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Abstract
In several observational contexts where different raters evaluate a set of items, it 
is common to assume that all raters draw their scores from the same underlying 
distribution. However, a plenty of scientific works have evidenced the relevance 
of individual variability in different type of rating tasks. To address this issue the 
intra-class correlation coefficient (ICC) has been used as a measure of variability 
among raters within the Hierarchical Linear Models approach. A common distri-
butional assumption in this setting is to specify hierarchical effects as independent 
and identically distributed from a normal with the mean parameter fixed to zero and 
unknown variance. The present work aims to overcome this strong assumption in 
the inter-rater agreement estimation by placing a Dirichlet Process Mixture over the 
hierarchical effects’ prior distribution. A new nonparametric index � is proposed to 
quantify raters polarization in presence of group heterogeneity. The model is applied 
on a set of simulated experiments and real world data. Possible future directions are 
discussed.

Keywords  Bayesian nonparametrics · Inter-rater agreement · Dirichlet process 
mixture · Hierarchical Bayesian models

1  Introduction

In several contexts, decision-making relies heavily (or exclusively) on expert rat-
ings, especially in  situations where a direct quantification of quality of an object 
or a subject is either impossible or unavailable. Examples include applicant selec-
tion procedures, grading of student assignments in education, or risk evaluation in 
emergencies, all of which rely on observational ratings made by experts. For ease 
of exposition, throughout this paper we will refer to evaluation of students’ work in 
an educational context as the primary example. To ensure consistency across differ-
ent teachers, harmonization of marking criteria is often used to improve inter-rater 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10260-023-00741-x&domain=pdf
http://orcid.org/0000-0003-1624-2584


	 G. Mignemi et al.

1 3

agreement and homogeneity (Gisev et  al. 2013; Gwet 2008); however, discrepan-
cies between grades assigned by different teachers may still persist (Bygren 2020; 
Barneron et al. 2019; Makransky et al. 2019; Zupanc and Štrumbelj 2018), reflect-
ing each teacher’s approach to evaluation. Therefore, statistical models that can cap-
ture inter-rater agreement (or disagreement) can shed light on heterogeneity between 
teachers and aid the mark moderation process (Bygren 2020; Barneron et al. 2019; 
Crimmins et al. 2016).

The specific context that we are considering in this work is the observational set-
ting where a set of raters are evaluating different sets of items1 out of a total popula-
tion of items; these sets may be completely disjoint (i.e., each item is evaluated by 
exactly one rater). Each item is represented by a set of covariates, assumed to follow 
some distribution. Within a hierarchical statistical model, a common assumption 
is that raters (who may or may not include covariates) may each be characterized 
through a latent variable capturing e.g. whether an evaluator is generous or how they 
assess different aspects of the work. In the simplest setting, in an evaluation context 
where there is no space for subjectivity, these latent variables will be identical for all 
raters, in the sense that their view of the item is identical and as a result their evalu-
ation style is assumed to be the same. However, it is well-known in many scientific 
fields, e.g., cognitive neuroscience (Barneron et  al. 2019; Makransky et  al. 2019; 
Briesch et al. 2014), statistics (Agresti 2015; Gelman et al. 2013) and psychometrics 
(Bartoš et al. 2020; Nelson and Edwards 2015; Hsiao et al. 2011), that individual 
variability in rating tasks (Wirtz 2020) needs to be accounted for when aggregating 
or interpreting individual raters’ recommendations.

Existing works account for heterogeneity between raters through a latent variable 
within a mixed-effects model (Martinková et  al. 2023; Bartoš et  al. 2020; Nelson 
and Edwards 2015, 2008). In other words, a regression model is used where the rat-
ing is modelled conditionally on covariates with a random effect that varies across 
raters. However, the distribution of the latent variable is typically assumed to be uni-
modal, and cannot capture eg. polarisation or clustering of rater types. The present 
work aims to extend these models to account for clustered variability between raters. 
Through a Bayesian approach, a Dirichlet process mixture prior is placed over the 
hierarchical rater effects in a linear model. This flexible prior naturally accommo-
dates different clusters among raters (i.e., different distributions for the rater effects). 
A multiple-level model is specified in which observations (i.e., ratings) are nested 
within raters, and in turn these are nested within clusters. These clusters reflect dis-
tinct groups of raters in terms of their decision-making, and can be used to charac-
terise the level of (dis)agreement. The level of multimodality (i.e., how separated 
the latent group densities are) quantifies the polarization of the latent groups. For 
instance, a large variance between teacher scores might be due to both the presence 
of two main divergent latent trends among them or to a high level of noise in their 
assessing (Koudenburg and Kashima 2022). It is important to differentiate the two 
cases and quantify the group polarization both for theoretical and practical purposes. 
Differentiate systematic differences of opinion against high level of noise might 
be needed (Koudenburg et  al. 2021). They are two very different cases and much 

1  Commonly referred to as subjects in the rating context.
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attention must be paid in distinguishing one another. The former is a case of high 
group polarization (Esteban and Ray 1994): two different teachers clusters emerge 
with a small within-cluster variance and a large variance between different clusters. 
In the second case only one cluster emerge with a large variance. It might be argue 
that in the first case, even that the overall agreement might be quite low since there 
are two main different trends among raters, there might be a high agreement within 
the same trend (Tang et al. 2022). Assuming the latent agreement among raters as 
the degree of latent similarity in rating, an index regarding the polarization of the 
different possible groups of raters might be informative (Koudenburg and Kashima 
2022; Tang et al. 2022; Koudenburg et al. 2021). In this work we introduce a novel 
index to quantify the latent polarization among raters through the posterior distri-
bution of the hierarchical effects (DiMaggio et al. 1996). It naturally derives from 
the nonparametric model and overcomes some strong assumptions (e.g., the number 
of latent groups, the ratings distribution) of the previous indices (Koudenburg et al. 
2021; Esteban and Ray 1994). This nonparametric index, referred to as � index, is 
based on the shape of the posterior distribution of the hierarchical effects. It con-
nects two different research lines: it relates the works on distribution polarization 
of opinions (Koudenburg and Kashima 2022; Tang et al. 2022; Koudenburg et al. 
2021) with those about the inter-rater agreement analysis (Martinková et al. 2023; 
Bartoš et al. 2020; Nelson and Edwards 2015; Gisev et al. 2013; Gwet 2008; Nelson 
and Edwards 2008).

The paper proceeds as follows: Sect.  2 is devoted to the general psychometric 
framework, the key concepts of inter-rater agreement, inter-rater reliability are intro-
duced; the statistical model is specified in Sect. 3 and the adopted Gibbs sampler in 
Sect. 4; the novel rater similarity index is described in Sect. 5; simulation studies 
are reported in Sect. 6, as an illustrative example, a real data analysis is described in 
Sect. 8; it is followed by conclusion and future directions in Sect. 1.

