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Towards near-term quantum simulation
of materials

Laura Clinton 1, Toby Cubitt1, Brian Flynn 1 , Filippo Maria Gambetta 1,
Joel Klassen1 , Ashley Montanaro1, Stephen Piddock 1, Raul A. Santos 1 &
Evan Sheridan 1

Determining the ground and excited state properties of materials is con-
sidered one of the most promising applications of quantum computers. On
near-term hardware, the limiting constraint on such simulations is the requi-
site circuit depths and qubit numbers, which currently lie well beyond near-
term capabilities. Here we develop a quantum algorithm which reduces the
estimated cost of material simulations. For example, we obtain a circuit depth
improvement by up to 6 orders of magnitude for a Trotter layer of time-
dynamics simulation in the transition-metal oxide SrVO3 compared with the
best previous quantumalgorithms.We achieve this by introducing a collection
of connected techniques, including highly localised and physically compact
representations of materials Hamiltonians in the Wannier basis, a hybrid
fermion-to-qubit mapping, and an efficient circuit compiler. Combined toge-
ther, these methods leverage locality of materials Hamiltonians and result in a
design that generates quantum circuits with depth independent of the sys-
tem’s size. Although the requisite resources for the quantum simulation of
materials are still beyond current hardware, our results show that realistic
simulation of specific properties may be feasible without necessarily requiring
fully scalable, fault-tolerant quantum computers, providing quantum algo-
rithm design incorporates deeper understanding of the target materials and
applications.

The ability to understand and design chemicals andmaterials is crucial
for scientific, industrial, and commercial purposes1. This is evidenced
by the central role of numerical simulation in guiding innovation in the
multi-billion dollar chemical industry2,3. However, computational
simulation methods on classical computers are limited by fundamen-
tally inefficient descriptions of electron–electron interactions, hin-
dering accuracy in the strong-coupling regime where many relevant
technological applications are expected to appear4. A quantum com-
puter (QC) can simulate these processes natively. Thismakes quantum
simulation of materials and chemicals one of the most promising
applications of quantum computing5,6. However in the near-term
Noisy Intermediate-Scale Quantum (NISQ)7 devices are expected to be
limited by low gate fidelities and small qubit numbers—severely

constraining the range of deployable algorithms. Current estimates of
circuit depth, given by the total number of layers of parallelizable
quantum gates in a given quantum circuit, and qubit requirements of
material and chemical quantum simulation lie well outside this regime
(as we discuss in detail below). However with the race to demonstrate
useful applications for near-term quantum computers begun in earn-
est, the question remains to what extent these estimates could be
improved upon. In particular many naive cost estimates may not take
full advantage of the features of the target application, such as com-
puting materials’ local properties at equilibrium or simulating their
out-of-equilibrium and excited state dynamics.

In this work we introduce several techniques that use general
physical constraints of materials systems and are designed to work
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together to produce lower cost estimates for key quantum algorithms.
The physics-based techniques are the careful selection of an active
space consisting of maximally localised Wannier functions8 and the
construction of a translational invariant local fermionic Hamiltonian
for the modes in the active space, which consists of intra and intercell
interactions/hopping. While active space methods are routinely
employed for the atomistic simulations of materials9,10, as they reduce
the dimension of theHilbert spaceof the problem, incorporating them
into a quantumsimulation is not trivial, as anefficient fermion-to-qubit
mapping is needed. Fermion-to-qubit mappings allow fermionic
operators to be mapped into operations acting on the qubits of a
quantum computer. Here, we leverage the structure of materials
Hamiltonians found with active space and Wannier methods to intro-
duce the following algorithmic techniques: a hybrid fermion-to-qubit
mapping, designed to combine the compact encoding introduced
in11,12 with a Jordan-Wigner mapping13, to efficiently describe fermion
modes using the sparsity of the Hamiltonian and with a variable
number ofmodes per site; a swapnetworkoptimization algorithm that
specifically targets fermionic systems and has efficiency improve-
ments over previous work14, in which fermionic modes encoded into
adjacent qubits are swapped to facilitate the implementation of all the
required interactions; and an optimized measurement protocol that
aims to combine the efficiency of commutingmeasurements15 with the
ease of implementation of qubitwise commuting measurements16,17.
This is a key ingredient of variational quantumalgorithms, inwhich the
properties (usually the energy) of the trial quantum state must be
computed accurately at each iteration of the algorithm as a sum of the
expectation values of parts of the full system Hamiltonian18.

All these approaches combined together allowed us to reduce the
resources (in particular, circuit depth and gate count) required to
simulate realistic models of materials on a quantum computer by
several orders of magnitude. This demonstrates that specific proper-
ties of materials may be obtained without requiring fully fault-tolerant
quantum computers.

