachimi
014 ; Sellentin & Heavens 2015 ; Perci v al et al. 2021 ). 
In the eBOSS DR16 analysis, the covariance matrix C is computed 

ia the subsampling method, which, given some data set, consists 
f computing the covariance of correlation functions obtained in 
ndividual subsamples of the sky. Despite being larger ( ∼800) than
he number of mocks (100), the number of subsamples is still
ower than the number of data points (2500–5000); hence, the 
ovariance matrix must be tested. Alternatively, in the same analysis, 
he authors computed a Gaussian covariance matrix using the Wick 
pproximation (Delubac et al. 2015 ) and used it to benchmark the
ovariance computed from the subsampling method. The accuracy 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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f the covariance matrix would increase by alleviating the mismatch
etween the number of bins and the number of mocks. This can be
one by applying a data compression algorithm and e v aluating the
compressed) data covariance matrix in a new space characterized
y a lower dimensionality. In particular, given the available set of
 hundred mocks, we reduce each of them to a set of compressed
ata vectors and compute a newly defined mock sample covariance,
hich is a good estimator of the true cov ariance, gi ven that the length
f the compressed data vector is now much smaller than the number
f mocks. Then, a comparison between the covariance matrix of
he data, mapped into the compressed space, and the mock sample
ovariance, obtained from the compressed vector, can clarify whether
here has been an underestimation or o v erestimation of the contours
n the standard analyses. Moreo v er, we are interested in obtaining
 more sensitive goodness of fit test. The length of Ly α correlation
ata vectors is of the order of O(10 3 ), which could easily hide any
ad fit in a subset of the data. By reducing the dimensionality of the
ata vector through compression, we wish to obtain a test that would
ighlight when a few important points are off. 
Driven by these optimization problems, we perform the inference

nalysis on realistic Ly α × Ly α autocorrelation and Ly α × QSO
ross-correlation functions in a data compression framework. The
ompression algorithm we use is score compression (Alsing &
andelt 2018 ), under the hypothesis of a Gaussian likelihood (and

ence analogous to the Multiple Optimised Parameter Estimation
nd Data compression (MOPED) scheme; see Heavens, Jimenez &
ahav 2000 ). By construction, the dimensionality of the compressed
ata vector will be equal to the number of parameters we wish to
eep information of, namely O(10). 

The paper is structured as follows. We start in Section 2 by
utlining the method, explaining the computation of the covari-
nce matrix, and introducing the modelling and the basic idea
ehind score compression. We proceed in Section 3 by testing the
ompression algorithm against loss of information, comparing the
nferred posterior distribution for our sampled parameters in the
raditional and compressed frameworks. In Section 4 , we compare
he constraining power of the original estimated covariance matrix
gainst the mock-to-mock covariance. We then perform goodness
f fit tests in the compressed framework in Section 5 . Throughout
he analysis, a tight prior on the BAO parameters is imposed to
 v ercome the problem of the non-linear relation between these and
heir corresponding summary statistics components. We relaxed the
rior constraint, and hence made the analysis more generalizable, by
xtending the framework as described in Section 6 . An application
f our new framework to eBOSS DR16 data is presented in Section
 . Conclusions are drawn in Section 8 . 
Making sure that the analysis is both optimized and reliable is key

o interpret the vast amount of Ly α forest data, which will become
vailable from the Dark Energy Spectroscopic Instrument (DESI). 

 M E T H O D  

enerically referring to the Ly α autocorrelation and cross-
orrelation as the data vectors, the goal of this work is to study
ata compression in the context of Ly α forest three-dimensional
nalyses. In particular, this means compressing the data down to a
et of summary statistics t , which will encode into a shorter vector
he information we are interested in. As we have just seen, this also
enefits the computation of the cov ariance matrix. The ne w ‘com-
ressed’ framework is tested against the traditional analysis while
erforming parameter inference. To e v aluate posterior distributions,
NRAS 528, 2667–2678 (2024) 
e use the nested sampler POLYCHORD (Handley, Hobson & Lasenby
015a , b ). 
We start in Section 2.1 by introducing the mocks used in this

nalysis, with a focus on the computation of the covariance matrix.
e then describe the modelling of the Ly α × Ly α and the cross-

y α × QSO power spectra in Section 2.2 , as implemented in VEGA 

1 

Cuceu et al. 2023b ), and the set of randomly generated Monte Carlo
ealizations of the correlation function in Section 2.3 . In Section
.4 , we finally outline the compression method used, namely score
ompression . 

.1 Synthetic data vector and covariance 

n this work, we use a set of 100 realistic Ly α mocks, with and
ithout contaminants, which were produced for the Ly α eBOSS
R16 analysis ( dMdB20 ). The synthetic Ly α transmitted fluxes

re produced using the COLORE (Ram ́ırez-P ́erez et al. 2022 ) and
YACOLORE (Farr et al. 2020 ) packages, from the same cosmology
or all the mocks. Synthetic quasar spectra are then generated given
ome astrophysical and instrumental prescriptions, and contaminants
re added if requested. Then, the mocks run through the same
nalysis pipeline ( PICCA) 2 as the real data, resulting in measured
utocorrelation and cross-correlation functions ( dMdB20 ). These are
erived from computing the correlation function in each HEALPIX 

3 

G ́orski et al. 2005 ) pixel – about 880 pixels (subsamples) for the
BOSS footprint (NSIDE = 16) – and e v aluating the mean and
o variance o v er the full set of pixels of the mock, to be then assigned
o the entire surv e y . In this way , for every i th mock, there will be
 measurement of both the correlation function and the covariance
atrix C i , which will be only an estimate of the true covariance � 

s mentioned abo v e. In each subsample, the correlation has a size
f either 2500 ( ξ auto ) or 5000 ( ξ cross ) bins; hence, the number of
ubsamples (880 pixels) is significantly lower than the number of
ata points (2500 or 5000). This means that the covariance should
e singular; ho we ver, of f-diagonal elements of the correlation matrix
re smoothed to make it positive definite ( dMdB20 ). 

Finally, given the same 100 mocks, it is possible to define a stack
f them. In particular, the correlation function for the stack of mocks
s obtained by collecting all the subsamples (for all the 100 mocks),
nd computing the mean and covariance of the correlation functions
omputed in each of them, ef fecti vely reducing the noise. We will
efer to the contaminated auto- and cross- mock correlations of the
tack as stacked correlations . 