2 � Existing work in inter‑rater agreement and hierarchical effects 
models

Several methods and statistical models that aim to account for inter-rater variability 
have appeared in the literature (Nelson and Edwards 2015; Gwet 2008; Cicchetti 
1976). Models such as the Cultural Consensus Theory (Oravecz et al. 2014), which 
explores individuals’ shared cultural knowledge, have been proposed to capture 
unobserved agreement and similar trends in groups of raters (Dressler et al. 2015). 
Two related but different concepts have been introduced: inter-rater agreement and 
inter-rater reliability. The former refers to the extent to which different raters’ evalu-
ations are concordant (i.e, they assign the same value to the same item), whereas the 
latter refers to the extent to which their evaluations consistently distinguish different 
items (Gisev et  al. 2013). In other words, while the inter-rater agreement indices 
quantify the observed concordance, the inter-rater reliability indices aim to quantify 
the consistency of their evaluations (e.g., despite assigning different values, the dis-
tinction among the items is the same). The present work focuses on latent agreement 
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intended as homogeneity in the evaluators’ point of view (Tang et al. 2022; Esteban 
and Ray 1994).

A number of methods are available to quantify both inter-rater agreement and 
inter-rater reliability. Indices for pairs (Nelson and Edwards 2008; McHugh 2012) or 
multiple raters (Jang et al. 2018), for binary (Gwet 2008), polytomous (Nelson and 
Edwards 2015) or continuous (Liljequist et al. 2019) ratings are commonly used in 
different contexts. Recent developments using the framework of Hierarchical Lin-
ear Models (i.e., HLMs) provide a more accurate estimation of inter-rater reliability 
accounting for different sources of variability (Martinková et al. 2023).

Despite the popularity of work on this issue, less attention has been paid to possi-
ble latent similarities of the raters (Wirtz 2020). From a psychometric point of view, 
it can be appealing to assess the extent to which different raters might be heteroge-
neous in their ratings (Martinková et al. 2023; Bartoš et al. 2020; Koudenburg et al. 
2021; Casabianca et al. 2015; Nelson and Edwards 2015; Gisev et al. 2013; DeCarlo 
2008; Gwet 2008; Nelson and Edwards 2008).

There are certain situations in which the subjective opinion of the raters is very 
informative; as a simple example, the type of teachers’ training or experience can 
be thought of as latent states which affect a range of evaluations differently (Childs 
and Wooten 2023; Barneron et al. 2019; Bonefeld and Dickhäuser 2018; Dee 2005). 
Sometimes the major interest is not on the mere consistency between raters, but on 
their actual evaluation. For instance, in a selection process the actual students’ scores 
are very relevant for their admission (Zupanc and Štrumbelj 2018). Even if a strict 
standardization of teachers evaluation is not feasible, some statistical methods can 
tackle these issues. In all these contexts the assessment of uniformity among raters 
could be useful and would provide further information about the rating process.

To this aim, existing work, e.g. Martinková et  al. (2023); Nelson and Edwards 
(2015); Casabianca et  al. (2015); Hsiao et  al. (2011); Cao et  al. (2010); DeCarlo 
(2008), adopts an hierarchical approach where correlations between ratings are 
naturally captured through an hierarchical Bayesian model. Each rater i = 1,… , I 
is assumed to be rating a different set of items Ji

∈ J  , J
i
∩J

i+1 = �.2 The rating 
yij of the item j ∈ J

i carried out by rater i = 1,… , I , is modelled as follows:

Here xij and zij are, respectively, 1 × p and 1 × q vectors of distinct explanatory vari-
ables of rating yij ; � is a p × 1 vector of non varying effects and ui is a q × 1 vector 
the hierarchical effects of rater i.

In the standard HLM formulation, the following distribution is specified for the 
rater effects:

Where Nq(⋅) stands for a q-variate normal distribution; Here 0 is a q × 1 zero vec-
tor and ��� is a q × q positive semi-definite covariance matrix. For the hierarchical 

(1)yij =x
�
ij
� + z�

ij
ui + �ij, i = 1,… , I, j ∈ Ji.

ui ∼ Nq(0,���), i = 1,… , I.

2  The multiple rating case (i.e., raters rate the same set of items, J
i
= J  , i = 1,… , I ) is addressed in 

Appendix.
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normal linear model �ij ∼ N(0, �2

�
) , with ui and �ij typically assumed independent. 

The distribution of each vector-valued hierarchical effects ui is then assumed to fol-
low some distribution and captures variability across different raters.

In the above mentioned example, yij is the score given to student j ∈ J
i ’s essay 

by teacher i. Since an observational approach is adopted (i.e., each raters rates a dif-
ferent set of items), the effect of the student is not identifiable (each student is rated 
only by one rater). Assuming that students effects are i.i.d., their variance is added 
to that of the residuals. In the univariate case (i.e., when zi = 1 , varying intercept 

model) the relevance of the raters effect ui ∼ N(0, �2
u
) , where 𝜎2

u
> 0 is the variance, 

might be quantified through the intraclass correlation coefficient (i.e., ICC):

It is the ratio between the variance of the raters effect and the total variability of the 
model, i.e., the proportion of variance of the score due to the teacher, which reflects 
the correlation of two ratings given by the same rater. Smaller values of ICC indi-
cate a small effect of the rater on the student’s score.

3 � Dirichlet process mixture and hierarchical effects

The HLM assumption regarding the distribution of the hierarchical effects is cru-
cial in characterising different possible clusters or latent patterns of heterogeneity 
among raters (Dorazio 2009). The common Gaussian assumption for the distribution 
of the these effects may obscure skewness and multimodality present in the data. 
A more flexible specification of the hierarchical effects distribution can help cap-
ture more complex patterns of variability. Models that account for skew-normal (Lin 
and Lee 2008), skew-normal-cauchy (Kahrari et al. 2019), multivariate t (Wang and 
Lin 2014), extreme values (McCulloch and Neuhaus 2021) effects distributions have 
been proposed (Schielzeth et  al. 2020). Nevertheless, they poorly account for the 
possible presence of multimodality in those distributions. In this regard, a mixture 
distribution has been proposed as a potential solution (Heinzl and Tutz 2013; Kyung 
et al. 2011; Kim et al. 2006). Each mode can then correspond to a cluster with a sim-
ilar pattern (e.g., the same deviation from the population mean). Several works have 
explored this issue in the past two decades (Villarroel et al. 2009; Tutz and Oelker 
2017). For instance, Verbeke and Lesaffre (Verbeke and Lesaffre 1996) proposed a 
standard normal mixture distributions for the hierarchical effects. James and Sugar 
(James and Sugar 2003) explored this approach in the context of functional data. De 
la Cruz-Mesía (De la Cruz-Mesia and Marshall 2006) proposed a mixture distribu-
tion for non-linear hierarchical effects in modelling continuous time autoregressive 
errors. A heteroscedastic normal mixture model in the hierarchical effects distribu-
tion was considered in linear (Komárek et al. 2010) and generalized hierarchical lin-
ear (Komárek and Komárková 2013) models. Despite the breadth of specifications 
for the mixture model, in all the aforementioned models, the number of mixture 

ICC =
�
2
u

�2
u
+ �2

�

.
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components needs to be specified. Although this may not be a critical assumption 
in certain contexts, it may be questionable or detrimental in settings with a lack of a 
priori information on the level of multimodality, especially in cases where the char-
acterisation of the multimodality is of direct interest.

When the number of components of the mixture is unknown, a Dirichlet Process 
Mixture (hereafter DPM) for the hierarchical effects is a natural extension (Gill and 
Casella 2009; Navarro et al. 2006; Verbeke and Lesaffre 1996). This nonparamet-
ric extension allows the model to capture an unknown marginal distribution of the 
hierarchical effects through the Dirichlet Process (Antoniak 1974; Ferguson 1973). 
Modeling the hierarchical effect ui as an infinite mixture of some distribution fam-
ily (e.g., Normal) enables the model to account for possible multimodality without 
specifying the number of mixture components. Some existing works adopted this 
nonparametric approach and pose a DPM prior over the hierarchical effects (e.g., 
Heinzl and Tutz (2013); Heinzl et al. (2012); Kyung et al. (2011)).

