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Richer than we thought: neurophysiological
methods reveal rich-club network development
is frequency- and sex-dependent

Marlee M. Vandewouw,1,2,3,17,* Elizabeth W. Pang,4,5 Meng-Chuan Lai,4,6,7 Elizabeth Kelley,8,9,10

Muhammad Ayub,10 Jason P. Lerch,4,11,12 Margot J. Taylor,3,4,13,14,16 and Evdokia Anagnostou1,4,15,16

SUMMARY

A set of highly connected brain regions called the ‘‘rich-club’’ are vital in inte-
grating information across the functional connectome. Although the literature
has identified some changes in rich-club organization with age, little is known
about potential sex-specific developmental trajectories, and neurophysiologi-
cally relevant frequency-dependent changes have not been established. Here
we examine the frequency- and sex-dependent development of rich-club organi-
zation using magnetoencephalography in a large normative sample (N = 383)
over a wide age span (4–39 years). We report strong divergence between males
and females across alpha, beta, and gamma frequencies. While males show
increased or no change in rich-club organization with age, females show a consis-
tent, non-linear trajectory that increases through childhood, shifting direction in
early adolescence. Using neurophysiological modalities for capturing complex in-
ter-relations between oscillatory dynamics, age, and sex, we establish diverging,
sex-specific developmental trajectories of the brain’s core functional organiza-
tion, critically important to our understanding of brain health and disease.

INTRODUCTION

The organization of the human brain can be described as a set of spatially distinct regions that are function-

ally integrated into a large-scale complex network, coined the connectome.1 One key feature of the brain’s

functional connectome is the presence of network hubs—regions considerably more connected than

others.2,3 The brain is said to have ‘‘rich-club’’ organization when a small set of these hub brain regions

tend to be more densely interconnected than connected to non-hub regions, a name originating from

the observation that in social settings, wealthy individuals are very connected across society and highly con-

nected to one another.4 The regions in the rich-club, which usually include widely distributed areas such as

the medial frontal and parietal cortices, the cingulate cortices, the inferior temporal cortices, and the insu-

lae,5,6 play a vital role in integrating information across the connectome, supporting a wide range of cogni-

tive functions.2 However, the connectivity density and widespread spatial distribution of the rich-club is

costly in terms of anatomical wiring and metabolic requirements, making these regions particularly vulner-

able to injury.3,7,8 Thus, understanding the balance between information integration and vulnerability in the

brain’s rich-club organization could provide important insights into both health and disease.

Although the presence of a functional rich-club can be identified throughout development, the topography

shifts from primary cortical regions in early life to a more distributed pattern across the association cortices

by the end of childhood, reflecting the development of complex cognition over this period.9–11 While there

is consensus that the regions comprising the rich-club stabilize during adolescence, reports on the stability

of the strength of the involved connections and importance to overall network function across the lifespan

vary.5,12–17 The functional connectivity of hub regionsmay even change non-linearly across the lifespan,12,15

aligning with evidence of non-linear maturational trajectories of brain function.18 Importantly, given that

sex-related biological factors serve critical roles in normative brain development that result in sex-differen-

tial growth trajectories or age-dependent features,19 it is surprising how little has been done to examine

sex influences in functional rich-club development—only a few reports have noted differences in hubness

but not the degree of rich-club organization.12,20
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Furthermore, all studies to date on the functional connectome’s rich-club development have used func-

tional magnetic resonance imaging (fMRI). Neurophysiological imaging modalities, such as magnetoen-

cephalography (MEG) allow for the direct measurement of neuronal activity with high temporal resolution

in milliseconds.21 This high temporal resolution allows functional connectivity to be derived in a range of

high-frequency bands which are known to support distinct cognitive functions22–25 and to which fMRI is

blind. Given that regions comprising the functional rich-club underlie a wide array of cognitive functions

through information integration, examining the rich-club and the brain regions involved across different

frequency bands will characterize their functional relevance. Finally, previous investigations into the devel-

opment of the rich-club organization have employed statistical analysis on a group-averaged level,5,12

aside from one study, that characterized rich-club organization on an individual level from infancy through

adolescence.20

Here we extend the existing literature in three unique ways.We: 1) employMEG to directly examine the rich

oscillatory information available only with a neurophysiological modality; 2) quantify rich-club organization

within individuals, allowing a consideration of the heterogeneity observed within the population; and 3) use

a large single-site sample (383 typically developing individuals) encompassing a wide age span (4-39 years

of age), several of whom underwent multiple scanning sessions, resulting in 479 data points. We demon-

strate that the development of the functional rich-club is richer than we previously thought and shows

both marked frequency- and sex-dependent developmental trajectories.

RESULTS

Participant demographics

The current retrospective study used resting-state MEG data which were acquired on 448 unique individ-

uals (178 females, 270 males) between 4 and 39 years of age. Multiple resting-state acquisitions were

collected on 114 participants (23 female, 91 male) and resting-state data were acquired longitudinally

(>6 months) on 75 participants (24 female, 51 male), resulting in 665 datasets. Mixed-effects designs

were chosen in the statistical analyses to use all available data. After excluding datasets for failing quality

control (N = 75) and to ensure no between-sex differences in age nor head motion (N = 111), 479 datasets

(191 female, 288 male) remained in our final sample.

Participant demographics are summarized in Table 1, along with statistical details regarding the main ef-

fects of age, sex, and age-by-sex interactions. Across the entire dataset, there was no significant difference

in age between males and females (F(1, 477) = 3.43, p = 0.06). With Inscapes being used to reduce head

Table 1. Descriptive statistics of the participant demographics and corresponding statistics regarding each

variable’s relation to age

Females Males Statistics

Datasets 191 288 –

Age range (years) 4–37 4–39 –

Age (years; mean G std.) 14.46 G 7.97 16.36 G 8.72 Sex: F (1, 477) = 3.43, p = 0.06

Rest type

(Fixation: Inscapes)

164:27 247:41 Age: F(1,475) = 20.66, p = 5.76 3 10�6

Sex: F(1,475) = 0.36, p = 0.13

Age-by-sex: F(1,475) = 1.99, p = 0.16

Head motion

(mm; mean G std.)

1.37 G 1.13 1.30 G 1.03 Age: F(1,475) = 155.32, p = 1.64 3 10�30

Sex: F(1,475) = 0.93, p = 0.34

Age-by-sex: F(1,475) = 2.11, p = 0.15

Number of trials

(mean G std.)