In this analysis, we use the same scale cuts as in eBOSS DR16
 dMdB20 ), assuming r min = 10 h 

−1 Mpc , up to r max = 180 h 

−1 Mpc .
he ef fecti ve redshift of the correlation functions is z eff = 2.3. 

.2 Modelling and parameter space 

o model the Ly α correlation functions, we follow equation (27) of
MdB20 , while applying the same prescriptions as in Gerardi et al.
 2022 ). Given a certain cosmological model and a corresponding
sotropic linear matter power spectrum P ( k , z), the Ly α auto- and
y α-QSO cross- power spectra are computed as 

 Ly α( k, μk , z) = b 2 Ly α

(
1 + βLy αμ

2 
k 

)2 
F 

2 
nl , Ly α( k , μk ) P ( k , z) , (1) 

https://github.com/andreicuceu/vega
https://github.com/igmhub/picca
https://healpix.sourceforge.io
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Table 1. Full set of sampled parameters, alongside with the fiducial values used to compute the summary statistics (see equation 8 ), priors, and the 1D marginals 
(68 per cent CL). Uniform ( U ) priors are adopted for the sampling procedure, while we assign a Gaussian prior on βHCD , where by notation the Gaussian 
distribution N ( μ, σ ) has mean μ and standard deviation σ . Results are split into ‘Testing the framework ( stacked )’ and ‘Testing the covariance (single mock)’, 
which, respectively, refer to the set-up in Sections 3 and 4 . The former set of results shows the comparison between the traditional and the compressed inference 
pipelines using the stacked autocorrelation and cross-correlation mocks, while the latter shows the comparison between the compressed methods using either 
the original covariance C (which is mapped into the compressed space) or the mock-to-mock covariance C t , for a single mock. 

Testing the framework ( stacked ) Testing the covariance (single mock) 
Parameter Fiducial Prior Traditional Compression Original covariance Mock-to-mock covariance 

α� 1.00 U (0 . 88 , 1 . 14) 1.000 ± 0.002 1.000 ± 0.002 1.003 ± 0.019 1.003 ± 0.019 
α⊥ 1.01 U (0 . 88 , 1 . 14) 1.004 ± 0.003 1.004 ± 0.003 1.002 ± 0.027 1 . 004 + 0 . 029 

−0 . 032 

b Ly α −0.14 U ( −2 , 0) − 0.135 ± 0.001 − 0.135 ± 0.001 −0.125 ± 0.004 −0.124 ± 0.006 
βLy α 1.41 U (0 , 5) 1.47 ± 0.01 1.47 ± 0.01 1 . 67 + 0 . 07 

−0 . 08 1 . 68 + 0 . 09 
−0 . 10 

b QSO 3.81 U (0 , 10) 3.80 ± 0.01 3.80 ± 0.01 3.82 ± 0.08 3.81 ± 0.07 
βQSO 0.25 U (0 , 5) 0.25 ± 0.01 0.25 ± 0.01 0.27 ± 0.04 0 . 27 + 0 . 03 

−0 . 04 

σv (Mpc h −1 ) 2.87 U (0 , 15) 2.82 ± 0.04 2.82 ± 0.04 3 . 22 + 0 . 32 
−0 . 28 3.24 ± 0.26 

σ� , sm 

2.05 U (0 , 10) 2.08 ± 0.01 2.08 ± 0.01 2.10 ± 0.09 2 . 10 + 0 . 09 
−0 . 08 

σ⊥ , sm 

2.35 U (0 , 10) 2.33 ± 0.01 2.33 ± 0.01 2.23 ± 0.11 2.21 ± 0.11 
b HCD ( ×10 −2 ) −1.70 U ( −20 , 0) − 2.12 ± 0.08 − 2.13 ± 0.07 −2.98 ± 0.54 −3.06 ± 0.68 
βHCD 1.57 N (0 . 5 , 0 . 09) 0.86 ± 0.06 0.86 ± 0.06 0.50 ± 0.09 0.50 ± 0.09 
b η, Si II (1260) ( ×10 −3 ) −0.58 U ( −50 , 50) − 0.59 ± 0.04 − 0.59 ± 0.04 −0.83 ± 0.33 −0.88 ± 0.37 
b η, Si II (1193) ( ×10 −3 ) −1.12 U ( −50 , 50) − 1.09 ± 0.03 − 1.09 ± 0.03 −0.83 ± 0.27 −0.84 ± 0.28 
b η, Si III (1207) ( ×10 −3 ) −1.75 U ( −50 , 50) − 1.64 ± 0.03 − 1.63 ± 0.03 −1.54 ± 0.31 −1.52 ± 0.30 
b η, Si II (1190) ( ×10 −3 ) −1.00 U ( −50 , 50) − 1.00 ± 0.03 − 1.00 ± 0.03 −0.75 ± 0.27 −0.75 ± 0.29 
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 ×( k, μk , z) = b Ly α

(
1 + βLy αμ

2 
k 

)
×b QSO 

(
1 + βQSO μ

2 
k 

)
F nl , QSO ( k ‖ ) P ( k, z) , (2) 

here μk = k � / k , with k and k � the wav e v ector modulus and its
ine-of-sight component, respectively. On one hand, the Ly α ×
y α power spectrum in equation ( 1 ) depends on the Ly α forest

inear bias b Ly α and redshift-space distortion (RSD) parameter 
Ly α = b η, Ly αf ( z) / b Ly α , where b η, Ly α is an extra unknown bias, 

he velocity divergence bias, and f ( z) the logarithmic growth rate.
he F nl , Ly α term accounts for non-linear corrections (Arinyo-i-Prats 
t al. 2015 ). On the other hand, the quasar parameters that contribute
o the Ly α × QSO power spectrum in equation ( 2 ) are the quasar
inear bias b QSO and the RSD term βQSO = f ( z)/ b QSO . Finally, we

odel non-linear effects of quasars and redshift errors following 
MdB20 , using a Lorentzian function 

 nl , QSO ( k ‖ ) = 

[ 
1 + 

(
k ‖ σv 

)2 
] −1 / 2 

, (3) 

here σv is the velocity dispersion. 
The power spectra in equations ( 1 ) and ( 2 ) only account for Ly α

ux and in reality this is also contaminated by absorption lines due
o heavy elements, generally referred to as metals, and high column 
ensity (HCD) systems (Font-Ribera et al. 2012 ; Bautista et al. 2017 ).
et us first focus on the modelling of the HCDs. Font-Ribera et al.
 2012 ) showed that their broadening effect along the line of sight
an be modelled at the level of new effective Ly α bias and RSD
arameters 

