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Abstract

IMPORTANCE Neurodevelopmental conditions, such as autism spectrum disorder (ASD),
attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), have
highly heterogeneous and overlapping phenotypes and neurobiology. Data-driven approaches are
beginning to identify homogeneous transdiagnostic subgroups of children; however, findings have
yet to be replicated in independently collected data sets, a necessity for translation into clinical
settings.

OBJECTIVE To identify subgroups of children with and without neurodevelopmental conditions
with shared functional brain characteristics using data from 2 large, independent data sets.

DESIGN, SETTING, AND PARTICIPANTS This case-control study used data from the Province of
Ontario Neurodevelopmental (POND) network (study recruitment began June 2012 and is ongoing;
data were extracted April 2021) and the Healthy Brain Network (HBN; study recruitment began May
2015 and is ongoing; data were extracted November 2020). POND and HBN data are collected from
institutions across Ontario and New York, respectively. Participants who had diagnoses of ASD,
ADHD, and OCD or were typically developing (TD); were aged between 5 and 19 years; and
successfully completed the resting-state and anatomical neuroimaging protocol were included in the
current study.

MAIN OUTCOMES AND MEASURES The analyses consisted of a data-driven clustering procedure
on measures derived from each participant’s resting-state functional connectome, performed
independently on each data set. Differences between each pair of leaves in the resulting clustering
decision trees in the demographic and clinical characteristics were tested.

RESULTS Overall, 551 children and adolescents were included from each data set. POND included
164 participants with ADHD; 217 with ASD; 60 with OCD; and 110 with TD (median [IQR] age, 11.87
[9.51-14.76] years; 393 [71.2%] male participants; 20 [3.6%] Black, 28 [5.1%] Latino, and 299 [54.2%]
White participants) and HBN included 374 participants with ADHD; 66 with ASD; 11 with OCD; and
100 with TD (median [IQR] age, 11.50 [9.22-14.20] years; 390 [70.8%] male participants; 82 [14.9%]
Black, 57 [10.3%] Hispanic, and 257 [46.6%] White participants). In both data sets, subgroups with
similar biology that differed significantly in intelligence as well as hyperactivity and impulsivity
problems were identified, yet these groups showed no consistent alignment with current diagnostic
categories. For example, there was a significant difference in Strengths and Weaknesses ADHD
Symptoms and Normal Behavior Hyperactivity/Impulsivity subscale (SWAN-HI) between 2
subgroups in the POND data (C and D), with subgroup D having increased hyperactivity and
impulsivity traits compared with subgroup C (median [IQR], 2.50 [0.00-7.00] vs 1.00 [0.00-5.00];
U = 1.19 × 104; P = .01; η2 = 0.02). A significant difference in SWAN-HI scores between subgroups g
and d in the HBN data was also observed (median [IQR], 1.00 [0.00-4.00] vs 0.00 [0.00-2.00];
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Abstract (continued)

corrected P = .02). There were no differences in the proportion of each diagnosis between the
subgroups in either data set.

CONCLUSIONS AND RELEVANCE The findings of this study suggest that homogeneity in the
neurobiology of neurodevelopmental conditions transcends diagnostic boundaries and is instead
associated with behavioral characteristics. This work takes an important step toward translating
neurobiological subgroups into clinical settings by being the first to replicate our findings in
independently collected data sets.