21.71 G 7.32 21.00 G 6.88 Age: F(1,475) = 2.68, p = 0.10

Sex: F(1,475) = 2.71, p = 0.10

Age-by-sex: F(1,475) = 1.36, p = 0.24

FSIQ range 77–140 76–149 –

FSIQ

(mean G std.)

114.49 G 10.94 113.23 G 1.89 Age: F(1,410) = 2.82, p = 0.09

Sex: F(1,410) = 0.21, p = 0.65

Age-by-sex: F(1,410) = 0.92, p = 0.34

FSIQ: full scale intelligence quotient; std.: standard deviation.
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motion in children, there was a significant effect of age on rest type (F(1,475) = 20.66, p = 5.763 10�6); how-

ever, there was nomain effect of sex (F(1,475) = 0.36, p = 0.13) nor an age-by-sex interaction (F(1,475) = 1.99,

p = 0.16). There was a relation between age and mean head motion (F(1,475) = 155.32, p = 1.64 3 10�30),

with head motion decreasing with increasing age, and hence head motion was regressed from the ampli-

tude envelope timeseries (see STAR Methods: MEG preprocessing); there was no main effect of sex or

age-by-sex interaction on mean head motion (sex: F(1,475) = 0.93, p = 0.34, age-by-sex: F(1,475) = 2.11,

p = 0.15). Excess trials were removed for some participants to ensure no significant main effects of

age (F(1,475) = 2.68, p = 0.20), sex (F(1,475) = 2.71, p = 0.10), or age-by-sex interaction (F(1,475) = 1.36,

p = 0.24) on the number of trials. Full-scale intelligence quotient (FSIQ) was collected for 414 datasets,

and there was no effect of age (F(1,410) = 2.82, p = 0.09), sex (F(1,410) = 0.21, p = 0.65), nor age-by-sex inter-

action (F(1,410) = 0.92, p = 0.34)

Area under the rich-club curve

Resting-state functional connectivity networks were constructed for each participant and each of the ca-

nonical frequency bands (theta: 4-7Hz, alpha: 8-14Hz, beta: 15-29Hz, low gamma: 30-55Hz, and high

gamma: 65-80Hz). Rich-club coefficient curves were constructed for each network and statistical signifi-

cance was assessed. The area under the curve of significant rich-club coefficients (AURC) was used to quan-

tify each network’s rich-club organization.

Five age models (constant, linear, quadratic, and cubic polynomials, and a general additive mixed model

(GAMM)) were fit to the AURC data for each frequency band for males and females, and Akaike Information

Criteria (AIC) values, used to compare the quality of the models, are presented in Table 2. In the theta and

alpha bands, the linear and cubic models, respectively, were optimal in both males and females. However,

modeling age as linear was optimal for the remaining bands (beta, low gamma, and high gamma) in the

males, yet cubic for the females.

The sex-specific developmental trajectories are visualized separately for each frequency band in Figure 1

and presented in a single plot in Figure S1. The corresponding features of interest (with 95% confidence

intervals) for the optimal models for each frequency band and sex are shown in Table 3. The parameter es-

timates and statistical details corresponding to the optimal models for the males and females are pre-

sented in Table S1.

In theta, the linear effect of age on AURC was significant within each sex (Table 3 and Figure 1A). in females,

rich-club organization decreased with age, while the opposite pattern was observed in the males, with the

sexes showing a statistically significant difference in slope (p < 1.00 3 10�4).

In the alpha band, the cubic effect of age was significant in the females, while only the quadratic term was

significant in the males (Table 3). This is reflected when observing the within-group developmental

Table 2. AIC values evaluating fit for each model investigating the effects of age on AURC in each frequency band

for males and females

Theta Alpha Beta Low gamma High gamma

Males Constant 1204.99 1354.60 1412.64 1485.30 1668.58

Linear 1185.91 1274.13 1314.81 1484.11 1670.10

Quadratic 1187.62 1271.11 1316.66 1485.26 1671.07

Cubic 1189.32 1269.34 1316.40 1487.08 1672.11

GAMM 1187.91 1275.40 1316.81 1486.11 1672.10

Females Constant 923.41 959.20 963.35 1041.63 1157.80

Linear 878.34 936.88 962.47 1020.30 1118.10

Quadratic 880.30 935.75 957.02 1022.29 1119.53

Cubic 879.83 928.71 950.09 1015.53 1115.87

GAMM 880.34 936.49 958.77 1022.30 1120.10

AIC: Akaike Information Criteria; GAMM: general additive mixed model.

Optimal values are bolded.
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trajectories and their corresponding features (Figure 1B). All three features of interest were stable in the

subsampling procedure in the females: rich-club organization increased until late childhood before begin-

ning to decrease, followed by an inflection point in early adulthood and a local minimum in adulthood. In

the males, however, the local maximum and minimum were only present in less than 1% of the subsamples,

respectively, and were highly variable, indicating an unstable cubic trajectory.

In the beta frequency band, a significant cubic effect of age on rich-club organization was observed in the

females, while the males showed a significant linear positive relation (Table 3 and Figure 1C). In the beta

frequency band, the female cubic trajectory reached its features of interest at a slightly later age compared

to in alpha.

In low gamma, the females again exhibited a significant cubic relation between age and rich-club organi-

zation, while the males had no significant change in the rich-club organization with age, although the sub-

sampling results for slope did indicate a weak positive relation (Table 3 and Figure 1D). The cubic relation in

the females reached its features of interest earlier in life compared to the other frequency bands (alpha and

beta). Similarly, in high gamma, the females exhibited a significant cubic relation between age and rich-

club organization, reaching most of its features of interest even earlier than in low gamma, while the males

exhibited no relation (Table 3 and Figure 1E). Global efficiency was also examined by sex to enable a com-

parison to fMRI literature; rich-club organization primarily increased with age in the lower frequency bands,

with little-to-no changes with age in the higher frequency bands, andminimal sex differences (Table S2 and

Figure S2).

Rich-club regions

We also investigated which brain regions were part of the rich club and how these evolved with age, fre-

quency, and sex. The regions belonging to the rich-club were extracted for each participant and frequency

band, and the age models were fit with the binomial distribution given the binary nature of rich-club mem-

bership. Optimal fits between age and the probability of being a rich-club region were identified by AIC

values for each brain region and frequency band in males and females and are presented in Figure S3.