 

′ 
Ly α = b Ly α + b HCD F HCD ( k ‖ ) , (4) 

 

′ 
Ly αβ

′ 
Ly α = b Ly αβLy α + b HCD βHCD F HCD ( k ‖ ) , (5) 

ith b HCD and βHCD being the linear bias and RSD parameters, 
espectively. F HCD ( k � ) is a function of the line-of-sight wavenumber,
nd it is modelled following dMdB20 . On the other hand, metals
ontribute to the final autocorrelation and cross-correlation functions 
s per 
′ 
auto = ξLy α×Ly α + 

∑ 

m 

ξLy α×m 

+ 

∑ 

m 1 , m 2 
ξm 1 ×m 2 , (6) 

′ 
cross = ξLy α×QSO + 

∑ 

m 

ξQSO ×m 

, (7) 

here m generically refers to a metal and the sums are performed o v er
ll possible metals considered. The modelling of the cross-correlation 
f a metal with other metals ( ξm 1 ×m 2 ) and with Ly α ( ξLy α × m ) and
SO ( ξQSO × m ) follows the modelling of the autocorrelation and 

ross-correlation of the Ly α, and each metal line has a linear bias b m 
nd RSD parameter βm = b η, m f ( z)/ b m . Following dMdB20 , we fix
ll βm = 0.5, and sample the metal biases. 

Based on this modelling, we use the code VEGA to compute the
D correlation function ξ . This same code computes both the BAO
eature parameters { α� , α⊥ 

} , which shift the peak along and across
he line of sight, and the Gaussian smoothing (Farr et al. 2020 ), which
ccounts for the low resolution of the mocks and is parametrized by
 σ � , σ⊥ 

} smoothing parameters. 
At the inference level, the set of sampled parameters is p s =

 α‖ , α⊥ 

, b Ly α, βLy α, b QSO , βQSO , σv , σ‖ , σ⊥ 

} , which is extended to
nclude also { b η, m 

, b HCD , βHCD } when also fitting for contaminants.
n this notation, b η, m 

is the v elocity div ergence bias for the metal m –
ere, we consider Si II (1260), Si II (1193), Si III (1207), and Si II (1190).

For all these parameters, we choose uniform priors, which are 
isted in Table 1 . The only exception is given by βHCD , for which,
ollo wing the pre vious eBOSS DR16 analysis, we impose an infor-
ative Gaussian prior. 

.3 Monte Carlo realizations 

e here introduce a different kind of simulated data, which we will
ater use, defined as Monte Carlo realizations . They are correlation
unctions obtained by adding noise on top of the model, as defined in
ection 2.2 . The noise is given by a covariance matrix from 1 of the
00 mock correlations that have been seen so far. What this means is
hat we can imagine every data point to be generated from a normal
istribution N ( ξ , C ), where ξ is the model correlation function and
MNRAS 528, 2667–2678 (2024) 
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Figure 1. This plot shows the behaviour of the summary component t α‖ as 
a function of α� , which is the parameter it is related to as per equation ( 8 ), 
against the value of t α‖ evaluated using α� = 1.00 (see Table 1 ), denoted as 
‘data’. The remainder of the parameters are set to the fiducial values listed 
in Table 1 . This figure highlights a non-monotonic relationship between the 
two parameters, which would lead to multiple peaks in the posterior if a tight 
prior is not imposed. 
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 is given by the covariance of the first realistic mock. Using Monte
arlo simulations comes with two advantages. First, it is possible

o generate as many as needed to build any statistics. Secondly, we
ave control over the model and there will be clear knowledge of the
nderlying physics. 

.4 Scor e compr ession 

o reduce the dimensionality of our data sets, we use score
ompression (Alsing & Wandelt 2018 ). Given a known form for
he log-likelihood function L , this method corresponds to linear
ransformations of the data, based on the idea of compressing
hem down to the score function s = ∇ L ∗. The components of the
ompressed vector are the deri v ati ves of the log-likelihood function,
 v aluated at some fiducial set of parameters θ∗, with respect to the
arameters of interest θ . Under the assumptions that the likelihood
unction is Gaussian and the covariance C does not depend on
arameters, from the data d , the compressed data vector is obtained
s 

t = ∇ μT 
∗ C 

−1 ( d − μ∗) , (8) 

here μ∗ is the fiducial model. Under these assumptions, the com-
ression is identical to the widely used MOPED scheme (Heavens et
l. 2000 ) apart from a bijective linear transformation. 

In our case, the model corresponds to the correlation function
, described earlier in Section 2.2 . The corresponding likelihood
istribution in compressed space will be then given by 

 ( t | θ ) = 

1 

(2 π ) 
n 
2 | F | 1 2 

exp 

[
−1 

2 
[ t − μt ( θ )] T F 

−1 [ t − μt ( θ )] 

]
, (9) 

here n is the length of t , μt ( θ ) is the compressed model μ e v aluated
t θ , namely μt ( θ ) = ∇ μT 

∗ C 

−1 [ μ( θ ) − μ∗], and 

 = [ ∇ μ∗] T C 

−1 [ ∇ 

T μ∗] (10) 

s the Fisher matrix. 
When considering both the autocorrelation and cross-correlation,

ome parameters will be in common; for this reason, there is the need
o build a joint summary statistic. If we define independently the Ly α
uto- and cross- data vectors, characterized by the covariances C auto 

nd C cross , respectively, and giv en the y do not correlate with each
ther, in the joint analysis the full covariance matrix will be given
y 

 = 

(
C auto 0 

0 C cross 

)
. (11) 

hen, the resulting summary statistics vector and Fisher matrix will
e, respectively, obtained as t = t auto + t cross and F = F auto + F cross . 