The HLM of Eq. (1) is then specified in the same way as before through:

The following hierarchical prior distribution is placed over the raters effects:

where �i and Qi are, respectively, the q × 1 a location parameter vector and the 
q × q positive semi-definite covariance matrix for the hierarchical effects ui of rater 
i = 1,… , I . Here �ij ∼ N(0, �2

�
) , i = 1,… , I , j ∈ J

i ; ui and �ij are assumed inde-
pendent as before.

3.1 � DPM as a generative process for the hierarchical effects

Here, DP(�,G0) is a DPM with 𝛼 > 0 precision parameter and base measure G0 . 
These specify the mixing distribution G (Heinzl and Tutz 2013), so that each reali-
zation of G is almost surely a discrete probability measure on the space (Ω,F) 
(Blackwell 1973). Thus, since the DPM is a discrete generative process with non-
zero probability of ties, some of the realizations might be identical to each other 
with probability determined by the precision parameter � . Therefore, specifying this 
hierarchical model on the components location parameters � induces a clustering 
in the hierarchical effects (i.e., the raters) (Kyung et al. 2011); hierarchical effects 
belonging to the same c-th cluster with location parameter �c are then independent 
and identically distributed. In other words, in the context of the HLM, the DPM 
specifies the component-specific location parameter �c , so that each rater has each 
has their own unique hierarchical effects value ui (Heinzl and Tutz 2013).

The DPM is a generative process commonly used in conjunction with a paramet-
ric family of distributions (e.g., Normal, Poisson), and the base measure parameter 

yij =x
�
ij
� + z�

i
ui + �ij, i = 1,… , I, j ∈ Ji.

ui|�i,Qi ∼ Nq(�i,Qi)

�i,Qi|G iid
∼ G

G ∼ DP(�,G0)
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G0 denotes this specified distribution. Thus, for any element An , n = 1,… ,N , of A  , 
a finite measurable partition of Ω,

where Dir(⋅) stands for the Dirichlet distribution, and G0 defines the expectation of 
G3, therefore they have the same support. The parameter � , a multiplicative con-
stant of the vector-valued Dirichlet parameter, determines the probability of a new 
realization of the process to be different of the previous ones (Blackwell and Mac-
Queen 1973). In other words, it governs the probability that the DPM generates a 
new cluster. Formally, the generative property of the DPM is that, for i = 1,… , I , 
with I being for instance the total number of raters:

the probability that the new I-th realization �I of G assumes a different values than 
the previous ones is described by the well known Pólya Urn Model:

with C ∈ ℕ being the number of already observed distinct clusters among the reali-
zations of G (i.e., the number of the different values of � already observed, in other 
words the number of clusters) and rc counts the elements in the c-th cluster. Basi-
cally, since G is a discrete probability measure, the C clusters represent different 
point masses (or different sets of point masses in the multivariate case) and rc is the 
frequency of each of them. Considering the conditional distribution of �I as a mix-
ture distribution, the probability that �I is a new point mass sampled from G0 is pro-
portional to � , the probability that it is equal to the already observed c-th point mass 
is proportional to rc . In this notation, the role of � in sampling a new (not already 
observed) value of �I (i.e., a new point mass, a new cluster) is interpretable.

To this regard, Sethuraman (1994) described a stick-breaking construction of the 
DP.4 In this formulation G is equivalent to:

where � is the Dirac measure on �c and �c

iid
∼G0 is assumed. The weights {�c}∞c=1 of 

the infinite mixture result from the stick-breaking procedure as follows:

(G(A1),G(A2),… ,G(AN)) ∼ Dir(�G0(A1), �G0(A2),… , �G0(AN))

G ∼ DP(�,G0), �i|G ∼ G

�I|�1,�2,… ,�I−1, � ∼
�

� + I − 1
G0 +

1

� + I − 1

C∑
c=1

rc

G =

∞∑
c=1

�c��c

3  Considering the partition (A,Ac) of Ω and thus that G(A) ∼ Be(�G0(A), �G0(A
c)) the expectation of 

G(A) is defined as: �[G(A)] = �G0(A)

�G0(A)+�G0(A
c)
=

�G0(A)

�(G0(A)+G0(A
c))

= G0(A).

4  Other stick-breaking representations might be used, e.g., Rigon and Durante (2021); Stefanucci and 
Canale (2021); Rodriguez and Dunson (2011).
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with Be(⋅) indicating the Beta distribution and {�c}∞c=1 being reparameterized 
weights. It is even more explicit in this construction that the random measure G is 
a mixture of point masses. The distribution of the random weights � (i.e., the prob-
ability of different allocation to the clusters) is governed through the stick-breaking 
process by the precision parameter � . Further details are given in the Appendix.

In practice, one of the established approximations to the stick-breaking process is 
to truncate the infinite number of components to a large, finite value:

for large enough value of R (Tutz and Oelker 2017; Gelman et al. 2013).
In summary, the hierarchical effects distribution considering a stick breaking con-

struction of the DPM might be then specified as follow:

With this nonparametric model specification, latent common tendencies among 
raters might emerge through the components of the model (Heinzl and Tutz 2013; 
Heinzl et al. 2012; Kyung et al. 2011). The Bayesian approach allows us to charac-
terize the shape of the distribution of the rater effects, as well as explore the effect of 
uncertainty on these (Gelman et al. 2013). For example, in an applied context, strict 
vs. accommodating are very common latent states that drive students’ essays grad-
ing process (Zupanc and Štrumbelj 2018; Briesch et al. 2014; Dee 2005).

4 � Prior distributions and estimation procedure

The DPM mixture model has been well studied in the literature in a variety of differ-
ent settings, especially within Bayesian inference (Canale and Prünster 2017; Müller 
et  al. 2015). Several sampling schemes have been proposed both in the Bayesian 
context (e.g., Canale and Dunson (2011); Dahlin et al. (2016); Kyung et al. (2011)) 
and in the frequentist one (e.g., Tutz and Oelker (2017)). Within the Bayesian frame-
work, Gibbs sampling (Dahlin et al. 2016), slice sampler (Kyung et al. 2011; Walker 
2007), Sequential Monte Carlo algorithms (Ulker et  al. 2010), split-merge algo-
rithms (Bouchard-Côté et al. 2017), have been proposed among others.

𝜋c = 𝜈c

∏
l<c

(1 − vl)

vc
iid
∼ Be(1, 𝛼)

G =

R∑
c=1

�c��c

ui|�,Q,
iid
∼

R∑
c=1

𝜋cNq(�c,Qc), i = 1,… , I

�c,Qc

iid
∼G0

𝜋c = 𝜈c

∏
l<c

(1 − vl), where

vc
iid
∼ Be(1, 𝛼), c = 1… ,R
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In this work, the model specification permits the use of conjugate priors, so that 
a blocked Gibbs sampling can be used (Heinzl and Tutz 2013; Heinzl et al. 2012; 
Kyung et al. 2011)., with details shown below.