Figure 1. Developmental trajectories of the rich-club organization (area under the rich-club curve (AURC)) in the

males (blue) and females (pink) for each frequency band

(A and E) (A: theta, B: alpha, C: beta, D: low gamma, E: high gamma). The fitted trajectory is presented as a solid line with a

shaded 95% confidence interval, and data points for each participant are scatter plotted.
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To demonstrate the changes, from the optimal fits the probability of regions belonging to the rich-club

were predicted and binarized at 5, 18, and 30 years of age for each sex in each frequency band and pre-

sented in Figure 2.

Brain regions with statistically significant (pcorr<0.05) changes in rich-club membership with age are pre-

sented in Figure 3: primarily, females showed significant changes with age, and these changes were pre-

dominantly linear (Figure 3A and Table S3). Some non-linear (quadratic and cubic, Figures 3B and 3C;

Tables S4 and S5) changes were observed in females. Linear effects were observed in males (Figure 3D)

in the alpha and beta frequency bands.

Specifically, in the theta band, the females demonstrated widespread decreases in the probability of being

a rich-club region throughout the brain; subsampling revealed slope means and 95% confidence intervals

that were consistently negative. The males showed no significant changes with age in the theta band. A

negative relation between age and rich-clubmembership in the alpha band was observed in the left lingual

gyrus in the females and left putamen in the males. Quadratic changes in rich-club membership with age in

females were observed in the beta band, with the developmental trajectories following a U-shaped curve in

the right orbital part of the middle frontal gyrus and left rectus, amygdala, caudate, and pallidum. All re-

gions reached their minimum in late adolescence (17.39-19.01 years). A cubic change in membership

with age was observed in the females in the beta band in the right cuneus: membership increased until

12.54 years (95% CI: [11.57, 13.41]), before decreasing with an inflection point at 19.62 years (95% CI:

[18.18, 20.95]) and reaching aminimum at 26.17 years (95%CI: [24.21, 27.73]). Conversely, themales showed

a decrease in rich-club membership with age in the bilateral orbitofrontal cortices, left rectus and anterior

cingulate gyrus, and right putamen. Decreases with age in rich-clubmembership were found in low gamma

in regions including the left orbitofrontal cortex, left insula, right hippocampal, parahippocampal, lingual,

and fusiform gyri, bilateral thalami, and bilateral temporal regions in the females; no changes with age were

observed in the males. Finally, no changes in rich-club membership with age were observed in either sex in

high gamma.

DISCUSSION

Using MEG to investigate the wealth of information available in both temporal and oscillatory domains,

combined with analytic methods that account for sex-specificity, individual variability, and a large sample

size encompassing children and adults, we demonstrate, for the first time, sex- and frequency-dependent

development in the rich-club network in humans. We anchored our findings to the existing fMRI literature

via a supplemental analysis of global efficiency: our data were concordant with prior fMRI studies, which re-

ported primarily increases with age and small sex differences in children and adolescents.20 Importantly, it is

only when we use neurophysiological recordings that striking sex and developmental differences emerge.

Table 3. For each frequency band and sex, optimal fits describing the relation between age and rich-club organization are indicated with the

corresponding features of interest and their 95% confidence intervals (indicated in square brackets) and the percentage of subsamples for which the

feature was present (indicated in round brackets)

Theta Alpha Beta Low gamma High gamma

Males Optimal fit Linear Cubic Linear Linear Constant

Slope 0.06 [0.04, 0.08] – 0.19 [0.17, 0.22] 0.04 [0.01, 0.07] –

Maximum – 30.56 [20.36, 38.46] (1%) – – –

Inflection point – 24.51 [21.74, 30.84] (0.4%) – – –

Minimum – 11.06 [4.75, 33.53] (95%) – – –

Females Optimal fit Linear Cubic Cubic Cubic Cubic

Slope �0.16 [-0.19, �0.14] – – – –

Maximum – 11.06 [10.24, 12.65] (100%) 13.48 [12.49, 14.47]

(100%)

9.98 [7.76, 11.32]

(100%)

7.87 [5.07, 10.05]

(89%)

Inflection point – 21.60 [20.05, 23.48] (100%) 22.61 [21.15, 24.70]

(99%)

19.46 [17.99, 20.96]

(100%)

18.22 [14.98, 19.84]

(100%)

Minimum – 31.57 [29.03, 34.60] (98%) 31.61 [29.53, 34.43]

(98%)

28.94 [26.88, 31.55]

(100%)

29.22 [28.02, 30.78]

(100%)

ll
OPEN ACCESS

iScience 26, 106384, April 21, 2023 5

iScience
Article



Across alpha, beta, and gamma frequency bands, a remarkable dissociation was observed where males

showed a significant positive linear effect of age in beta, no effect of age on rich-club membership in

gamma (low or high), and high variability across individuals in alpha. In contrast, across alpha, beta, and

both gamma frequency bands, females showed a cubic effect of age with a maximum in early adolescence,

an inflection point in young adulthood with a minimum around age 30 years. Further, these effects were

highly homogeneous in females with close to all subsamples fitting the model.

In males, our findings suggest that, with increasing age, there is increasing engagement of the rich-club

network only in the beta band. While recent research has identified broader roles for beta oscillations in

working memory and executive control,26 it is well established that these oscillations are key in coordi-

nating sensory perceptions with motor functions,27 especially visuospatial processing which is known to

be superior in males, on average (e.g.,28,29). Our functional connectome findings are in line with work

showing sex differences in the human structural connectome such that brain regions that facilitated these

skills were preferentially connected in males.30

In females, engagement of the rich-club network in all frequency bands followed non-linear trajectories,

increasing through childhood, shifting direction in adolescence until it reached aminimum in the early adult

years, followed by a subsequent increase. These data suggest that by the early teen years, females’ func-

tional brain organization has diverged substantially from that of males, with females engagingmore distrib-

uted, less rich-club-centric networks, across all frequency bands. This finding converges with the evidence

that the brain structural connectome in females tends to organize in a way that better facilitates signal ex-

change across hemispheres and between distributed brain regions30 and fits with the observation that fe-

males show higher verbal ability on average,31 as language function is subsumedby a distributed network.32

Furthermore, this non-linear development in neurophysiological network organization in females also cor-

responds with the known non-linear developmental trajectories in cerebral blood flow in females, from

childhood to early adulthood, which also shows remarkable sex-differences from mid-adolescence.33