JAMA Network Open. 2023;6(3):e232066. doi:10.1001/jamanetworkopen.2023.2066

Introduction

Autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive-
compulsive disorder (OCD) are neurodevelopmental conditions clinically defined based on distinct
behavioral criteria.1 However, an increasing body of evidence suggests that these conditions are
highly heterogeneous in biology and phenotype within each condition2-4 and significantly
overlapping.5-12 These observations pose significant challenges to traditional case-control studies,
especially with relatively small sample sizes,13 and have resulted in discrepant findings across various
studies. For example, investigations attempting to characterize the functional connectome in
individuals with ASD, ADHD, and OCD compared with typically developing (TD) populations are
highly mixed.14-16 The seemingly contradictory findings reflect the heterogeneous nature of these
conditions17,18 as well as suggest that differences in the topography of the functional connectome,
such as integration and segregation between resting state networks, may better explain connectivity
patterns in neurodevelopmental conditions rather than the strength of individual connections.19-23

These topographical differences have frequently been described in all 3 conditions,24-26 and there is
increasing evidence that these differences are shared across conditions.9,10

To disentangle these findings, a shift from traditional case-control designs to data-driven
approaches, which transcend diagnostic boundaries to identify groups that are homogeneous in their
neurobiology, is necessary. An emerging body of literature using data-driven approaches supports
the idea that the diagnostic categories of ASD, ADHD, and OCD are not associated with unique
underlying neurobiological mechanisms27,28 and often do not predict treatment outcome.29 This
motivates the need for the discovery of homogeneous groups that can accelerate the development
of targeted and personalized treatment approaches, interventions, supports, and accommodations
that fit the diverse profiles of strengths and needs of children with neurodevelopmental conditions.

To this end, several studies have used measures of brain function or structure to identify
transdiagnostic subgroups of neurodevelopmental conditions, consistently demonstrating a
misalignment between data-driven groupings and existing diagnostic categories.9,10,12,27,28,30-32

The first contribution of this article is to characterize the heterogeneity across neurodevelopmental
conditions by identifying cross-diagnosis subgroups of children and adolescents with and without
neurodevelopmental conditions using measures of integration and segregation of the functional
connectome.

Despite the promise of data-driven approaches and the encouraging preliminary reports, the
replicability and generalizability of these findings remains an open question in the field33 and a critical
gap to clinical translation of the findings.13,34 To date, this issue has been addressed partly by using
subsampling within a data set to enhance generalizability27,28; however, to our knowledge,
subgroupings within neurodevelopmental conditions based on neuroimaging data have not been
replicated across independently collected data sets. The second contribution of this article is to be
the first, to our knowledge, to address this replication gap by examining subgroups across 2 large,
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independently collected, cross-condition data sets, namely the Province of Ontario
Neurodevelopmental Disorders (POND) network and the Healthy Brains Network (HBN).

Methods

Both the POND network and HBN studies were approved by the appropriate research ethics boards,
and the current study was approved by the Holland Bloorview Kids Rehabilitation Hospital’s research
ethics board; written informed consent and/or verbal assent was obtained from the primary
caregivers and/or participants (eMethods in Supplement 1). This study followed the Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline for case-
control studies.

Participants
For the primary cohort, participants were drawn from the POND Network data set (exported April
2021)35, and data from the Healthy Brain Network36,37 was used as the replication cohort (exported
November 2020) (eMethods in Supplement 1). Overall, 717 POND participants (210 with ADHD; 300,
ASD; 69, OCD; and 138, TD) and 966 HBN participants (672, ADHD; 111, ASD; 12, OCD; and 171, TD)
aged between 5 and 19 years were included in the current study based on successful completion of
the resting-state and anatomical imaging protocols and presence of phenotypic data. Details on
phenotypic measures used to characterize the POND and HBN samples are provided in the
eMethods in Supplement 1.

Both datasets used self- or parent-reported race and ethnicity, per the protocols of the larger
POND and HBN studies. In the POND data set, racial groups were defined according to the Canadian
Institute for Health Information standards and included Black, East Asian, Indigenous, Latino, Middle
Eastern, other, South Asian, Southeast Asian, and White. Participants were classified into multiple
categories if they were of mixed race; those who did not identify as one of the groups were
categorized as other. In the HBN data set, categories were defined according to US Census guidelines
and included American Indian or Alaskan Native, Asian, Black, Hispanic, 2 or more races, Native
Hawaiian or other Pacific Islander, other, and White. Participants of mixed race were classified as
such, and thus participants were only assigned to 1 category; those who did not identify as any of the
census groups were categorized as other. Due to low sample size, categories for both datasets were
collapsed into minoritized racial and ethnic group and White for statistical tests.