4.1 � Prior specification

Several of the parameters in the model have conjugate prior distributions which 
allow easier computation.

•	 For the effects � the following hierarchical prior is assigned: 

 for m = 1,… , p , where p is the number of covariates associated to the effects 
� . Here, IG(⋅) stands for inverse-gamma with shape parameters a

𝛽0
> 0 and rate 

parameters b
𝛽0
> 0 . Where b0 and S0 are, respectively, the p × 1 vector of loca-

tion parameters and the p × p positive semi-definite covariance matrix of b
�
 (i.e, 

the location parameter vector of the non varying effect � ); b
�
 and S

�
 are, respec-

tively, the p × 1 location parameter and the p × p positive semi-definite covari-
ance matrix for � (i.e., the non varying effect). The set {b0, S0, a�0 , b�0} of the 
hyperparameters are specified by the user. A diagonal matrix is suggested for S0 
as showed by Heinzl et al. (2012).

•	 A diagonal structure for the q × q prior covariance matrix Qr for the hierarchical 
effects is specified as follows for each mixture component r = 1,… ,R and each 
each related covariate d = 1,… , q : 

 For the base measure G0
5 and the precision parameter � of the DP mixture model 

the following priors are specified: 

�|b
�
,B

�
∼ Np(b� ,B�

)

b
�
∼ Np(b0, S0)

B
�
= diag(�2

�1
,… , �2

�p
)

�
2
�m

iid
∼ IG(a

�0
, b

�0
)

Qr =diag(�
2
Q1r

,… , �2
Qqr

)

G0 =Nq(�0,D0) × IG(aQ0
, bQ0

)q

�0 ∼Nq(m0,W0)

D0 =diag(�
2
D01

,… , �2
D0q

)

�
2
D0d

∼IG(aD0
, bD0

)

� ∼Ga(c�
0
,C�

0
)

5  Assuming independence between the location and the scale parameters of each mixture component, 
and between all the scale parameters for each covariate d = 1,… , q , G0 is then the product of the q-vari-
ate normal and the q inverse gamma distributions.
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 for d = 1,… , q , where q is the number of covariates associated to the hierar-
chical effects ui , and for aD0

, aQ0
> 0 and bQ0

, bD0
> 0 . Here Ga(⋅) stands for 

Gamma distribution with c𝛼
0
> 0 and C𝛼

0
> 0 respectively the shape and the rate 

parameters. Where m0 and W0 are, respectively, the q × 1 location parameter 
vector and the q × q positive semi-definite covariance matrix of �0 (i.e. the loca-
tion parameter of the base measure G0 ); �0 and D0 are, respectively, the q × 1 
location parameter vector and the q × q positive semi-definite covariance matrix 
of the base measure G0 . The set {aQ0

, bQ0
,m0,W0, aD0

, bD0
, c�

0
,C�

0
} of the hyper-

parameters need to be fixed. A diagonal structure is suggested for W0 as above.
•	 The following prior is assigned to the noise variance: 

 with a
𝜀
> 0 and b

𝜀
> 0 hyperparameters fixed by the user as well.

4.2 � Posterior sampling

Since most of the parameters in the model have conjugate prior distributions, a 
blocked Gibbs sampling algorithm was used for the posterior sampling (Ishwaran 
and James 2001).

The parameter vector for the model is � = {�, b
�
,B

�
,�0,D0,Q, �

�
, �,�, c} 

which is updated at each state of the Markov chain of the Gibbs sampling. Here 
c = (c1,… , cI) is the allocation parameter of the raters to the clusters and. Further 
details on the following sampling are given in the Appendix. The closed-form poste-
riors are as follows. 

1.	 Update parameters referring to effects � : 

 For each covariate m = 1,… , p associated with a non varying effect �m , 

2.	 Update parameters referring to hierarchical effects:

•	 For each rater i = 1,… , I : 

 where �ci
 is the location parameter vector of the cluster where the i-th rater is 

allocated.

�
�
∼Ga(a

�
, b

�
)

�|b
�
,B

�
, u, �

�
, y ∼Np(b

∗
�
,B∗

�
)

b
�m
��2

�m
, �m ∼N

⎛
⎜⎜⎝

�
1

�
2
�m
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•	 For each component r = 1,… ,R of the truncated mixture: - If ∄i ∶ ci = r 
(if no rater are currently allocated into cluster r), for each covariate 
d = 1,… , q associated to an hierarchical effect (independently): 

 - If ∃i ∶ ci = r (if at least one rater assigned to component r), for each covari-
ate d = 1,… , q associated to an hierarchical effect (independently): 

 Essentially, at each iteration t, if the r-th cluster is empty the component 
location parameters �r are sampled from the prior as suggested by (Gelman 
et al. 2013), otherwise they are drawn from the above mentioned closed-form 
posterior.

•	 Each rater i = 1,… , I is re-allocated into a cluster: 

 where Cat(⋅) stands for Categorical distribution, and �∗
i
 is reported in the 

Appendix. A truncated approximation for the DPM mixture model was used 
(Gelman et  al. 2013; Heinzl et  al. 2012) for a large value of R. The stick-
breaking construction was used to generate the mixture weights �1∶R.

•	 For each component r = 1,… ,R − 1 : 

 and vR = 1 for the last cluster. Here cr is the number of raters assigned to the 
cluster r, and rl is the number of raters assigned to the cluster l.

•	 The precision parameter is updated as follows: 

•	 For each covariate d = 1,… , q associated with an hierarchical effect the 
base measure parameters are updated: 
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 where �d is the mean of the location parameters related to the d-th covariate 
over all the clusters. 

3.	 Update the error variance: 

 Here |J| is the cardinality of the set of all the rated items J  , it equals the num-
ber of observations.

5 � The nonparametric � index

The marginal posterior distribution of the hierarchical effects in the model outlined 
above captures information about the polarization or disagreement among raters (on 
the assumption that the model captures the data adequately). The ICC (i.e., intra-
class correlation coefficient, (Martinková et  al. 2023; Bartoš et  al. 2020; Agresti 
2015; Gelman et  al. 2013)) might adequately quantify inter-rater variability if the 
normal distributional assumption of the rater hierarchical effect holds. Two assump-
tions are made computing the standard ICC considering a normal distributed hierar-
chical effect. Firstly, that the raters are sampled from the same population. Secondly, 
that possible different latent trends among raters are not interesting or eventually 
regarded as disagreement ratings. This might be a good first approximation of the 
rating process. Nevertheless, when more detailed considerations are needed, or sub-
tle heterogeneity among raters is expected, the standard ICC might be less informa-
tive and inaccurate. Besides the latter issue, further information about the shape of 
the posterior might be quantified. For instance, in presence of a bimodal hierarchi-
cal effects distribution with two very distant modes (for example, when opinions 
are polarised), considering the posterior distribution of �u as an index of variability 
among raters might be misleading.

Several indexes have been proposed to quantify group opinion polarization (e.g., 
(Tang et al. 2022; Koudenburg and Kashima 2022; Koudenburg et al. 2021; Esteban 
and Ray 1994)) and to measure distribution bimodality (e.g., the Ashman’s D (Forch-
heimer et al. 2015) or the bimodal separation index (Zhang et al. 2003)). The strong 
assumptions behind their use limit them to be valid options only in the parametric con-
text or when the number of clusters is known. A model based nonparametric index is 
here proposed to overcome these limitations.