This compression method is dependent on the choice of the fiducial
et of parameters θ∗, which might not be known a priori. However,
lsing & Wandelt ( 2018 ) suggest iterating o v er the Fisher scoring
ethod for maximum-likelihood estimation 

k+ 1 = θ k + F 

−1 
k ∇ L k , (12) 

ntil convergence of the full set of parameters. How this is done
n our particular case is described at the beginning of Section 3 .
n important note is that this iterative procedure does not take into

ccount parameters’ priors, which means that it can potentially lead
o unusual values for those parameters that are not well constrained
y the data. 
In computing the score compression components o v er the pa-

ameters { α� , α⊥ 

} , we realized that their relation with their cor-
esponding summary statistics components, namely { t α‖ , t α⊥ } , was
NRAS 528, 2667–2678 (2024) 
ot monotonic, as per Fig. 1 . This is problematic as this means
hat the posterior can have more than one peak (Graff, Hobson &
asenby 2011 ) if we sample o v er the full [0.01, 1.99] interval. We
 v ercame this complexity by imposing a tighter prior on { α� , α⊥ 

}
t the sampling step. This prior is designed to allow for α� values in
etween the minimum and maximum of t α‖ ( α‖ ). The same prior is
mposed on α⊥ 

. This tightening does not affect the inference when
erformed on the correlation function of the stacked mock, in which
ase posteriors are well within this prior, but it reveals to be quite
mportant when e v aluating the posteriors on the individual mocks.
or this reason, we make sure that we provide example results for

hose mocks whose contours are within the prior range. 
Later, in Section 6 we will see how we can remo v e the tight

rior constraint by e v aluating the summary statistics components
ssociated with { α� , α⊥ 

} at multiple fiducial values of the BAO
arameters, ef fecti v ely enlarging the compressed v ector. 

 COMPRESSI ON  P E R F O R M A N C E  

n this section, we apply the score compression algorithm, outlined in
ection 2.4 , to Ly α autocorrelation and cross-correlation measured
rom contaminated mocks. The pipeline starts by choosing a fiducial
et of parameters for computing the score compressed vector, as
er equation ( 8 ). The fiducial is obtained by iterating o v er equation
 12 ), with θ0 given by the best fit of the stacked correlation functions.
iven this initial guess, we then iterated assigning to θ k+ 1 the median
f the θ values o v er the 100 mocks at the k th step. 
The likelihood is assumed to be Gaussian, which has a major

mpact on the final form of the compressed v ector, giv en that the
atter is computed as the gradient of the log-likelihood. Based on
revious analyses, we assume that the data are normally distributed
nd this assumption of Gaussianity will also be inherited in the
ompressed space. In general, when mapping in a compressed
pace, this property might not be preserved, but given that score
ompression is a linear transformation, that is the case. We make
 consistency check by running the Henze–Zirkler test (Henze &
irkler 1990 ) for multi v ariate normality in the compressed space.

ntuitively, this test measures the distance between the measured and
arget (multi v ariate) distributions, and it was shown to perform well in
igh-dimensional problems. We found that the summary statistics,
omputed for the 100 mocks at the end of the iterative process,
ollows a multivariate normal distribution. 
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Figure 2. Triangle plots of the parameters of interest for the stack of correlation functions computed from a set of 100 mocks. Results are split, for presentation 
purposes only, into the set of standard parameters { α� , α⊥ , b Ly α , βLy α , b QSO , βQSO , σv , σ� , σ⊥ } (lower left panel) and contaminant parameters { b η, Si II (1260) , 
b η, Si II (1193) , b η, Si III (1207) , b η, Si II (1190) , b HCD , βHCD } (upper right panel). The green filled contours refer to the results obtained performing the inference using 
the full uncompressed data vector, which we denote as ‘Traditional analysis’, while the blue dashed contours refer to the compressed analysis results, denoted 
as ‘Score compression analysis’. 
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Provided the fiducial model and the Gaussianity checks, we first 
est the compression method on the stack of the mocks, with results
resented in this section, and later, in Section 4 , we compute the
ovariance matrix for the summary statistics o v er the set of 100
ocks and compare it to the Fisher matrix as defined in equation

 10 ). It is important to keep in mind that, when referring to the Fisher
atrix, we are simply referring to the mapping of the data covariance
atrix C into the compressed space. 
To test the score compression algorithm against the traditional 

pproach, for simplicity, we employ both the contaminated auto- 
nd cross- stacked correlations , which are almost noise-free. This 
hoice is moti v ated by the fact that we imposed a tight prior on
he { α� , α⊥ 

} parameters to o v ercome the challenges coming from
he non-monotonic relationship between these parameters and their 
orresponding summary statistics components (see Fig. 1 ). Thus, 
 xperimenting o v er less noisy mock data facilitates running the test
n a case where it is granted that posteriors will not hit the priors. 

For both the traditional (uncompressed data) and the compressed 
rameworks, we run the POLYCHORD sampler for the auto- and 
ross- stacked correlations , while sampling the full set of 15 model
arameters { α� , α⊥ 

, b Ly α , βLy α , b QSO , βQSO , σv , σ � , σ⊥ 

, b η, Si II (1260) ,
 η, Si II (1193) , b η, Si III (1207) , b η, Si II (1190) , b HCD , βHCD } and results are
resented in Fig. 2 . The two methods agree well with each other,
eading to almost identical results. The numerical values of the peaks
MNRAS 528, 2667–2678 (2024) 
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Figure 3. Triangle plots of the BAO parameters of interest { α� , α⊥ } and 
the Ly α parameters { b Ly α , βLy α} for one set of the Ly α auto- and cross- 
mock correlations. The blue filled contours refer to the results obtained 
performing the inference using the original covariance matrix C (mapped 
into the compressed space) in the likelihood function, and hence are denoted 
as ‘Original covariance’. On the other hand, the red dashed results, denoted 
as ‘Mock-to-mock covariance’, refer to the case in which the mock-to-mock 
covariance matrix is used instead, while adopting a t-distribution likelihood. 
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nd 1 σ confidence intervals of the one-dimensional (1D) marginals
re presented in Table 1 as part of the ‘Testing the framework
 stacked )’ set of columns. From the table, it can be noticed that in
ome cases the fiducial parameters used to compute the compression
re not within the 3 σ confidence interval. Despite the fiducial being
 first guess, and not necessarily accurate, the contours of the two
ethods agree well with each other. 
We just demonstrated that the score compression inference

ipeline leads to the same results as the standard approach. This
hows the linearity of the parameters in the model to a good
pproximation. Ho we ver, it is important to bear in mind that, in
his case, this only holds locally around the fiducial, because of the
on-linearity of the components that relate to α� and α⊥ 

, on which
e imposed a tight prior. 