Neuroimaging Data
Five minutes of resting-state data and anatomical brain images were collected as part of the POND
and HBN studies and preprocessed. Propensity scores were used to match the POND and HBN
participants who passed quality control on age, sex, and motion. Full details on data acquisition,
preprocessing, and propensity score matching can be found in eMethods and eTable 1 in
Supplement 1.

Connectome Construction
Connectome nodes were defined using the cortical atlas from Schaefer et al,38 supplemented by the
Melbourne subcortical atlas,39 as this parcellation scheme is highly representative across alternative
connectome construction pipelines,40 resulting in 232 nodes. The parcels were categorized into 8
functional networks: visual, somatomotor, dorsal attention, ventral attention and salience, limbic,
frontoparietal control, default mode, and subcortical (eFigure 1 in Supplement 1). Pairwise Pearson
correlations between parcel-averaged preprocessed time series were computed as the edge weights
between pairs of nodes. The edge weights were harmonized to account for acquisition site effects
across both data sets, and the influence of scanner, age, and sex were removed (eMethods in
Supplement 1). The connectomes were thresholded to remove spurious connections and produce
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more biologically plausible connectomes.40,41 For each participant, nodal measures of integration
(betweenness centrality42,43) and segregation (clustering coefficient42) were extracted and z scored.

Clustering
Clustering was performed separately on the POND and HBN data sets, and the pipeline is presented
in Figure 1. In the first section (Figure 1A), similarity network fusion (SNF44) was used to compute
similarity matrices for each measure-network pair (eg, segregation of the visual network) using the

Figure 1. Clustering Pipeline
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A, The similarity network fusion (SNF) pipeline was used to construct similarity matrices
for each network-measure pair, which were subsequently fused and clustered. B, This
procedure was repeated over a wide range of SNF hyperparameters (K and μ), each time
for a prespecified number of clusters, N, ranging from 2 to 10. Stable solutions were
identified using the z-Rand similarity index and used to construct a participant

coassignment matrix. C, This procedure was repeated for 10 000 subsamples of
participants, taking the median across all coassignment matrices. D, Hierarchical
clustering was used to identify the emergence of 2 to 10 clusters from the final
coassignment matrix.
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Euclidean distance across all nodal measures belonging to the network and SNF’s K-nearest
neighbors weighted similarity kernel. The 16 similarity matrices (8 networks × 2 measures) were then
fused using SNF, from which spectral clustering can be used to identify a prespecified number of
subgroups.

Due to SNF’s dependence on 2 free hyperparameters (μ and K), 10 000 clustering solutions
were obtained using different combinations of hyperparameters (Figure 1B and eMethods in
Supplement 1). A participant coassignment matrix was then generated by computing the percentage
of times 2 participants were clustered in the same subgroup across cluster solutions that were stable
across the hyperparameter space.

The clustering procedure was performed on 10 000 subsampling iterations to increase
robustness of the final clustering solution, selecting 63.2% of the sample in each iteration; a final
coassignment matrix was constructed by computing the median across all subsampling iterations
(Figure 1C). Hierarchical clustering was performed on the final coassignment matrix (Figure 1D) to
identify subgroups across the full range of number of clusters (2-10). Hierarchical clustering
constructs a rooted tree, or a dendrogram, consisting of layers of nodes: the first layer contains a
single cluster, representing the trivial solution, and the nth layer contains n clusters, representing the
nth-cluster solution45; in each layer, a root cluster is split into 2 leaf clusters. The optimal number of
clusters was identified using the Calinski-Harabasz index.46