To this end the full estimated distribution of u resulting from the model might be 
useful. At each iteration t, the density of u is given by the corresponding mixture model 
given the parameters at iteration t. Following the formulation of (Gelman et al. 2013), 
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the set of modes and antimodes (i.e., the lowest frequent value between two modes) is 
identified. When the distribution of u is multimodal, the latent polarization (disagree-
ment) � is then defined as the log ratio between the mean density of the modes and the 
that of the anti-modes, it is zero when it is unimodal:

Where M is the number of modes �m , m = 1,… ,M and the number of antimodes 
�m , m = 1,… ,M − 1 of the density of u ; fu(⋅) denotes the density at a specific point. 
Larger values of � indicate strongly multimodal distribution of the hierarchical 
effects, whereas smaller values are evidence of weak multimodality, thus the esti-
mated hierarchical effects are less concentrated.

As it is shown in Fig.  1 larger values of � indicate distribution polarization, 
whereas smaller values indicate a less concentrated and more spread density dis-
tribution. The � index is strongly affected by both location and scale parameters of 
the mixture components. For this reason it might be very informative in presence of 
multimodal distributions. Assuming such a raters’ group polarization as a result of 
low latent agreement among raters, the � index might be a useful diagnostic tool.

6 � Simulation studies

The following simulations aim to evidence how the values of � varying across dif-
ferent polarization settings. The first simulation investigates the role of the precision 
parameter � and the variance of the mixture components in determining the values 
of � . The second one shows the complementary role of � in the inter-rater agreement 
analysis and how this index varies across different settings.

6.1 � Simulation 1: DPM and �

6.1.1 � Simulation setting

The first simulation study explores the role that the precision parameter of the Dir-
ichlet Process and the variance of the components have in determining the values of 
the log-density index � . For simplicity purpose the mixture components are assumed 
to have the same variance Q in this simulation, so the component subscription will 
be omitted. The objective is to study the effect of � and Q, on � conditional on all 
the other variables. Since the former has a crucial role in the determination on the 
point masses of G, and thus the concentration of its realizations, an inverse relation 
between � and � is expected if Q is fixed. Likewise, an inverse relation between Q 
and � is expected if � is fixed. It is interpretable as an index of the sharpness of the 
modes. For this reason both the precision parameter of the DPM and the variance 
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of its components are expected to have an effect on � . Controlling for Q (i.e., keep-
ing it fixed), the expected relation is: the smaller � , i.e. the precision of the DPM 
mixture, the larger � , i.e. the relative density around the modes; controlling for � 
(i.e., keeping it fixed), the expected relation is: the smaller Q, i.e. the variance of 
the components of the DPM, the larger � . The parameters of the base measures G0 
have a non-negligible role in determining � , so in this section focus is devoted to the 
relation between the precision parameter � , the mixture components variance Q and 
the index � . Indeed, in all the study simulations the values of the other parameters 
involved in the DPM have been kept fixed across the scenarios.

Data generating process
The experimental design is as follows. For 4 different values of � = (0.1, 1, 5, 20) 

and 2 different values of Q = (0.1, 1.5) a set of independent observations u = 1,… , n 
are drawn from the following DPM:

Fig. 1   Different values of � indicate different polarization levels. Three different values of � were com-
puted for three different mixture distributions, respectively. The realizations of these distribution are 
here referred to as u. Black dotted lines indicate the mean mode density, red dotted lines indicate the 
mean antimode density. a High polarization: the mixture components are highly and clearly separate, 
the mean density values of the modes is far larger then the mean density value of the antimodes; the log-
density ratio between these two quantities is � = 2.55 . b Medium polarization: the mixture components 
are clearly separated, but the mean density values of the modes is closer to the mean density value of 
the antimodes; the log-density ratio between these two quantities is � = 0.81 . c Low polarization: the 
mixture components are not clearly separated, the mean density values of the modes is very close to the 
mean density value of the antimodes; the log-density ratio between these two quantities is � = 0.19 . d No 
polarization: the mixture distribution has only one mode (i.e., �1 ) and � = 0 since the number of mode is 
not greater then one
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Where �c and �c are the location parameter and the mixing proportion of the com-
ponent c, respectively; G0 is the base measure; and �c is the parameter of the stick-
breaking. Following the above mentioned truncated stick-breaking construction, 
here R is the maximum number of observable cluster. Across the eighth scenarios 
the following quantities are assigned: the number of observations n = 500 , the maxi-
mum number of clusters R = 50 , the base measure G0 ∶ U(−6, 6) . Here, U(⋅) stands 
for uniform distribution. The use of these distributions in the present experimental 
context aims to highlight the effect of different values of � and Q on � in a more evi-
dent and interpretable manner.

6.1.2 � Results

As shown in Tables 1 and 2 as � increases, and so the number of point masses of G 
increases as well, � decreases. The density of the observations u = 1,… , n is con-
centrated around few point masses (few modes) for lower value of � and is spread 
out the larger. Note also the change of density of the antimodes. As expected, it is 
proportional to the precision parameter in a positive fashion. As the observations 
are more spread as � increases, there are fewer intervals in the support with relative 
small density: � index decreases at larger values of � (column-wise Tables  1 and 
2). A similar proportional relation is observed between the variance of the mixture 
components Q and � when � is kept fixed (row-wise Tables 1 and 2). Smaller values 
of both � and Q result in a high polarized distribution of u = 1,… , n and correspond 
to larger values of � . Whereas larger values of both � and Q result in a low polarized 
distribution and correspond to smaller values of � . It is is an index of how spread the 
density is over the support of the hierarchical effects.

From an interpretative point of view, � indicates the degree of overlap between 
the infinitely many clusters. It might be informative of the separation between them. 
Since this quantification is based on a non-parametric density, � is not directly 
related to the number of the group, or to the cluster location. It indicates the degree 
to which the independent observations drawn from a DPM overlap; the variance of 
the cluster Q also plays a crucial role. The index thus quantifies the combined effect 
of the parameters to assess the extent to which possible different opinions (i.e., the 
modes) might be strongly shared among the raters (i.e., the modes are sharp pick of 
density). To this regard, � is a polarization index in presence of heterogeneity. The 
higher the polarization levels, the larger the values of the index. The practical inter-
pretation and the operational decisions must be guided by the field of application.

ui|𝜇c,Q,
iid
∼

R∑
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𝜋cN(𝜇c,Q), i = 1,… , n

𝜇c
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6.2 � Simulation 2: inter‑rater agreement and �

6.2.1 � Simulation setting

The following simulation study aims to highlight the complementary role of � as an 
additional summary metric in inter-rater agreement analysis. The varying intercept 
parametrization is hereafter adopted as univariate case for the raters effects. To this 
aim the standard modelling approach (i.e., the normal distributed varying intercept 
and the resulting ICC) is compared with the nonparametric proposed above (i.e., the 
DPM prior over the varying intercept and � ). The experiment evaluates the perfor-
mance of both standard ICC and � in the presence of heterogeneity between raters’ 
evaluations due to a multimodal distribution of the hierarchical effects.