Figure 2. Brain regions predicted to belong to the female (pink), male (blue), and both female and male (purple)

rich-clubs at 5, 18, and 30 years of age
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Our current work significantly extends the increasing evidence of normative brain developmental differ-

ences by sex and sex-related biological factors,19,34 and the critical importance of accounting for such

sex-differential distributions and trajectories to understand the basis of neurocognitive differences asso-

ciated with sex and mechanisms of neuropsychiatric disorders with unbalanced male-female ratios35,36

(for reviews, see37–39). Enhanced rich-club network, as seen in our male cohort, may have both advan-

tages and disadvantages developmentally. It is thought that the rich-club architecture evolved to maxi-

mize performance by more efficiently using metabolic resources, shortening relay and processing times,

and building in redundancy to enhance the robustness and prevent breakdown.3 However, this design

may render the rich-club network vulnerable to pathology.40 A meta-analysis41 identified a list of brain

disorders with lesions significantly more likely to be in rich-club hubs. One example at the top of the

list is schizophrenia which more often affects males, especially in young adulthood.42 Interestingly, fron-

totemporal dementia which affects males and females equally in late midlife (45-65 years)43 and Alz-

heimer’s dementia, which preferentially affects senior females (>65 years),44 were both high on this

list, although these conditions typically present beyond the age range examined in this study. Finally,

our finding that, with age, males increasingly engaged the rich-club network only in the beta band

also links to the potential relevance to diseases involving pathological beta oscillatory synchronization,

such as Parkinson disease.45

On the other hand, a distributed network also has advantages and disadvantages. Females on average

show greater resilience to adversity, most likely supported by stronger social networks,46 better social

cognition skills such as emotional processing,47 face processing,48 and empathy,49 as well as better

verbal ability.31 These functions all are subsumed by distributed brain networks (e.g.,32,50,51). However,

Figure 3. Regions showing significant effects of age on rich-club membership

Regions showing significant linear, quadratic, and cubic effects of age on rich-club membership for females (A – C) and

males (D). The fitted trajectory for two example regions is presented as a solid line with a shaded 95% confidence interval.
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a disadvantage of utilizing a distributed network may include heightened vulnerability toward dis-

orders involving multiple brain regions or extensive cortical-subcortical interactions, such as depres-

sion52 and post-traumatic stress disorder,53 both of which are significantly more likely to occur in

females.54-57

This divergence in rich-club network engagement occurs between sexes in the pubertal years, reaching

minima in the middle of the reproductive years, suggesting these differences emerge in part due to bio-

logical mechanisms. For example, sex hormones are known to have a role in shaping brain structure,

particularly during sensitive developmental periods including puberty,58 when there are marked alter-

ations in sex hormones and significant changes in cognition59 (see,60 for a review). Unlike males, where

the levels of sex hormones remain relatively stable across adulthood, females show cycling patterns dur-

ing reproductive years. There is fMRI evidence that monthly hormonal cycles affect cognitive function61,62

and widespread patterns of brain connectivity63 in females. Furthermore, gendered experiences that are

differentially embodied by female vs. male individuals across development may further shape the

observed sex-differential network topology,64 mediated via biological mechanisms.65 Notably, our finding

that nearly all the female subsamples fit the non-linear models shows a more similar rich-club organization

within females compared to that within males, corresponding to the emerging fMRI findings of higher

intra-female similarity in the brain resting-state network topography compared to that in males.66 More

importantly, it demonstrates that we can measure very stable features of the female functional brain

network.

The striking divergence of rich-club trajectories as youth transition into adolescence in our cohort may not

have been predicted by previous fMRI results.12,15 However, given that fMRI studies use the hemodynamic

response to indirectly measure brain physiology, and the known effects of sex hormones on the vascular

system,67 this modality may be confounded by the variability in hormone-induced vascular changes

affecting the hemodynamic signal, and therefore introduce instability into BOLD-based measurement of

network topology. This highlights the need for non-BOLD-based neuroimaging modalities to detect

age and sex effects.

Our results highlight the critical importance of considering sex-specific developmental trajectories

in brain physiology and network topology and understanding their relation to vulnerability and resilience

in brain development, cognition, and brain-based disorders and diseases.38,68–72 Future studies

should consider the measurement of sex hormones, as well as gender-based experiential indices, to

better capture developmental mechanisms and distinguish effects of cycling hormones during estrous

cycles from the more stable effects of sex on the sex-specific rich-club organization we observed in

this study.

In summary, we report striking age-related sex differences in the brain’s rich-club network which only

emerge as we investigate across oscillatory frequency bands. We submit that the richness of the brain’s dy-

namic properties in the time, space, and oscillatory domains can only be captured with the use of neuro-

physiological modalities. It is only when we apply these high spatial-temporal resolution methods to the

examination of brain oscillations and their role in brain network communications that we will gain a full pic-

ture of sex (and subsequently, gender) differences in brain function necessary to understand health and dis-

ease across the lifespan.

Limitations of the study

A limitation of our study is the smaller sample of females in the older age range compared to the males,

which could bias our trajectory shapes; while we have addressed this limitation by ensuring the features

of interest occurring in adulthood are stable across subsamples in the females (present in at least 98%

of subsamples), future work should validate our trajectories with a more balanced sample distribution.

Furthermore, there is an increasing awareness of the importance of both reliability and reproducibility in

developmental neuroimaging analyses.73,74 While we have a large sample size (particularly for develop-

mental MEG studies), reliability is also a key determinant in statistical power, placing an upper bound

on the maximum identifiable effect size and requiring extremely large samples to achieve required effect

sizes.74 The chosen MEG connectivity metric and network thresholding has been identified as having high

test-retest reliability for a set of global graphmeasures that are related to the rich-club organization in com-

parison to other popular techniques.75 Thus, while we have not measured reliability directly in this study,
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this reported reliability coupled with our sample size suggests that the current study has sufficient statistical

power. While high reliability is a requirement for high validity,74,76 establishing the reproducibility of our

results is still necessary. While we attempted to address this issue using our subsampling procedure, future

work should use an independently collected sample to validate our findings, as no such dataset was pub-

licly available at the time of publication.
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Thorn, C.A., Hämäläinen, M.S., Moore, C.I.,
and Jones, S.R. (2016). Neural mechanisms
of transient neocortical beta rhythms:
converging evidence from humans,
computational modeling, monkeys, and
mice. Proc. Natl. Acad. Sci. USA 113, E4885–
E4894. https://doi.org/10.1073/pnas.
1604135113.