Statistical Analysis
Differences in the demographic and behavioral measures were compared among the diagnostic
groups within each data set as well as compared between data sets. For the continuous measures,
Kruskal-Wallis tests or 1-way analysis of variance were used, depending on normality (eTable 2 in
Supplement 1); for significant omnibus tests (P < .05), post hoc testing was carried out using the
Dunn procedure with Bonferroni-corrected P values (corrected P < .05). For nominal categorical
variables (sex and acquisition scanner), χ2 tests were performed with post hoc pairwise z tests of
independent proportions (corrected P < .05). For ordinal categorical variables (socioeconomic
variables in the POND data set), ordinal regression was performed, testing for all pairwise between-
group differences (corrected P < .05).

To determine which brain measures were associated with the split from a root cluster into its 2
leaf clusters in each layer, we tested for a difference in means between each pair of leaf clusters in
their network-averaged measures of segregation and integration. Given that we are using the same
data to both define the groups via clustering and perform downstream testing, traditional statistical
tests such as Mann-Whitney U and t tests would lead to inflated type I errors, as they only control for
such error rates when groups are defined a priori.47 Thus, we used the clusterpval48 package in R
version 4.2.1 (R Project for Statistical Computing) to produce test statistics and P values that are
corrected for double-use of the data; the generic implementation was used, which approximates the
corrected P values using Monte Carlo sampling, and the resulting P values were corrected for multiple
comparisons (corrected P < .05). Mann-Whitney U or t tests and χ2 tests were used to determine
differences between leaves in the demographic and behavioral measures.

For all significant tests, effect sizes were reported. For continuous measures, eta-squared (η2)
effect sizes were used, using the ranked data for nonnormally distributed data. For categorical
variables, Cramer V effect sizes were reported, while for ordinal variables, pseudo-R2 values were
reported.49

Results

Sample Characteristics
The final data set included 551 POND participants (164 with ADHD; 217, ASD; 60, OCD; 110, TD;
median [IQR] age. 11.87 [9.51-14.76] years; 393 [71.2%] male participants; 20 [3.6%] Black, 28 [5.1%]
Latino, and 299 [54.2%] White participants) and 551 HBN participants (374 with ADHD; 66, ASD; 11,
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OCD; 100, TD; median [IQR] age, 11.50 [9.22-14.20] years; 390 [70.8%] male participants; 82
[14.9%] Black, 57 [10.3%] Hispanic, and 257 [46.6%] White participants). The final sample was
reached by performing propensity matching on the individuals who passed quality control (592
POND and 756 HBN individuals) to match the data sets on age, sex, and head motion. Descriptive
statistics of the POND and HBN sample characteristics are provided in Tables 1 and 2, respectively.
Complete race and ethnicity data for each data set are presented in eTable 3 in Supplement 1.

Compared with the POND sample, the HBN sample had a significantly higher proportion of
ADHD and a lower proportion of ASD and OCD diagnoses (χ2 = 197.74; P < .001; V = 0.42).
Furthermore, the HBN sample had significantly more participants belonging to minoritized racial and
ethnic groups (χ2 = 6.50; P = .01; V = 0.09), lower full-scale IQ (U = 1.15 × 105; P = .01;
η2 = 7.44 × 10−3), and fewer social communication difficulties (U = 1.26 × 105; P = .03;
η2 = 1.71 × 10−3) and hyperactivity and impulsivity problems, measured by the Strengths and
Weaknesses ADHD Symptoms and Normal Behavior Hyperactivity/Impulsivity subscale (SWAN-H/I;
U = 1.09 × 105; P < .001; η2 = 0.03). eTable 4 in Supplement 1 includes full details.

Clustering
The Calinski-Harabasz index indicated that the 6- and 10-cluster solutions were optimal for POND
and HBN, respectively (eFigure 2 in Supplement 1). Visual representations of the emergence of the 6
clusters in the POND and HBN data sets are presented in Figure 2, and statistical results appear in
eTables 5 to 8 in Supplement 1. Significant differences between the leaf clusters in network-averaged
measures of segregation and integration for each layer in the POND and HBN dendrograms are
shown in eFigure 3 and eTables 9 to 12 in Supplement 1.