Data generating process
Three experimental scenarios were planned, in which a different clustering on the 

raters’ intercept parameter was specified in the generative model. In each scenario 
the rater’s intercept ui was generated from a bimodal Gaussian mixture. The location 
parameters of the mixture components were fixed across the scenarios, �1 = −3 and 
�2 = 3 ; whereas decreasing values (1,  0.5,  0.1) were assigned to the components 
scale parameters Q1 and Q2 (see Table  3). This resulted in different polarization 
scenarios. The mixture components were kept equiprobable ( �c = 0.5 ), c ∈ {1, 2} 
throughout. The number of raters I = 100 and the number of items J = 250 were 
fixed across the scenarios. One continuous covariate xij with an effect � = 2 was 
used and it was the same across the scenarios.

Standard model approach
The following priors were specified for the standard hierarchical effect model 

(i.e., the varying intercepts are assumed to be i.i.d. normal distributed):

for i = 1,… , I ; Exp(⋅) stands fro the exponential distribution and � is the non-hierar-
chical effect, �u and �

�
 are the hierarchical effect and the noise variances parameters, 

respectively. A logic of complexity penalization was used in the choice of the above 
mentioned priors distributions (Simpson et al. 2017). The posterior of each standard 
hierarchical effect model were sampled using NUTS-Hamiltonian MCMC in Stan 
language (Stan Development Team 2022).

Nonparametric model approach
The set of priors introduce in Sect. 4 were elicited for the DPM models with the fol-

lowing hyperparameters as suggested by (Heinzl et al. 2012): b0 = 0, S0 = 1000Ip , 
a
�0
= 0.005, b

�0
= 0.005,m0 = 0 , W0 = 100Iq, aD0

= 0.5, bD0
= 0.5 , aQ0

= 0.001,

bQ0
= 0.001, a

�
= 2, b

�
= 2, a

�
= 0.005, b

�
= 0.005 . As result of some prelimi-

nary analysis, a dense grid of 481 equally-spaced values from − 12 to 12 (i.e., 
with a fixed interval of 0.05) was used to monitoring the mixture density of the 

� ∼ N(0, 5),

�
�
∼ Exp(0.2),

�u ∼ Exp(0.2),

ui
iid
∼ N(0, �u),
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nonparametric varying intercept ui at each iteration. The posterior distribution of 
the nonparametric hierarchical effect is obtained as the set of the mean density of 
each point of the grid over the iterations (Gelman et al. 201320132013).

Table 1   The eight scenarios correspond to a DPM with different values of the precision parameter � and 
the components variance Q. Each scenario correspond to a specific combination of these two parameters. 
All the other quantities are fixed across the scenarios. The realizations of the DPM are here indicated 
as u = 1,… , n . Different combinations of � and Q result in different values of � . For fixed values of Q 
(column-wise), a proportional relation is shown between � and � : when the first increases, the second 
decreased. Similarly, for fixed values of � (row-wise), a proportional relation is shown between Q and � : 
when the first increases, the second decreased. Smaller values of both � and Q result in a high polarized 
distribution of u = 1,… , n and correspond to larger values of � . Whereas larger values of both � and Q 
result in a low polarized distribution and correspond to smaller values of �
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In all the computations for both the models 55,000 iteration with 5000 burn-in 
were used, the Markov chains were thinned the by a factor of 50, resulting in sam-
ples of size 1000 (Heinzl et al. 2012).

6.2.2 � Results

As shown in Table 4 the standard model (i.e., that in which hierarchical raters inter-
cepts are assumed to be i.i.d. normally distributed) due to the rigid distributional 
assumption of the hierarchical parameters is not able to capture the possible multi-
modal distribution and it resulted in a large value of the hierarchical effect variance 
�u (see Table 4 and Fig. 2). As a result, the ICC didn’t capture almost any difference 
among the three different scenarios (see Table 4 and Fig. 3). On the contrary, the 
DPM model, due to the flexible nonparametric specification of the intercepts prior, 

Table 2   Parameters values at 
each scenarios. Each of them 
correspond to a DPM with 
different values of the precision 
parameter � and the components 
variance Q. Both � and Q have 
an effect on the distribution 
polarization of the realizations 
of the DPM. As a result different 
values of � are observed

     �          Q          �     

Scenario 1 0.1 0.1 27.95
Scenario 2 0.1 1.5 2.97
Scenario 3 1 0.1 4.28
Scenario 4 1 1.5 1.9
Scenario 5 5 0.1 2.75
Scenario 6 5 1.5 1.69
Scenario 7 20 0.1 1.73
Scenario 8 20 1.5 0.49

Table 3   True raters’ hierarchical effects distribution across different scenarios. A Gaussian mixture is 
specified as distribution of the hierarchical effects ui = 1,… , I . The location parameters of two com-
ponents of the mixture are kept fixed across the scenarios and decreasing values were assigned to the 
respective scale parameters

Scenario 1 ui
iid
∼ 0.5 ⋅ N(−3, 1) + 0.5 ⋅ N(3, 1)

Scenario 2 ui
iid
∼ 0.5 ⋅ N(−3, 0.5) + 0.5 ⋅ N(3, 0.5)

Scenario 3 ui
iid
∼ 0.5 ⋅ N(−3, 0.1) + 0.5 ⋅ N(3, 0.1)

Table 4   95% HPD intervals of the hierarchical effects variance �u from the standard models (i.i.d. nor-
mal distributed varying intercepts) and of the Grid density of the hierarchical effect in DPM models

�u Grid density

Scenario 1 (2.80, 3.75) (−4.60,−1.60) ∪ (1.40, 4.60)

Scenario 2 (2.65, 3.55) (−3.95,−1.85) ∪ (1.75, 4.35)

Scenario 3 (2.57, 3.46) (−3.70,−2.30) ∪ (2.30, 3.60)
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Table 5   95% HPD intervals 
of the ICC from the standard 
models (i.i.d. normal distributed 
varying intercepts) and of � 
from the DPM models

ICC �

Scenario 1 (0.952, 0.973) (1.22, 6.33)
Scenario 2 (0.948, 0.970) (1.14, 10.69)
Scenario 3 (0.945, 0.969) (0.05, 31.94)

Table 6   95% crebible intervals of � , DPM and residuals related parameters. Here � is the non varying 
effect, b

�
 and �

�
 are, respectively, the related location and scale hyperparameters; �0 and �D0

 are the loca-
tion and scale parameters of the base measure G0 , respectively. The precision parameter � and the residu-
als standard deviation �

�
 are also reported

Scenario 1 Scenario 2 Scenario 3

� (1.87, 2.12) (1.87, 2.13) (1.87, 2.12)
b
�

(−7.15, 11.03) (−7.26, 10.58) (−7.44, 10.97)

�
�

(0.11, 91.40) (0.11, 88.28) (0.10, 87.69)
�0 (−0.16, 1.16) (0.12, 1.33) (−0.49, 0.70)

�D0
(6.63, 12.63) (6.09, 11.30) (6.52, 11.68)

�
�

(0.43, 0.46) (0.42, 046) (0.42, 0.46)
� (8.05, 18.06) (8.15, 18.09) (8.12, 18.03)

Fig. 2   95% HPD intervals of �u from the standard models (i.i.d. normal distributed varying intercepts): 
a Scenario 1: lower polarization. b Scenario 2: medium polarization. c Scenario 3: higher polarization. 
Scenario 3: higher polarization. These models, due to their rigid distributional assumption, poorly differ-
entiate the three different polarization scenarios
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showed a good performance. As evident from Fig. 4 and Table 4 the DPM model 
was far more able to reproduce the data generating process. The different mixture 