 TESTING  T H E  C OVA R I A N C E  MATRIX  

n interesting application of the compression algorithm consists of
 v aluating the accuracy of the covariance matrix C by comparing it
o the mock-to-mock covariance C t , which is the covariance matrix
f the summary statistics vectors of the set of 100 mocks. We now
howcase this application using a single mock. 

We recall that the computation of the standard data covariance
appens in a set-up where the length of the data vector is larger than
he number of samples, which is sub-optimal. The covariance should
e singular; ho we ver, the of f-diagonal elements of the correlation
atrix are smoothed to make it positive definite ( dMdB20 ). Reducing

he dimensionality of the data vector via score compression allows us
o compute a new covariance matrix C t , which has a dimensionality
ignificantly lower than the number of samples used to compute
t, given that the new data vector will be ∼O(10) long. The fact
hat now the number of mock samples is larger than the number
f compressed data points means that we are now in a framework
here the estimated C t is in principle a better estimator of the true

ovariance � in compressed space than F , which is obtained by
apping the covariance C into this space. 
We now repeat the same experiment as in Section 3 o v er a single
ock and e v aluate the posterior using POLYCHORD for the full set of

arameters { α� , α⊥ 

, b Ly α , βLy α , b QSO , βQSO , σv , σ � , σ⊥ 

, b η, Si II (1260) ,
 η, Si II (1193) , b η, Si III (1207) , b η, Si II (1190) , b HCD , βHCD } . This is either done
sing the original covariance C matrix (mapped into the compressed
pace, to the Fisher matrix) in the Gaussian likelihood in equation
 9 ) or instead using the mock-to-mock covariance C t adopting a
-distribution as a likelihood function, as proposed in Sellentin &
eavens ( 2015 ). The latter is of the form of 

 ( t | θ ) = 

c̄ P | C t | −1 / 2 

1 + 

[ t −μt ( θ)] T C t −1 [ t −μt ( θ)] 
n s −1 

, (13) 

ith 

¯ P = 

	 

(n s 

2 

)

[ π ( n s − 1)] n t / 2 	 

(
n s − n t 

2 

) , (14) 

here n s is the number of mocks, n t is the length of the compressed
ata vector, and 	 is the Gamma function. Once again, the choice
f the tight prior on both { α� , α⊥ 

} affected the choice of the set of
ocks in order to run this second experiment. Ho we ver, the goal of

his second experiment is to provide an example case of testing the
ccuracy of the subsampling estimation of the covariance matrix. If
he method is demonstrated to ef fecti v ely work o v er some subset of

ocks, it is expected that will also be the case for the others. 
NRAS 528, 2667–2678 (2024) 
The results for the BAO parameters { α� , α⊥ 

} and the Ly α
arameters { b Ly α , βLy α} are shown in Fig. 3 , while the full set
s presented in Appendix A and listed in Table 1 (‘Testing the
ovariance (single mock)’ columns). In this test case, using the mock-
o-mock covariance results in a small enlargement of the posterior
or the α⊥ 

parameter: while using the original covariance matrix
rovides α⊥ 

= 1.002 ± 0.027, the mock-to-mock covariance results
n α⊥ 

= 1 . 004 0 . 029 
−0 . 032 . On the other hand, the Ly α linear bias and

SD parameter absolute errors increase by 50 and ∼25 per cent ,
especti vely, with final relati ve error of about 5 −6 per cent . The
ncertainty of the vast majority of the other parameters agrees
emarkably well. 

We end this discussion on covariance matrix estimation by noting
hat the test presented here is meant as a showcase of the usefulness
f compressing Ly α forest correlation functions. Ho we ver, proper
esting of the Ly α forest covariance matrices would require a

ore comprehensive analysis using a larger sample of mocks, 4 and
omparison with other estimation methods (see e.g. dMdB20 ). 

 G O O D N E S S  O F  FIT  TEST  

n this section, we make a step forward with respect to the original
im of the work, by considering goodness of fit tests. For Ly α
orrelation functions, the length of the data vector can go from 2500,
onsidering only the autocorrelation, to 7500 if considering also the
ross-correlation. In a context where only ∼O(10) parameters are
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Figure 4. This wedge plot, for | μ| = | r � / r | between 0.95 and 1.0, shows 
the effect of adding metals (in orange) to the correlation model ξ without 
metals (in blue) along the line of sight. For simplicity in the χ2 analysis, we 
do not include contamination coming from HCD, so these features are only 
the effects of metal lines. Also, in this example, in order to better visualize 
the difference between the two, we have been generating noise from the 
covariance matrix of the stacked autocorrelation mock. 

s  

t
w  

g  

m
t

 

m
a
H  

σ  

3
S  

t

w
s  

t  

{  

T  

β  

c
o
p

5

F
a
w
s  

d
i
p

t
O  

fi
p
T
s  

8  

p
 

w
c  

s  

s
I
t  

i  

v  

n  

t  

t  

a  

f

5

G
t
d
d
t  

m  

t

t

μ

a

χ

t
n
u
χ  

d  

p  

c  

t  

o  

e  

c  

t  

w  

a
 

m
r
d  

r  

e

c  

a  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/2/2667/7515292 by KIM
 H

ohenheim
 user on 19 February 2024
ampled, any bad fit for noisy data can be hard to detect. Reducing
he dimensionality of the data via score compression, we investigate 
hether it would be easier for any bad fit to be spotted. Hence,
iven the results presented in Section 3 , we test the robustness of the
ethod against unmodelled effects in the correlation functions, via 

he χ2 statistics. 
To this end, we test the goodness of fit on contaminated data when
etals are not modelled. For simplicity, here we restrict to the Ly α

utocorrelation alone and without considering contamination from 

CD. The sampled parameters will only be { α� , α⊥ 

, b Ly α , βLy α , σ � ,
⊥ 

} . Tests are run by constructing the χ2 distributions o v er a set of
00 Monte Carlo realizations of the autocorrelation, introduced in 
ection 2.3 : for each realization, we run a minimizer and e v aluate

he χ2 at the best fit. 
We considered two main Monte Carlo populations: with and 

ithout metal contamination. The difference between the two is 
hown in the wedge plot of Fig. 4 , which is built by averaging over
he values of the correlation function in the ‘wedge’ of the space
 r � , r ⊥ 

} identified by values of | μ| = | r � / r | between 0.95 and 1.0.
o generate them, we used the best-fitting values of { α� , α⊥ 

, b Ly α ,
Ly α , σ � , σ⊥ 

, b η, Si II (1260) , b η, Si II (1193) , b η, Si III (1207) , b η, Si II (1190) } for the
ontaminated stacked Ly α mock autocorrelation, where depending 
n the population (contaminated or uncontaminated) the metals’ 
arameters were either included or not. 