For both POND and HBN data sets, the 2-cluster solution split the sample into 2 groups (POND:
subgroups A and B; HBN: subgroups a and b). Subgroups B and b had increased segregation in all
resting-state networks; increased integration in the somatomotor, dorsal attention, limbic and
default mode networks; and decreased integration in the frontoparietal control network and
subcortical regions compared with subgroups A and a (Figure 3A and B). Although integration of the
visual network was also observed to be decreased in the HBN data set, this was not replicated in the
POND data set. A difference in IQ scores was observed (full-spectrum IQ, POND: U = 2.86 × 104;
P = .04; η2 = 0.01; full-spectrum IQ, HBN: t = −2.37; P = .02; η2 = 0.01), with subgroups B and b
having increased IQ scores compared with subgroups A and a (median [IQR] IQ scores, B vs A:
104.00 [92.00-114.00] vs 100.00 [88.00-110.00]; mean [SD] IQ scores, b vs a: 100.63 [16.98] vs
97.08 [16.55]) (eFigure 4 in Supplement 1). In both data sets, there were no differences in the
proportion of each diagnosis between the leaves.

In subsequent layers of the dendrogram, consistent results were also observed with respect to
cluster splits resulting in differences in hyperactivity and impulsivity symptoms as measured by
SWAN-HI. In the third layer of the POND dendrogram, a significant difference in SWAN-HI
(U = 1.19 × 104; P = .01; η2 = 0.02) was identified between the 2 leaf subgroups (C and D), with
subgroup D having increased hyperactivity and impulsivity traits compared with subgroup C (median
[IQR], 2.50 [0.00-7.00] vs 1.00 [0.00-5.00]). In the HBN dendrogram, the leaves in the third layer
(subgroups c and d) also showed a difference in hyperactivity and impulsivity, but the difference was
not statistically significant (U = 1.13 × 104; P = .06; η2 = 0.01). A significant difference in symptoms
was observed in the fifth layer (subgroups g and h: U = 2.68 × 103; P = .02; η2 = 0.03). To contrast
with POND, the 4 HBN subgroups (c, d, g, and h) were compared, and a difference in hyperactivity
and impulsivity problems was identified (W = 10.81; P = .01; η2 = 0.02), with post hoc tests
identifying that subgroup g had significantly higher hyperactivity and impulsivity compared with
subgroup d (median [IQR], 1.00 [0.00-4.00] vs 0.00 [0.00-2.00]; corrected P = .02). Thus, POND
subgroup D and HBN subgroup g were identified as having increased SWAN-HI scores compared with
POND subgroup C and HBN subgroup d (eFigure 4 in Supplement 1). Differences in the brain
measures were compared between the 2 subgroups for both POND and HBN (Figure 3C and D;
eTable 13 in Supplement 1). In both data sets, we observed increased segregation in all networks in
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the subgroup with higher hyperactivity and impulsivity, with the largest effect sizes occurring in the
somatomotor and default mode networks in both data sets, along with the dorsal attention network
in HBN. Increased integration in the motor and default mode networks and decreased integration in
the frontoparietal and subcortical networks were also observed in both data sets. Despite these
subgroups differing in symptoms associated with ADHD, we observed no differences in the
proportion of each diagnosis between the subgroups in either data set.

In subsequent layers of the POND dendrogram, we observed differences in the proportion of
diagnoses between the leaf clusters in the 4- and 5-cluster solutions. However, these diagnostic
differences were not replicated in the HBN data set.