Fig. 3   95% HPD intervals of ICC from the the standard models (i.i.d. normal distributed varying inter-
cepts): a Scenario 1: lower polarization. b Scenario 2: medium polarization. c Scenario 3: higher polari-
zation

Fig. 4   95% HPD intervals of the hierarchical effect from the DPM. The different mixture used to gener-
ate the data emerged clearly from the posterior of the grid adopted to monitoring u . a Scenario 1. b Sce-
nario 2. c Scenario 3
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used to generate the data emerged clearly from the posterior of the grid adopted to 
monitoring u (Fig. 4). Since the DPM model properly learn the multi-modalities of 
the raters intercepts density, the index � , being based on the ratio between the mean 
density of the modes and that of the antimodes present in the grid at each iteration, 
showed to be able to differentiate the three different polarization scenarios. It gives 
some interesting information regarding the shape of the non-parametric mixture dis-
tribution. The 95% credible interval of � (see Table 5 and Fig. 5) as estimated in the 
three different scenarios highlighted different degrees of amplitude and separation 
(i.e., different degrees of polarization) along them. The index � is computed as a log-
arithm of the ratio of the average mode density against the density of the antimodes 
at each iteration t of the posterior sampler. So, in the first scenario, the values of the 
95% credible interval are smaller, indicating that in most of the iterations the dif-
ference between the mean density at the modes and that of the antimodes was very 
small. In terms of the third scenario, � assumed rather larger values along the itera-
tions as evidence that the mode density is far larger than that of the antimodes. In 
other words, the rater clusters were separated and clearly distinct. The parameters of 

Fig. 5   Posterior distribution of � : a Scenario 1: lower polarization. b Scenario 2: medium polarization. c 
Scenario 3: higher polarization. The black dotted lines stands for 95% credible intervals

Table 7   95% HPD intervals 
of the other parameters of the 
standard models (i.i.d. normal 
distributed varying intercepts)

Scenario 1 Scenario 2 Scenario 3

� (1.99, 2.00) (1.98, 2.01) (1.99, 2.01)
�
�

(0.60, 0.64) (0.62, 0.63) (0.62, 0.63)
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the DPM are the most influential with regard to � . Specifically, the location param-
eters �c , c = 1,… ,R , and the scale parameters Qc , c = 1,… ,R , showed to have a 
combined effect of the proposed index. The 95% HDP intervals of the parameters 
of both the DPM prior model and that with normal distributional assumption are 
reported in Tables 6 and 7, respectively.

7 � Large scale performance assessment

The evaluation heterogeneity of teachers is a long-standing issue in psychometrics 
(Uto 2022; Shirazi 2019; Bonefeld and Dickhäuser 2018; Casabianca et  al. 2015; 
DeCarlo 2008). Highly biased scored might have a detrimental effect on students 
proficiency and education (Chin et al. 2020; Paredes 2014; Cooper 2003). The pro-
posed nonparametric model and the index � might be valuable tools to address this 
issue. They might help to shed light on very biased assessment contexts and to pro-
vide fairer scores. The estimated hierarchical effect of each teacher (which may be 
interpreted as the teacher’s bias) might be used to adjust the observed score. The 
index � might quantify teachers polarization in their grading.

The Matura data set
As an illustrative real data application, a large scale performance assessment data 

set was analysed (Zupanc and Štrumbelj 2018). The DPM-model was applied to a 
large-scale essay assessment data obtained during the nation-wide external exami-
nation conducted by the National Examination Centre in upper secondary schools 
in Slovenia also known as Matura and analyzed in Zupanc and Štrumbelj (2018). 
These data were related to the spring term argumentative essays for years between 
2010 and 2014. Particular attention is devoted to the distinction between two main 
aspects of essay writing: the language correctness (i.e., the presence of grammatical 
or syntactic errors) and the the good argumentation of the content (i.e., a good and 
clear presentation of all the arguments). Regarding the data structure, students are 
nested within the teachers. So that each student’s essay is evaluated by one trained 
teacher, who is asked to grade it concerning two different rubrics. An essay can 
receive a score between 0 and 20 for the language-related rubric and between 0 and 
30 for the content-related one. Prior analysis of these data (Zupanc and Štrumbelj 
2018) revealed that heterogeneity among teachers was broadly down to two types: 
strict and lenient. The two different trends might be captured by the model and their 
polarization quantified by the � index.

For this reason N=2616 students’ essays, each scored by one of I=18 different 
teachers, were considered for the analysis.6 The objective of this application is to 
analyze teachers’ individual differences in scoring the essay content, controlling for 
its language correctness. How lenient or strict they are in scoring the quality of an 
essay content, without the effect of the language correctness. The content score is 
commonly ways more susceptible to idiosyncrasies or biases of the teacher than the 
language-related score, which is generally more objective (Childs and Wooten 2023; 
Zhu et al. 2021; Shirazi 2019). Accordingly, the content-related score was specified 

6  For illustrative purposes, only the variables related to the first teachers were considered.



1 3

Mixture polarization in inter‑rater agreement analysis:…

as outcome variable and the language-related score as covariate with a non varying 
effect. A DPM hierarchical prior was specified over the teachers’ intercepts. All the 
scores were re-scaled for this analysis to get a easier parameters value interpretation7 
(Gelman et al. 2013).

7.1 � Results

The language-related score showed a posterior mean effect of 0.27 on the content-
related score, with a (0.16, 0.38) 95% credible interval. The language correctness 
of the essay writing had moderate role in predicting the evaluation of the its con-
tent. As shown by Fig. 6a the DPM-model learned the presence of two main trends 
from the data. The bimodal non-parametric distribution over the grid suggested that 
the teachers were rather heterogeneous in the essay scoring process. More precisely, 
they seemed to be slightly polarized around two main tendencies. Some teacher 
showed a slightly more lenient or stricter than the others (i.e., who had a larger or 
smaller hierarchical effect posterior mean, respectively), see Fig.  6. The � index 
showed a posterior mean of 1.87 which suggested a low polarization. The � 95% 

Fig. 6   a 95% HPD of the monitoring grid for the teachers’ hierarchical effects u = 1,… , I . b Posterior 
mean of the hierarchical effect of each teacher. Two different clusters emerged from the analysis, as 
expected: the more lenient (to the right-hand side) and the stricter (to the left-hand side). c � ’ 95% cred-
ible intervals. It indicate a moderate polarized posterior distribution of the posterior hierarchical effects

7  The following transformation was applied to standardize the score: f (x) = x−x

𝜎x

 , where x = 1

N

∑N

n=1
xn 

was the sample mean and 𝜎x =
�

1

N

∑N−1

n=1
(xn − x)2 the sample standard deviation.
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HPD interval was (0.0, 6.83) which indicated a non negligible occurrence of quite 
high values of � . All the other parameters credible intervals are reported in Table 8

Assuming this latent group polarization as a low latent agreement among raters, 
the � index might be used in a diagnostic manner. Considering the present appli-
cation, some solutions might be suggested for a fairer assessment process. Firstly, 
assuming a very negligible noise term, the teacher’s estimated bias might be 
removed from the actual score. Another practical solution might be the implementa-
tion ad hoc training aimed to a much more shared point of view in essay scoring.