.1 Maximal compression 

or both the contaminated and uncontaminated mock data, we apply 
 compression down to the same number of sampled parameters 
ithout including contamination in the modelling, with the summary 

tatistics thus given by t max = { t α‖ , t α⊥ , t b Ly α , t βLy α , t σ‖ , t σ⊥ } . This is
efined as maximal compression . In what follows, we are interested 
n learning about the χ2 distribution for the two Monte Carlo 
opulations. 
We found that for both contaminated and uncontaminated data, 

he χ2 distributions are similar, with values of the order of 
(10 −10 to 10 −3 ) (left panel of Fig. 5 ). Ho we ver, comparing the
ts to the contaminated and uncontaminated data, the best-fitting 
arameter values are systematically shifted for some parameters. 
he distributions of the best-fitting values for b Ly α and βLy α are 
hown in the right panels of Fig. 5 : for the fits to contaminated data,
0 and 90 per cent of the best-fitting v alues, respecti vely, for each
arameter are below the true value. 
The χ2 values remain very small for the fits to contaminated data,

hich indicates that in the compressed space, the model without 
ontaminants still has enough flexibility to perfectly fit the data: the
ystem has zero degrees of freedom, given that we are sampling
ix parameters, and the compressed data vector has six components. 
nstead of the mismatch between the model without contaminants and 
he contaminated data being visible in the form of large χ2 values, it
s manifested through a systematic shift in the reco v ered parameter
alues from the truth, which in a realistic data fitting scenario could
ot be detected. This is linked to the fact that we are very close
o a linear model scenario, meaning that in the compressed space
he model still has enough flexibility to fit the data. This moti v ated
 deeper testing of the framework, extending it to e xtra de grees of
reedom as follows. 

.2 Non-maximal compression 

iven the problem highlighted in the maximal framework, we tested 
he pipeline in a non-maximal compression case, where the extra 
egrees of freedom are given by the metals contaminating the 
ata. Namely, the maximal summary statistics is now extended 
o include t extra = { t b η, Si II (1260) , t b η, Si II (1193) , t b η, Si III (1207) , t b η, Si II (1190) } . Still,
etals will not be included in the likelihood modelling. This means

hat if the quantities of reference here are the compressed data vector 

t = ∇ μT 
∗ C 

−1 ( d − μ∗) , (15) 

he compressed model 

t = ∇ μT 
∗ C 

−1 ( μ( θ ) − μ∗) , (16) 

nd they enter the χ2 as per 

2 ( θ) = [ t − μt ( θ)] T F 

−1 [ t − μt ( θ)] , (17) 

he fiducial model μ∗ and its gradient will now include contami- 
ants, whereas μ( θ ) will not and d will be either contaminated or 
ncontaminated data depending on the population used to build the 
2 statistics. Now, t = { t max , t extra } . The length of the compressed
ata vector is 10, where the first 6 components refer to the sampled
arameters, with a remainder of 4 components, which are fixed and
onstitute our e xtra de grees of freedom. Under the approximation
hat the mean of a χ2 distribution indicates the number of degrees
f freedom of the problem, we would expect that mean to be at least
qual to the number of extra degrees of freedom we added. In our
ase, we expect that for the uncontaminated case, for which we know
he modelling is good, the mean will be close to 4 (four metals). We
ant to test whether in this case a bad fit to the contaminated data is

pparent as a mean χ2 significantly larger than 4. 
The χ2 histograms are shown in the left panel of Fig. 6 : the
ean values for the uncontaminated and contaminated cases are, 

espectively, 3.89 and 67.51. Considering a χ2 with number of 
egrees of freedom equal to 4, the p-values for the two means are,
espectively, 0.4 and 10 −14 : the bad fit in the contaminated case has
merged. 

We further experimented over the addition of metals and we 
onsidered adding a single extra degree of freedom at a time,
ssociated with either one of the following metals: the Si II (1260)
nd the Si II (1190). The resulting χ2 histograms are shown in the
MNRAS 528, 2667–2678 (2024) 
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M

Figure 5. χ2 histograms (left panel) for the maximal compression and corresponding best-fitting values’ histograms for the Ly α parameters (right panels), 
where blue refers to the uncontaminated case and orange to contaminated. In the maximal compression set-up, t = t max = { t α‖ , t α⊥ , t b Ly α , t βLy α , t σ‖ , t σ⊥ } . The 
black dashed lines in the two panels on the right correspond to the true values used to generate the Monte Carlo realizations. 

Figure 6. Normalized χ2 histograms for the three non-maximal compression cases presented in Section 5.2 : starting from the left, all four metals, Si II (1260), 
and Si II (1190) were used to build extra degrees of freedom. In blue are the histograms and χ2 distributions for the uncontaminated data, and in orange for 
contaminated data. The corresponding χ2 distributions (dashed lines) are generated assuming as number of degrees of freedom the mean of the histogram 

distributions. The first set of histograms, which relates to all four extra degrees of freedom, presents a strong shift between the orange and the blue distributions: 
their corresponding means are 3.89 and 67.51, respectively. In the Si II (1260) case, both distributions have a mean of ∼1.1, while in the Si II (1190), the mean for 
the uncontaminated case is 1.01, against 10.04 in the contaminated case. 
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iddle and right panels of Fig. 6 , respectively. These two metal
ines were chosen because of how differently they affect the data:
hile the Si II (1260) contamination happens around the BAO scale

long the line of sight, the Si II (1190) contributes to the peak at
60 Mpc h −1 . We run the same exact experiment and find that the