Discussion

In this study, we used measures derived from the brain’s functional networks to identify data-driven
transdiagnostic subgroups of children and adolescents with and without neurodevelopmental
conditions to characterize the heterogeneity across the conditions; these data-driven subgroups
were then described using demographic and clinical indices. We identified subgroups in 2
independently collected data sets—POND and HBN—and, focusing on findings that were present in

Figure 2. Clustering Results
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to the percentage of participants included in the subgroup. For each layer of the
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lowercase for POND and HBN, respectively); the directionality of significant (P < .05)
effect sizes are identified, with red indicating the leaf cluster with an increase in the
clinical measure and blue indicating a decrease. ADHD indicates attention-deficit/

hyperactivity disorder; ASD, autism spectrum disorder; FSIQ, full-scale intelligence
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SWAN-HI, Strengths and Weaknesses of ADHD—Symptoms and Normal Behavior
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a Corrected P = .06.
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both cohorts, found subgroups that differed in intelligence and hyperactivity and impulsivity
symptoms but not diagnosis.

Research on neurodevelopmental conditions has classically operated under the assumption
that diagnostic labels are the ground truth. However, there is increasing awareness of the biological
and symptom heterogeneity within conditions and overlap across conditions, which has raised
concerns about the appropriateness of service provision systems in health care that are based on
diagnostic labels.50,51 Our work joins the growing body of literature supporting transdiagnostic
approaches for accommodating the variability and complexity of these conditions and provides
support for categorizing individuals on biology to identify better targets for treatments and
interventions.

Furthermore, to our knowledge, we are the first to replicate our discovered transdiagnostic
subgroups across 2 independently collected data sets, showing that similar subgroups with specific
brain signatures can be identified that are accompanied by replicable phenotypic differences. With a
mounting body of work challenging the reproducibility of brain-behavior relations13,34 and brain-
based subtyping,52 replicating clustering results is essential to establish the robustness necessary to
translate the groupings to clinical settings, particularly given the heterogeneity in both brain and
behavior in neurodevelopmental conditions. While previous studies have established transdiagnostic
subgroupings using neuroimaging,9,12,27,28,30-32,53 these results should be interpreted cautiously in
the absence of replication. We explicitly address their shortcomings by evaluating subgroup
replicability in 2 independent data sets.

Our discovered brain-based subgroups spanned the spectrum of neurodiversity, including
typical development, and do not align with existing categorical boundaries. Specifically, we identified
subgroups with similar biology that differed significantly in intelligence and hyperactivity and
impulsivity problems yet showed no consistent alignment with the current diagnostic categories. The

Figure 3. Between-Subgroup Differences in Brain Measures
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identification of neurobiologically defined subgroups that align poorly with the current behavior-
based diagnostic categories contributes to the work criticizing the lack of correspondence of these
categorical descriptors with biology.9,11,27,28,30,32,53 The TD individuals were also spread across all
identified brain-based subgroups, emphasizing that an overlap in neurobiology exists not only across
conditions, but also across typical development, aligning with emerging studies highlighting the
similarities, rather than differences, in resting-state brain function between populations with
neurodevelopmental conditions and TD populations.9,10,54

We identified replicable subgroups differing in intelligence, between which no differences in
diagnosis (including those with no diagnosis) were observed. The distribution of each diagnosis
across the subgroups aligned with the diversity in traits observed in neurodevelopmental conditions.
For example, although neurodevelopmental conditions demonstrate overall reduced intelligence
compared with their TD peers,55-57 those with ASD have been shown to also have a higher probability
of scoring in the superior intelligence range.55 We also identified subgroups in both data sets who
differed in hyperactivity and impulsivity traits. Even though these traits are traditionally considered
characteristic of ADHD, we did not observe a difference in proportion of diagnostic categorization
between these subgroups in either data set. This is consistent with the finding that hyperactivity and
impulsivity are shared characteristics across neurodevelopmental conditions.58-60 The identification
of subgroups that differ in these behavioral characteristics, rather than by diagnosis, supports using
continuous measures of behavior to study neurodevelopmental differences rather than relying on
the current discrete categorical categories.