8 � Conclusions

Most of the statistical models commonly used to analyze data from such observa-
tional contexts haven’t shown to be very flexible to certain types of heterogene-
ity among raters. The common HLMs with a normal (or unimodal) distributional 
assumption for the hierarchical effects cannot capture any possible latent clusters, 
i.e. any multimodality. Indeed, the residual covariance modelled through the hierar-
chical effects might be informative about different latent similarities among raters. 
In this regard, incorporating a DPM in the prior of the hierarchical effects distribu-
tion is a flexible choice to address this issue.

Consequently, the estimation of the agreement among the raters should take into 
account the possible multimodal distribution of the hierarchical effects. Interest might 
not be exclusively on the proportion of variance attributable to the hierarchical effects 
over the total variance (i.e., the main interpretation of the ICC); instead, it might be 
more appealing to explore the entire multimodal density. Since the DPM naturally 
accommodates clusters among hierarchical effects (i.e., among raters), it is natural to 
consider the extent to which the mixture components are separated. Since � is based on 
the density approximated through the grid approach f (u) , it reflects both the clustering 
induced by the Dirichlet process and the variance of the mixture components. Due to 
the particular information carried by � it might be more informative about the latent 

Table 8   95% credible intervals of � , DPM and residuals related parameters. Here � is the non varying 
effect, b

�
 and �

�
 are, respectively, the related location and scale hyperparameters; �0 and �D0

 are the loca-
tion and scale parameters of the base measure G0 , respectively. The precision parameter � and the residu-
als standard deviation �

�
 are also reported

� (0.16, 0.38)
b
�

(−14.80, 20.32)

�
�

(0.11, 98.33)
�0 (−0.33, 0.34)

�D0
(0.19, 1.03)

�
�

(0.13, 0.15)
� (3.00, 4.17)
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agreement among raters than the solely ICC. The latter is very useful when the normal 
distributional assumption of the hierarchical effects holds. However, in the presence of 
multimodality the estimate of the variance of the hierarchical effect �u is not accurate 
(it might be over-estimated) and the related ICC might be non-informative.

In contexts in which strong beliefs about the exact number of cluster are present 
or it is supported by some sort of evidence, an hierarchical model with a prior finite 
mixture distribution over the hierarchical effects is expected to have comparably 
good performance as well. The parametric variance of a mixture might be take into 
account in the ICC formula in these cases. For the above mentioned reasons, added 
flexibility and the shrinkage property the DPM was here preferred.

Many other studies are needed to fully understand the performance of � across 
different combinations of the Dirichlet process parameters. Future works might 
highlight the role of � when the rating is either expressed on a dichotomous or on a 
polytomous scale. Further studies might highlight the computation of � when mul-
tivariate hierarchical effects are specified. Comparisons between this index and the 
others widely used in these cases (Tang et al. 2022; Forchheimer et al. 2015; Zhang 
et  al. 2003) might be a focus of future studies. Further application of � in a non-
parametric context might be studied (Canale and Prünster 2017).

Appendix

Remarks for multiple ratings

When raters rate the same set of items Ji
= J  , i = 1,… , I a varying intercept 

can be identified for each item (Martinková et  al. 2023; Agresti 2015; Nelson 
and Edwards 2015). These term might be added to Eq. (1) (which is the same in 
both the standard and nonparametric formulation):

In both the standard HLM (i.e., assuming a multivariate normal distributed hier-
archical rater effect) and the nonparametric HLM (i.e., specifying a DPM over the 
rater effect) the following distribution might be specified:

where 𝜎
𝛿
> 0 is the scale parameter of � and J = |J| . See Sects.  2 and 3 for the 

other quantities and their distribution assumption. Specifying a conjugate prior for 
�
�
 additional steps might be added to the Gibbs sampling for the nonparametric 

HLM.
The main results of the present work and the interpretation of � (see Sect. 5) 

still hold for this model specification.

(2)yij = x�
ij
� + z�

i
ui + �i + �ij, i = 1,… , I, j ∈ J.

�j ∼N(0, �
2
�
) j = 1,… , J.
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Details on Dirichlet process mixture

As noticed above, � is proportional to the concentration of the realizations of G 
in point masses. Indeed, considering the partition (A,Ac) of Ω , the variance of 
G(A) is defined as

Thus, larger values of � , conditioning on the number of raters I, reduce the vari-
ability of the DP, i.e. the process samples most of the time from G0 , G tends to be 
an infinite number of point masses: the empirical distribution of G tends to become 
a discrete approximation of the parametric G0 . In this case there is no a strong clus-
tering since the probability of ties is very low. On the contrary, smaller values of � 
induce a strong clustering, the random weights distribution concentrate the prob-
ability mass to few points of the support of G and the probability of ties is higher. 
Which in the present model means that several ui will be independent and identically 
distributed from a normal distribution indexed by the same parameters. Moreover, 
Antoniak (Antoniak 1974) demonstrated that

where C is the number of clusters. Thus, the expected number of point masses of G 
is proportional to both the � and the number of raters I. Every consideration regard-
ing the role of the precision parameter on the distribution of G should be condi-
tioned to I.

Details on the Gibbs sampling

Further details regarding some parameters of the posterior sampling are showed 
as follow.

The following matrix notation is here adopted: Xi = (x�
i1
,… , x�

i|Ji|) , 

Zi = (z�
i1
,… , z�

i|Ji|) , are the design matrices for each rater i = 1,… , I ; and 

X = (X1,… ,XI) and Z = diag(Z1,… ,ZI) are the full design matrices. 

1.	 Referring to the non varying effects: 

2.	 Referring to hierarchical effects:

Var[G(A)] =
G0(A)(1 − G0(A))

� + 1

�[C|I, �] ≈ �ln
(
I + �

�

)

b∗
�
=

(
B−1
�

+
1

�2
�

X�X

)−1(
B−1
�
b
�
+

1

�2
�

X�(y − Zu)

)

B∗
�
=

(
B−1
�

+
1

�2
�

X�X

)−1
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•	 For each rater i = 1,… , I : 

 Here �ci
 is the location parameter vector of the cluster where the rater i is 

allocated.
•	 For each component r = 1,… ,R and each variable d = 1,… , q , associated 

with an hierarchical effect: 

 Here udr is the mean of the d-th hierarchical effect in the cluster r.
•	 For rater i = 1,… , I and each component r = 1,… ,R : 

�∗
ci
=

(
D−1

0
+

1

�2
�

Z�
i
Zi

)−1(
D−1

0
�ci

+
1

�2
�

Z�
i

(
yi − Xi�

))

Q∗
ci
=

(
D−1

0
+

1

�2
�

Z�
i
Zi

)−1

�
∗
0r
=

⎛⎜⎜⎝
cr

�
2
Qd

+
1

�
2
D0d

⎞⎟⎟⎠

−1⎛⎜⎜⎝
cr

�
2
Qd

ud,r +
�0r

�
2
D0d

⎞⎟⎟⎠

�
2∗
D0d

=

⎛⎜⎜⎝
cr

�
2
Qd

+
1

�
2
D0d

⎞⎟⎟⎠

−1

�
2
Qdr

��, u ∼IG

�
aQ0

+
rc

2
, bQ0

+
1

2

rc�
i=1

(uid − �dr)
2

�

Fig. 7   Trace Plots of some parameters from the second scenario. As it is shown they all converge prop-
erly
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Some trace plots

See Fig. 7.
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