ddition of t b η, Si II (1190) does bring out the bad fit, while the other does
ot. Specifically, the two χ2 distributions when the extra degree of
reedom is given by b η, Si II (1260) have a mean of ∼1, again equal to
he number of degrees of freedom, but they cannot be distinguished.
he p-values for both distributions, assuming 1 degree of freedom,
re all abo v e a threshold of 0.01. Both distributions are indicative
f an acceptable fit. On the contrary, adding the extra compressed
omponent related to Si II (1190) results in having a mean χ2 of
.01 in the uncontaminated case and 10.04 in the contaminated
ne, with corresponding p-values of 0.3 and 10 −3 , respectively, if
e consider a target χ2 distribution of 1 degree of freedom. This
erhaps is indicative about the fact that in order to capture a bad fit,
dding extra degrees of freedom is not enough: these extra degrees
f freedom must be informative about features not captured by the
ore set of parameters. The Si II (1260) affects the model at scales
f the correlation function that are on top of the BAO peak, which
e model for, whereas Si II (1190) ef fecti vely adds information on a

eature that is completely unmodelled. 
In light of this, a possible solution is to add some extra degrees of

reedom to the maximal compression vector, which are designed to
e orthogonal to the already known components in the compressed
pace. This would allow the extra flexibility, which is not captured
NRAS 528, 2667–2678 (2024) 
n the model, to highlight for a bad fit in the compressed framework.
his is an interesting problem that is left for future work. Ho we ver,
 similar solution has already been implemented in the context of
OPED (Heavens, Sellentin & Jaffe 2020 ), specifically to allow

ew physics to be disco v ered. 
Not modelling the Si II (1260) line in the uncompressed traditional

ramework does not result in any bad fit, which makes this an example
f systematics hidden in the large original data vector. At the same
ime, the fact that the Si II (1260) test in the compressed framework
ails to show a bad fit at the level of the χ2 is quite problematic,
iven this metal line is one of the primary contaminants we have to
e careful of in BAO measurement, affecting the peak’s scale. The
orry is then that, despite constructing an extended framework, there

s a chance that some systematics hiding in the signal could be missed.
his ef fecti vely means that in order to apply data compression, the
nderlying physics must be already well known to a good extent.
ecause some systematics could be hard either to model or to detect,

n this example, we deliberately assumed that we had no knowledge
bout known systematics, where in principle we could have also
arginalized o v er them (Alsing & Wandelt 2019 ). 

 RO BU STNESS  TO  PARAMETER  

ON-LI NEARI TI ES  

ach component of the score-compressed data vector relates to a
pecific model parameter, as per equation ( 8 ), via the gradient.
hroughout the analysis, the BAO parameters pro v ed to be a source of
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Figure 7. Triangle plots of the BAO parameters of interest { α� , α⊥ } for one 
set of the Ly α auto- and cross- mock correlations, with relaxed priors. The 
green filled contours refer to the results obtained performing the inference 
using the full uncompressed data vector, which we denote as ‘Traditional 
analysis’, while the blue dashed contours refer to the compressed analysis 
results, denoted as ‘Score compression analysis’. The framework of the latter 
is extended here to the assumption of multiple fiducial values for { α� , α⊥ } 
when performing the compression, namely [ { α� = 1.00, α⊥ = 1.01 } , { α� = 

0.8, α⊥ = 1.2 } , { α� = 1.2, α⊥ = 0.8 } , { α� = 1.3, α⊥ = 0.7 } , { α� = 0.9, 
α⊥ = 1.1 } ]. 
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on-linearities in relation to their summary statistics components (see 
ig. 1 ), sometimes resulting in a multipeaked posterior distribution. 
ith the intent of mitigating this effect, we were forced to impose a

ight prior on both { α� , α⊥ 

} , which reduces the generalizability of
he approach. 

Based on the work of Protopapas, Jimenez & Alcock ( 2005 ),
e explore extensions to the algorithm by considering an ensemble 
f fiducial values of the BAO parameters to compute the score-
ompressed vector components related to { α� , α⊥ 

} . For any extra set
f BAO parameters { αextra 

‖ , αextra 
⊥ 

} , we introduce two extra summary
tatistics components: 

t extra 
α‖ = ∇ α‖ μ

T 
extra C 

−1 ( d − μextra ) , (18) 

t extra 
α⊥ = ∇ α⊥ μ

T 
extra C 

−1 ( d − μextra ) , (19) 

here μextra is the model e v aluated at { αextra 
‖ , αextra 

⊥ 

} , keeping the
reviously defined fiducial values for the other parameters. As 
hese extra components ef fecti vely represent an extension of the 
ompressed data set, the Fisher matrix in equation ( 10 ) will also
e expanded to include [ ∇ α‖ , ⊥ μextra ] 

T C 

−1 [ ∇ 

T 
α‖ , ⊥ μextra ]. We test this

xtension on the same mock that was used to test the subsampling
ovariance matrix in Section 4 , and results are presented in Fig. 7 ,
mposing a physically moti v ated uniform prior [0.65, 1.35] for both
� and α⊥ 

. The ensemble of extra fiducials is given by the set [ { α� 

 0.8, α⊥ 

= 1.2 } , { α� = 1.2, α⊥ 

= 0.8 } , { α� = 1.3, α⊥ 

= 0.7 } ,
 α� = 0.9, α⊥ 

= 1.1 } ], in addition to the original { α� = 1.00,
⊥ 

= 1.01 } (see Table 1 ). From Fig. 7 , it can be seen that the
onstraining power on the BAO parameters between the traditional 
nd compressed methods match. This same result is also true for the
ther parameters, not shown here. 
We tested the extension in terms of generalizability by progres- 

ively adding extra points to the ensemble, with reasonable spread, 
nd found that with an ensemble of three to four extra fiducial
ets of BAO parameters the algorithm is able to ef fecti vely get rid
f the secondary posterior peaks and increase the accuracy of the 
easurement. Hence, the assumption of multiple fiducials for the 
AO parameters, for which we had to impose a tight prior, enables
s to relax the prior constraints. 