25. Fries, P. (2009). Neuronal gamma-band
synchronization as a fundamental process in
cortical computation. Annu. Rev. Neurosci.
32, 209–224. https://doi.org/10.1146/
annurev.neuro.051508.135603.

26. Schmidt, R., Herrojo Ruiz, M., Kilavik, B.E.,
Lundqvist, M., Starr, P.A., and Aron, A.R.
(2019). Beta oscillations in working memory,
executive control of movement and
thought, and sensorimotor function.
J. Neurosci. 39, 8231–8238. https://doi.org/
10.1523/JNEUROSCI.1163-19.2019.

27. Salenius, S., and Hari, R. (2003). Synchronous
cortical oscillatory activity during motor
action. Curr. Opin. Neurobiol. 13, 678–684.
https://doi.org/10.1016/j.conb.2003.10.008.

28. Linn, M.C., and Petersen, A.C. (1985).
Emergence and characterization of sex
differences in spatial ability: a meta-analysis.
Child Dev. 56, 1479–1498.

29. Maeda, Y., and Yoon, S.Y. (2013). A meta-
analysis on gender differences in mental
rotation ability measured by the purdue
spatial visualization tests: visualization of
rotations (PSVT:R). Educ. Psychol. Rev. 25,
69–94. https://doi.org/10.1007/s10648-012-
9215-x.

30. Ingalhalikar, M., Smith, A., Parker, D.,
Satterthwaite, T.D., Elliott, M.A., Ruparel, K.,
Hakonarson, H., Gur, R.E., Gur, R.C., and
Verma, R. (2014). Sex differences in the
structural connectome of the human brain.
Proc. Natl. Acad. Sci. USA 111, 823–828.
https://doi.org/10.1073/pnas.1316909110.

31. Hyde, J.S., and Linn, M.C. (1988). Gender
differences in verbal ability: a meta-analysis.
Psychol. Bull. 104, 53–69. https://doi.org/10.
1037/0033-2909.104.1.53.

32. Hickok, G. (2009). The functional
neuroanatomy of language. Phys. Life Rev.
6, 121–143. https://doi.org/10.1016/j.plrev.
2009.06.001.

33. Satterthwaite, T.D., Shinohara, R.T., Wolf,
D.H., Hopson, R.D., Elliott, M.A., Vandekar,
S.N., Ruparel, K., Calkins, M.E., Roalf, D.R.,
Gennatas, E.D., et al. (2014). Impact of

ll
OPEN ACCESS

10 iScience 26, 106384, April 21, 2023

iScience
Article

https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
https://doi.org/10.1016/j.tics.2013.09.012
https://doi.org/10.1016/j.tics.2013.09.012
https://doi.org/10.1093/cercor/bht064
https://doi.org/10.1093/cercor/bht064
https://doi.org/10.1093/cercor/bhv305
https://doi.org/10.1093/cercor/bhv305
https://doi.org/10.1371/journal.pone.0088297
https://doi.org/10.1371/journal.pone.0088297
https://doi.org/10.1523/jneurosci.3539-11.2011
https://doi.org/10.1523/jneurosci.3539-11.2011
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1073/PNAS.1203593109/SUPPL_FILE/PNAS.201203593SI.PDF
https://doi.org/10.1073/PNAS.1203593109/SUPPL_FILE/PNAS.201203593SI.PDF
https://doi.org/10.1073/PNAS.1203593109/SUPPL_FILE/PNAS.201203593SI.PDF
https://doi.org/10.1016/j.dcn.2018.12.005
https://doi.org/10.1016/j.dcn.2018.12.005
https://doi.org/10.1073/PNAS.2024448118/SUPPL_FILE/PNAS.2024448118.SD02.TXT
https://doi.org/10.1073/PNAS.2024448118/SUPPL_FILE/PNAS.2024448118.SD02.TXT
https://doi.org/10.1073/PNAS.2024448118/SUPPL_FILE/PNAS.2024448118.SD02.TXT
https://doi.org/10.1016/J.TICS.2016.10.005
https://doi.org/10.1016/J.TICS.2016.10.005
https://doi.org/10.1016/j.dcn.2013.11.004
https://doi.org/10.1016/j.dcn.2013.11.004
https://doi.org/10.1093/cercor/bhr269
https://doi.org/10.1093/cercor/bhr269
https://doi.org/10.1093/cercor/bhs227
https://doi.org/10.1093/cercor/bhs227
https://doi.org/10.1371/journal.pone.0055347
https://doi.org/10.1371/journal.pone.0055347
https://doi.org/10.1523/JNEUROSCI.4465-11.2011
https://doi.org/10.1523/JNEUROSCI.4465-11.2011
https://doi.org/10.1016/J.NEUROIMAGE.2014.07.067
https://doi.org/10.1016/J.NEUROIMAGE.2014.07.067
https://doi.org/10.1162/netn_a_00077
https://doi.org/10.1162/netn_a_00077
https://doi.org/10.1038/S41386-018-0111-Z
https://doi.org/10.1038/S41386-018-0111-Z
https://doi.org/10.1002/hbm.24457
https://doi.org/10.1002/hbm.24457
https://doi.org/10.1016/j.neuroimage.2011.02.054
https://doi.org/10.1016/j.neuroimage.2011.02.054
https://doi.org/10.1038/s41467-017-01763-2
https://doi.org/10.1038/s41467-017-01763-2
http://refhub.elsevier.com/S2589-0042(23)00461-3/sref23
http://refhub.elsevier.com/S2589-0042(23)00461-3/sref23
http://refhub.elsevier.com/S2589-0042(23)00461-3/sref23
https://doi.org/10.1073/pnas.1604135113
https://doi.org/10.1073/pnas.1604135113
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1146/annurev.neuro.051508.135603
https://doi.org/10.1523/JNEUROSCI.1163-19.2019
https://doi.org/10.1523/JNEUROSCI.1163-19.2019
https://doi.org/10.1016/j.conb.2003.10.008
http://refhub.elsevier.com/S2589-0042(23)00461-3/sref28
http://refhub.elsevier.com/S2589-0042(23)00461-3/sref28
http://refhub.elsevier.com/S2589-0042(23)00461-3/sref28
http://refhub.elsevier.com/S2589-0042(23)00461-3/sref28
https://doi.org/10.1007/s10648-012-9215-x
https://doi.org/10.1007/s10648-012-9215-x
https://doi.org/10.1073/pnas.1316909110
https://doi.org/10.1037/0033-2909.104.1.53
https://doi.org/10.1037/0033-2909.104.1.53
https://doi.org/10.1016/j.plrev.2009.06.001
https://doi.org/10.1016/j.plrev.2009.06.001


puberty on the evolution of cerebral
perfusion during adolescence. Proc. Natl.
Acad. Sci. USA 111, 8643–8648. https://doi.
org/10.1073/PNAS.1400178111/-/
DCSUPPLEMENTAL/PNAS.
201400178SI.PDF.