These differences in intelligence and hyperactivity and impulsivity symptoms were
accompanied by pervasive differences in the brain’s functional segregation and integration.
Networks involved in intelligence are distributed throughout the brain to support distinct
information processing stages.61 Similarly, there was no convergence in the spatial patterns of
functional brain connectivity associated with ADHD in the literature,17 and ADHD traits have been
reported to be more associated with brainwide connectivity than with local connectivity.62 Thus, our
findings support the distributed involvement of brain regions in intelligence and hyperactivity and
impulsivity symptoms.

We observed increased segregation in all brain networks coupled with predominantly increased
integration in the subgroups with increased intelligence. Simultaneous increases in both segregation
and integration occurs throughout development as hubs in the brain’s network shift from primary
to cognitive brain regions to support cognitive development.63,64 Opposite to the other networks,
the integration of the frontoparietal control and subcortical networks was decreased in the subgroup
with increased intelligence. The specific pattern of involvement in these brain networks in
intelligence aligns with the parieto-frontal integration theory of intelligence61 that has been extended
to include subcortical structures.65,66

The subgroup with increased hyperactivity and impulsivity demonstrated widespread increased
segregation and patterns of both increased (eg, motor) and decreased (eg, subcortical) integration.
To our knowledge, no study has identified alterations in the topography of the brain’s resting-state
functional network that are specific to hyperactivity and impulsivity in ADHD. The few studies
examining the associations between hyperactivity and impulsivity and functional connectivity have
implicated connections between striatal regions and regions in the motor network.67-69 The
significant and opposite associations of integration we observed in these networks reinforces their
specific involvement to hyperactivity and impulsivity symptoms.

Limitations
This study has limitations. Our study focused on brain function; however, differences between
individuals with and without neurodevelopmental conditions have been observed in measures of
both brain function and structure as well as in other domains. Thus, our study is limited by focusing
on only one aspect of the brain, and our identified subgroups may not be homogeneous in other
measures. There was a limited number of participants with OCD compared with the other diagnostic
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groups, and most behavioral measures used to characterize the data-driven subgroups were parent-
rated reports, which may not be impartial. Furthermore, our age range is restricted to children and
adolescents, a developmental period when significant changes are occurring; future work should
extend the age range into adulthood and examine how the identified subgroups change throughout
development. We have also only used a single 5-minute resting-state scan from the HBN data set
when 2 were available and passed quality control; future work could evaluate the within-participant
stability of our subgroups between multiple resting-state scans. The removal of nuisance covariates
(age, sex, head motion, and acquisition scanner) also may inadvertently remove signal of interest yet
was necessary to ensure subgroups were not defined by these covariates. Additionally, the study
design was cross-sectional, and future studies should incorporate longitudinal data to examine the
stability of the clusters over time. It is important to note that the findings of this study are based on
neurobiological profiles quantified through measurements of brain function. As such, these results
do not reflect broader considerations for existing diagnostic categories including issues of self-
identity and service provision. Consultations and partnerships with neurodiverse populations are
needed to appropriately contextualize and translate these findings into clinical practice. We
recognize the different language preferences for referring to autistic identity (identity-first language
and person-first language). We use both in this paper to reflect the diversity of perspectives.

Conclusions

To our knowledge, this is the first study to identify transdiagnostic subgroups replicated across 2
independent data sets. With the reliability of associations between brain and behavior being
increasingly questioned in the literature, stratification techniques are a useful way of increasing
power by identifying more homogeneous subgroups within the sample to target treatments and
interventions. The replication of exact subgroups across different samples with varying diagnostic
and behavioral characteristics is an essential step in ensuring robustness prior to implementing the
groupings into clinical settings. Finally, our study suggests that homogeneity in neurobiology
transcends diagnostic boundaries, promoting a shift in the research community away from classic
case-control designs that rely on diagnostic categories, which have increasingly been shown not to
reflect distinct biological and phenotypic constructs.
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