 APPLI CATI ON  TO  R E A L  DATA  

he score compression framework has so far been tested on realistic
ocks; hence, it is straightforward to apply this same algorithm 

o real eBOSS DR16 Ly α data, for which we refer to dMdB20 .
he set of nuisance parameters is now extended to also include the
ontamination from carbon absorbers, the systematic quasar redshift 
rror � r � , the quasar radiation strength ξTP 

0 , and the sky-subtraction
arameters A sky, Ly α and σ sky, Ly α . The results presented in Section 
 moti v ate a direct test of the whole extended frame work, which
ets rid of the tight prior, to the real data. The ensemble of BAO
arameter fiducial values is given by the set of { α� = 1.05, α⊥ 

 0.96 } – which are the best-fitting values obtained through the
raditional analysis – and [ { α� = 0.8, α⊥ 

= 1.2 } , { α� = 1.2, α⊥ 

 0.8 } , { α� = 1.3, α⊥ 

= 0.7 } , { α� = 0.9, α⊥ 

= 1.1 } ], which
ere found to be ef fecti ve in Section 6 . The fiducial values of

he other parameters are set to the best fit found with the standard
ncompressed analysis. In Fig. 8 , we present the agreement of the
xtended framework against the traditional approach at the level of 
 α‖ , α⊥ 

, b η, Ly α, βLy α, �r ‖ , βQSO , σv } . The nuisance parameters are
lso found to be in excellent agreement. 

 C O N C L U S I O N S  

tandard analyses of the Ly α forest correlation functions focus on a
ell-localized region, which corresponds to the BAO peak. Ho we ver, 

hese correlation functions usually have dimensions of 2500 or 5000, 
hich means that the cosmological signal is extracted from a small

ubset of bins. This means that reducing the dimensionality of the
ata vector, while retaining the information we care about, could 
e a step forward in optimizing the analysis. At the same time, as
 xtensiv ely e xplained in Section 2 , the covariance matrix C used for
y α correlation analyses is estimated via subsampling. Ho we ver, the
imensionality of the correlation functions is much larger than the 
umber of data samples used to estimate the covariance. Reducing 
he dimensionality of the data vector to O(10) allows for a reliable
stimate of the covariance matrix. Given these premises, the goal of
his work is to apply and explore a data compression algorithm for
ealistic Ly α autocorrelation and cross-correlation functions. 

We reduced the dimensionality of the data vector to a set of
ummary statistics t using score compression. We assume a Gaussian 
ikelihood, test for its v alidity, and sho w that this assumption is
reserved in the compressed space as well, as the compression is a
inear transformation. In the compressed space, the covariance can be 
iven either by the mapped traditional covariance or by a covariance 
stimated directly in such a space. 

We tested the compressed framework against the traditional 
pproach at the posterior level, when using the original covariance C ,
nd found that the two of them agree, and no bias is introduced. We
hen showcased a test example of covariance matrix evaluation in the
ompressed space, which is a key benefit of the approach, enabling
 comparison to the covariance matrix obtained in the traditional 
ub-optimal framework. Because of non-linear relationship between 
he BAO parameters and their summary statistics components, 
hroughout the analysis we adopted a tight prior on { α� , α⊥ 

} . Later
n the analysis, with the aim of increasing the generalizability of the
pproach, while relaxing the prior constraint, we successfully tested 
MNRAS 528, 2667–2678 (2024) 
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M

Figure 8. Triangle plot for fits to the real eBOSS DR16 data Ly α autocorrelation and cross-correlation, using the traditional approach (filled green) and the 
score compression framework (dashed blue) extended to include extra fiducial values of the BAO parameters at [ { α� = 0.8, α⊥ = 1.2 } , { α� = 1.2, α⊥ = 0.8 } , 
{ α� = 1.3, α⊥ = 0.7 } , { α� = 0.9, α⊥ = 1.1 } ]. The results shown here are for the standard parameters { α‖ , α⊥ , b η, Ly α, βLy α, �r ‖ , βQSO , σv } . 
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xtensions to the framework by assuming an ensemble of fiducial
alues for these problematic parameters. 

We then further examined the compressed framework, by testing
he inference against unmodelled effects and we find that if any
nformation about the unmodelled features in the correlation function
s not captured by the compressed data vector t , this can potentially
ead to biases, which do not emerge at the level of the χ2 goodness
f fit test. Hence, we advise against performing goodness of fit tests
n compressed space, unless the compressed vector is extended to
nclude e xtra de grees of freedom, analogous to what is done in
eavens et al. ( 2020 ). Extending the framework in this sense is

eft for future work. 
We applied our extended compression framework to DR16 data

rom the eBOSS and demonstrated that the posterior constraints are
ccurately reco v ered without loss of information. A step change
n constraining power, and thus accuracy requirements, is expected
or forthcoming Ly α cosmology analyses by the ongoing DESI
xperiment (see e.g. Gordon et al. 2023 ), which will observe up to 1
illion high-redshift quasars with z > 2. Optimal data compression

s proposed in this work will facilitate these analyses through
nference that is complementary to the traditional approach and
hrough additional consistency and validation tests. 
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PPENDI X  A :  FULL  RESULTS  F O R  T H E  

O C K - TO - M O C K  C OVA R I A N C E  TEST  

e here present in Fig. A1 the full set of results from the mock-to-
ock covariance test, presented in Section 4 , against the contours

btained using the original covariance in the compressed framework. 
umerical values are reported in Table 1 . The contours agree well
ith each other. The most striking enlargements of the posteriors 

re visible for the parameters { α⊥ 

, b Ly α , βLy α , b HCD } . Because
he ‘Original covariance’ set-up has been shown to agree with 
he standard analysis in Section 3 , this comparison automatically 
ecomes a comparison to the standard approach. 
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Figure A1. Triangle plots of the parameters of interest for one set of the Ly α autocorrelation and cross-correlation mocks. Results are split, for presentation 
purposes only, into the set of standard parameters { α� , α⊥ , b Ly α , βLy α , b QSO , βQSO , σv , σ� , σ⊥ } (lower left panel) and contaminant parameters { b η, Si II (1260) , 
b η, Si II (1193) , b η, Si III (1207) , b η, Si II (1190) , b HCD , βHCD } (upper right panel). The blue filled contours refer to the results obtained performing the inference using the 
original covariance matrix C mapped into the compressed space (the Fisher matrix) in the likelihood function, and hence are denoted as ‘Original covariance’. 
On the other hand, the red dashed results, denoted as ‘Mock-to-mock covariance’, refer to the case in which the mock-to-mock covariance matrix is used instead, 
while adopting a t-distribution likelihood. 
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