34. Bethlehem, R.A.I., Seidlitz, J., White, S.R.,
Vogel, J.W., Anderson, K.M., Adamson, C.,
Adler, S., Alexopoulos, G.S., Anagnostou,
E., Areces-Gonzalez, A., et al. (2022). Brain
charts for the human lifespan. Nature 604,
525–533. https://doi.org/10.1038/S41586-
022-04554-Y.

35. White, J., Tannenbaum, C., Klinge, I.,
Schiebinger, L., and Clayton, J. (2021). The
integration of sex and gender
considerations into biomedical research:
lessons from international funding agencies.
J. Clin. Endocrinol. Metab. 106, 3034–3048.
https://doi.org/10.1210/CLINEM/
DGAB434.

36. Joel, D., and McCarthy, M.M. (2017).
Incorporating sex as a biological variable in
neuropsychiatric research: where are we
now and where should we Be?
Neuropsychopharmacology 42, 379–385.
https://doi.org/10.1038/NPP.2016.79.

37. Cahill, L. (2006). Why sex matters for
neuroscience. Nat. Rev. Neurosci. 7,
477–484. https://doi.org/10.1038/nrn1909.

38. Loke, H., Harley, V., and Lee, J. (2015).
Biological factors underlying sex differences
in neurological disorders. Int. J. Biochem.
Cell Biol. 65, 139–150. https://doi.org/10.
1016/j.biocel.2015.05.024.

39. Pinares-Garcia, P., Stratikopoulos, M.,
Zagato, A., Loke, H., and Lee, J. (2018). Sex:
a significant risk factor for
neurodevelopmental and
neurodegenerative disorders. Brain Sci. 8,
154. https://doi.org/10.3390/
brainsci8080154.

40. Griffa, A., and Van den Heuvel, M.P. (2018).
Rich-club neurocircuitry: function, evolution,
and vulnerability. Dialogues Clin. Neurosci.
20, 121–132.

41. Crossley, N.A., Mechelli, A., Scott, J.,
Carletti, F., Fox, P.T., Mcguire, P., and
Bullmore, E.T. (2014). The hubs of the human
connectome are generally implicated in the
anatomy of brain disorders. Brain 137, 2382–
2395. https://doi.org/10.1093/brain/
awu132.

42. Aleman, A., Kahn, R.S., and Selten, J.-P.
(2003). Sex differences in the risk of
schizophrenia: evidence frommeta-analysis.
Arch. Gen. Psychiatry 60, 565–571. https://
doi.org/10.1001/archpsyc.60.6.565.

43. Onyike, C.U., and Diehl-Schmid, J. (2013).
The epidemiology of frontotemporal
dementia. Int. Rev. Psychiatry 25, 130–137.
https://doi.org/10.3109/09540261.2013.
776523.

44. Mielke, M.M., Vemuri, P., and Rocca, W.A.
(2014). Clinical epidemiology of Alzheimer’s
disease: assessing sex and gender
differences. Clin. Epidemiol. 6, 37–48.
https://doi.org/10.2147/CLEP.S37929.

45. Hammond, C., Bergman, H., and Brown, P.
(2007). Pathological synchronization in
Parkinson’s disease: networks, models and
treatments. Trends Neurosci. 30, 357–364.
https://doi.org/10.1016/j.tins.2007.05.004.

46. Cohen, S., and Janicki-Deverts, D. (2009).
Can we improve our physical health by
altering our social networks? Perspect.
Psychol. Sci. 4, 375–378. https://doi.org/10.
1111/j.1745-6924.2009.01141.x.

47. Kret, M.E., and De Gelder, B. (2012). A
review on sex differences in processing
emotional signals. Neuropsychologia 50,
1211–1221. https://doi.org/10.1016/j.
neuropsychologia.2011.12.022.

48. Herlitz, A., and Lovén, J. (2013). Sex
differences and the own-gender bias in face
recognition: a meta-analytic review. Vis.
cogn. 21, 1306–1336. https://doi.org/10.
1080/13506285.2013.823140.

49. Christov-Moore, L., Simpson, E.A., Coudé,
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Marlee Vandewouw (mvandewouw@hollandbloorview.ca).

Materials availability

There are no newly generated materials to report.

Data and code availability

d Data drawn from the Province of Ontario Neurodevelopmental Disorders network are available through

theOntario Brain Institute’s BRAIN-CODE (https://www.braincode.ca/) in a controlled data release. Data

drawn from the studies supported by Canadian Institutes of Health Research grants will be shared by the

lead contact upon reasonable request.

d Original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs

are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Resting-state MEG data were acquired on 448 unique individuals (178 females, 270 males) between 4–39

years of age for multiple studies at the Hospital for Sick Children between 2011 and 2020: the Province

of Ontario Neurodevelopmental Disorders (POND) network, an Integrated Discovery System co-directed

by E. Anagnostou and J.P. Lerch and funded by the Ontario Brain Institute, and studies supported by Ca-

nadian Institutes of Health Research (CIHR) grants awarded toM.J. Taylor. The POND study is comprised of

children and adolescents who have been diagnosed with neurodevelopmental disorders along side those

who are typically developing; similarly, many of the CIHR grants were for studies of autism spectrum dis-

order. Given that neurodevelopmental disorders are diagnosed in males at a higher rate than females,81

the typically developing controls from both sets of cohorts were recruited to match this imbalance,

which is reflected in the sex distribution of the current retrospective study. The Hospital for Sick Children’s

Research Ethics Board approved all protocols. Due to some individuals participating in several studies,

multiple resting-state acquisitions (e.g., fixation-cross and Inscapes,82,83 see next section) were collected

during the same scanning session on 114 participants (23 female, 91 male) and resting-state data

were acquired longitudinally (>6 months) on 75 participants (24 female, 51 male), resulting in 665

datasets. Full-scale intelligence quotient (FSIQ) was collected on the participants using age-appropriate

scales.84–87 Participants were excluded from the current analyses if there was a history of preterm birth,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw data and participant information Brain-CODE (Ontario Brain Institute) ARK ID 70798/d7qv7rj6b98w66v7m3

Software and algorithms

Custom code This study https://doi.org/10.5281/zenodo.7503841

FieldTrip Oostenveld et al., 201177 Git commit 4c12371

MATLAB MathWorks R2021a

R R Core Team78 Version 4.1.1

lme4 Bates et al., 201579 Version 1.1–27.1

gamm4 Wood et al., 202080 Version 0.2–6
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neurodevelopmental, psychiatric, or neurological disorders, or the presence of contraindications for MEG

and/or MRI. Informed consent was obtained from all participants who were old enough to do so; otherwise,

informed assent was obtained from the child and informed consent was obtained from their guardian.

METHOD DETAILS

MEG acquisition

Resting-state MEG data were acquired on a 151-channel CTF system (CTF-MEG International Services LP,

Coquitlam, Canada; 600Hz sampling rate, 3rd order spatial gradient, 0–150Hz antialiasing recording band-

pass) within a magnetically shielded room. Five-minutes of either fixation-cross or Inscapes82,83 eyes-open

resting-state was obtained for each participant. We have previously shown that differences in MEG connec-

tivity between fixation-cross resting-state and Inscapes are localized to regions in the visual network (which

have not been reported to be involved in the rich-club). In the fixation-cross paradigm, a grey cross was

centered within a grey circle on a black background, which was back-projected onto a screen positioned

�70cm from the participant’s eyes; the participants were instructed to fixate on the cross. In the Inscapes

paradigm, the first five minutes of the naturalistic movie was back-projected onto the screen, accompanied

by the piano score being played over the speakers in the MEG suite. Fiducial coils were used to continu-

ously track head motion during the MEG acquisition.

A T1-weighted MRI image was obtained after replacing the fiducial coils with radio-opaque markers to

allow for the generation of subject-specific head models. The images were acquired on either a 3T

MAGNETOM Siemens (Siemens Healthcare AG, Erlangen, Germany) Trio scanner with a 12-channel

head coil or Prismafit scanner with a 20-channel head and neck coil due to a scanner upgrade (Trio: TR/

TE/TI = 2300/2.96/900ms, FA = 9�, FOV = 240 3 256mm, # slices = 192, resolution = 1mm isotropic,

scan time = 5:03min; Prismafit: TR/TE/TI = 1870/3.14/945ms, FA = 9�, FOV = 240 3 256mm, # slices =

192, resolution = 0.8mm isotropic, scan time = 5:10min).

MEG processing

Data were epoched into 10s segments and preprocessed using the FieldTrip77 MATLAB88 toolbox. Prepro-

cessing consisted of bandpass filtering (1–150Hz, 4th order two-pass Butterworth), notch filtering (60 and

120Hz, discrete Fourier transform), and removal of artefacts from eye movements and cardiac signal.

Epochs with sensor signals exceeding 2000fT or with head motion exceeding 10mm89 from the median

head position were excluded from the data. Participants were required to have at least one minute of

resting-state data remaining, and excess epochs were randomly excluded from some participants to

ensure no main effect of age on the number of trials remaining and no effects of the mean head motion

across the remaining trials.

The linearly constrained minimum variance (LCMV) beamformer90 was used to estimate the timeseries of

the 90 cortical and subcortical regions of the Automated Anatomical Labeling (AAL) atlas91 in source space.

The anatomical MRIs were co-registered to the sensor space MEG data via the fiducials, and a single-shell

subject-specific head model was constructed.92 The anatomical MRIs were nonlinearly normalized to MNI

space, and the MNI coordinates of the AAL centroids were subsequently unwarped into the subject-space

of the head models. The head models were used to compute the lead fields generated by unit current di-

poles in three dimensions at each centroid. Covariancematrices were computed across all selected epochs

within a 1–150Hz broadband window with 5% Tikhonov regularization. The LCMV beamformer constructs

weights for the spatial filters that constrains the filters to pass neural activity from the 90 sources, using the

lead fields, while minimizing activity stemming from other regions, using the covariance matrices.90 The

beamformer is applied to the sensor data, producing timeseries of the cortical activity at each source;

the timeseries are subsequently normalized by the estimated noise to mitigate spatial non-uniformity in

the distribution of noise.

The timeseries for each brain region were mean-centered and filtered into five frequency bands (theta:

4–7Hz, alpha: 8–14Hz, beta: 15–29Hz, low gamma: 30–55Hz, and high gamma: 65–80Hz) using the Hamm-

ing window to design a two-pass finite impulse response filter. The filtered data were corrected for source

leakage using a symmetric orthogonalization technique,93 the amplitude envelopes were computed using

the Hilbert transform. Given that this is the first study examining the development of rich-club organization

using MEG, the resulting timeseries were down-sampled to 1Hz to enable comparison of our results with

the existing fMRI literature.
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Due to the inherent relation between headmotion and the participants ages, a more stringent headmotion

correction procedure was chosen over simply including head motion as a covariate in the statistical ana-

lyses.94 For each sample, the positions of the three fiducial coils were used to extract the displacement

of the coils from its position at the start of the recording. The three displacement measurements were

also used to calculate a measure of ‘‘instantaneous motion’’ by computing the change in displacement be-

tween consecutive samples. Like the amplitude envelope timeseries, the six head motion timeseries were

epoched into 10s segments, down-sampled to 1Hz, and z-scored. These head motion timeseries were re-

gressed from the amplitude envelope timeseries.

A connectivity network was computed for each participant and frequency band using Pearson correlations

between the motion-regressed amplitude envelope timeseries for pairs of brain regions, resulting in a fully

dense network with all edges having nonzero connectivity values. Thresholding fully dense networks has

been shown to increase biological plausibility and eliminate spurious connection weights.95,96 A threshold-

ing technique using orthogonal minimum spanning trees (OMST97) was chosen. Minimal spanning trees

(MSTs) are the subset of a network’s edges that connects all nodes of the network without cycles while mini-

mizing its cost, or the sum of all edge weights. OMST thresholding iteratively identifies and removes MSTs

from the original network, aggregating theMSTs and calculating ameasure of global cost efficiency until its

value is optimized, returning the set of MSTs as the thresholded network. OMST thresholding has been vali-

dated on MEG data97 and shown to produce networks with a biologically plausible amount of sparseness

while sustaining its representativeness.95

Rich-club

The weighted rich-club coefficient measures the presence of rich-club organization in a participant’s

weighted network; that is, it measures whether highly connected nodes are more strongly interconnected

to one another than what would be expected by chance.6 Formally, with degree defined as the number of

connections extending from a node, the weighted rich-club coefficient for degree k (Fw(k)) is calculated by

extracting the subnetwork containing only the nodes having a degree exceeding k; this subnetwork con-

sists of n edges. Then, Fw(k) is calculated by taking the ratio between the sum of the n connection weights

of the subnetwork and the sum of the n largest weights in the original network. For each k, the regions

belonging to the network’s rich-club are defined as the regions whose degree (number of edges extending

from the region) exceeds k. This calculation was performed for participants’ frequency-dependent network

over the range of k. To assess whether a coefficient was greater than what would be expected by chance,

the observed rich-club coefficient was normalized (Fw
norm(k)) by the mean weighted rich-club coefficient of

1000 random networks with the same degree distribution.98–100 A statistical p-value was assigned to each

Fw
norm(k) using the null distribution, and the p-values were corrected over the range of k. Rich-club orga-

nization was deemed to exist if Fw
norm(k) was statistically significant (pcorr<0.05) over a range of k. The area

under the curve of significant rich-club coefficients (area under the rich-club curve, or AURC) was used to

quantify each network’s rich-club organization, with a value of zero indicating no rich-club organization and

increasingly positive values indicating increased rich-club organization. Any brain region whose degree ex-

ceeded the minimum k for which the network demonstrated rich-club organization was said to belong to

the rich-club. Finally, to allow comparison with previous fMRI studies,20 we also computed global efficiency

for each participant.

QUANTIFICATION AND STATISTICAL ANALYSIS

Participant demographics

Linear mixed effects models were used to test for differences in age between males and females across the

entire dataset using the R (version 4.1.178) package lme4 (version 1.1–27.179). Given the relation between

head motion, and thus the number of epochs used in the analysis, and age, linear mixed effects models

were used to test for main effects of age, sex, and age-by-sex interactions on these variables. A linear mixed

effect model was also used to test for main effects of age, sex, and age-by-sex interactions on the rest type

(fixation-cross and Inscapes), modeling the response variable with a binomial distribution.

AURC

First, the effects of age on AURC were examined in each frequency band for males and females using the R

(version 4.1.178) package gamm4 (version 0.2–680). To characterize the developmental trajectories in each

sex, linear and non-linear mixed effects models were fitted; mixed effects designs were chosen to use all
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available data, including the multiple resting-state acquisitions in the same scanning session and the lon-

gitudinal data. Age was modeled as (1) constant, (2) linear, (3) quadratic, and (4) cubic:

ð1Þ Constant : AURC � ð1jSubjectÞ

ð2Þ Linear : AURC � Age+ ð1jSubjectÞ

ð3Þ Quadratic : AURC � Age + Age2 + ð1jSubjectÞ

ð4Þ Cubic : AURC � Age + Age2 +Age3 + ð1jSubjectÞ
Additionally, a general additive mixed model (GAMM;101) was used to model age as a (5) non-parametric

smooth function, which, unlike linear mixed models, requires no a priori assumptions on the specific poly-

nomial form of the data:

ð5Þ GAMM : AURC � sðAgeÞ+ ð1jSubjectÞ
In this model, age is modeled as a smooth term defined by the smooth function s(), which was set to thin

plate penalized smooth spline. For each frequency band, all five models were fit to the AURC data for males

and females, and the quality of the models was compared using the Akaike Information Criteria (AIC), cho-

sen to enable comparison of GAMMs and non-GAMMs. Since AIC values from models fit with the

RestrictedMaximum Likelihood (REML) estimation cannot be compared if the models contain different fac-

tors,102 the models were fit with Maximum Likelihood (ML) estimation for AIC calculation. Furthermore, to

ensure that the likelihood estimation was consistent across the models, all were fit using the gamm4 pack-

age. Once the optimal model was selected for each frequency band for the males and females, REML esti-

mation was used to extract the parameter estimates and statistical details; significance was held at p <0.05.

Note that models were fit independently to both sexes rather than in a single model with interactions to

ease interpretation given the observation that males and females demonstrated different optimal fits in

most frequency bands (see Table 2).

For frequencies showing significant effects of age on AURC, features of interest characteristic of each type

of model were examined in each sex. For linear fits, the feature of interest is the slope – the rate of change of

AURCwith age. For the quadratic fit, the feature of interest is the vertex – the age at which the curve reaches

a maximum or minimum. For the cubic fit, the features of interest are local minimums andmaximums, along

with what is called an ‘‘inflection point’’ – the age at which the curve transitions from concave upward, where

the slope is increasing, to concave downward, where the slope is decreasing (or vice versa). Subsampling

was used to calculate a distribution of each feature of interest for each sex. For each iteration, 63.2% of the

datasets for the males and 63.2% of the datasets for the females were extracted, the optimal model was fit

for each set, and the feature of interest was calculated.103 This was performed for 10,000 iterations, gener-

ating a distribution of the feature for each sex from which the means and 95% confidence intervals could be

determined. Note that the presence of the listed features for GAMMs is dependent on its estimated de-

grees of freedom, and only features that occur within the examined age range (4–39 years) were extracted,

thus not all features may be present in each iteration. Hence, the percentage of iterations for which the

feature is present is reported as a measure of stability along with narrow confidence intervals. A feature

of interest common to both males and females was determined to be significantly different between the

groups if >95% of the iterations showed a difference in the same direction (e.g., 95% of the iterations

showed an increase in the feature in females compared to males, or males compared to females).

Rich-club regions

An identical procedure was employed to investigate how regions belonging to the rich-club changed with

age and sex. Models were fit with the binomial distribution given the binary nature of rich-club member-

ship, and thus the probability of a region being in the rich-club was evaluated across age; p-values were

Bonferroni corrected across brain regions to control for multiple comparisons.
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