Results
Simulation algorithms
The two simulation algorithms we consider in this work are the var-
iational quantum eigensolver (VQE) using a Hamiltonian variational
ansatz19, and the time dynamics simulation (TDS) algorithm. VQE can
be used to estimate properties of materials, such as equilibrium con-
figurations, or correlation functions20. TDS on the other hand can be
used to estimate response functions and spectral properties of
materials21.

VQE employs a parametrized ansatz circuit to prepare an
approximation to the ground state of a Hamiltonian H =∑khk by
varying the parameters to minimize the measured energy. The
Hamiltonian variational ansatz is a sequence of circuit layers l of the
form

Q
ke

itlkhk , with tlk variational parameters19. TDS simulates time
evolution under the Hamiltonian of a given input state. It achieves this
by breaking up the evolution into a sequenceof circuits approximating
short-time dynamics of duration δt, which in the simplest case each
take the form

Q
ke

iδthk . Our approach to estimating the costs of these
algorithms is to estimate the cost of implementing the subroutine
circuit Uð a!Þ=Qke

iakhk , since for both TDS and VQE the number of
times one needs to execute this subroutine may vary. See Supple-
mentary Note 4 for more details. We also consider the cost of state
preparation for TDS and VQE (Supplementary Note 4B), as well as the
cost of performing measurements (Supplementary Note 4D).

Ultimately our aim is to implement the subroutine Uð a!Þ in the
shortest possible circuit using as few qubits as possible while
remaining faithful to the simulationgoals of TDS andVQE.Our strategy
is straightforward: use as small a Hilbert space as possible – reducing
qubit count; minimize the number of terms required to faithfully
represent H – reducing the number of entries in the product U; and

choose a representation along with a compiling routine to minimize
the cost of executing each individual step eiakhk . These three goals are
achieved respectively by: identifying a good active space in the Bloch
basis; identifyingmaximally localizedWannier functions8 on the active
space and computing the Hamiltonian coefficients in this basis, trun-
cating any small terms; employing a hybrid fermionic encoding tai-
lored to the problem in conjunction with a dynamically optimized
fermionic swap network to minimize the cost of executing each
interaction and maximize the number of parallel executions. Each
of these approaches – as it will be discussed below – involves the
introduction of several technical insights, and furthermore all of
these solutions are designed synergistically, operating in tandem to
optimize all three goals. Before proceeding with further details, we
briefly discuss some previous work, which has performed similar cost
analyses.

Previous work. Qubit and gate resources required for Trotterized
Hamiltonian simulation algorithms of fully local Hamiltonians have
recently been investigated by Kanno et al.22. Here, effective Hamilto-
nians of several unit cells of materials have been constructed starting
from a classical description that accounts for the important chemistry
of the active space10. The resources to implement a single Trotter step
are investigated on devices with nearest-neighbor connectivity in
terms of CNOT and arbitrary single-qubit gates. They use a Jordan-
Wigner (JW) transform to encode the fermionic modes, and fermionic
swaps23,24 to deal with the large operator weight of the encoded Pauli
operators. This leads to a scaling of the gate count that isOðN2

cellsÞ for a
Hamiltonian defined in Ncells unit cells.

In comparison, our approach attains O(Ncells) scaling of the
number of gates, as the intercell interactions are implemented through
ancillas in the compact encoding11. This incurs a qubit overhead pro-
portional to the number of unit cells. Importantly, considering that the
main problem of current QCs is the presence of gate errors, our
approach allows us to achieve a layer depth for single Trotter step that
is independent of the size of the system, in stark contrast with the
OðN2=3

cellsÞ depth using JW (in a cubic system with nearest neighbour
interactions)22. Delgado et al. recently gave a detailed resource analysis
of quantum algorithms for determining properties of battery materi-
als, such as equilibrium voltages and thermal stability25. They use a first
quantisation approachwith the planewave basis and compute the cost
of the quantum phase estimation algorithm. Considering one unit cell
of thematerial Li2FeSiO4with 156electrons, these authorsfindaToffoli
gate cost of between 1011 and 1015 for quantum phase estimation,
depending on the number of plane waves and level of accuracy
required.

Counting the overall number of Toffoli or T gates is an appro-
priate approach to estimate complexity in the fault-tolerant regime, as
this quantity directly determines the (very significant) overhead
required for fault-tolerance. For near-term quantum computers,
depending on the architecture, quantum circuit depth can be more
appropriate, for several reasons. First, quantum computations are
limited by decoherence, which sets an upper bound on the overall
running time, as measured by circuit depth. Second, as errors can be
seen as spreading out across a quantum circuit within a “lightcone”,
lower-depth circuits lead to improved localisation of errors. Third, as
the circuit depth determines the running time, a lower-depth circuit
executes more quickly.

Several other works have produced quantum algorithmic
resource costs tailored for the fault tolerant era in molecular
systems26–28, the interacting electron gas (jellium)29–32, and for periodic
systems33. While our focus is on identification of the active space for
periodic materials, we remark that the idea of reducing the cost of
quantum simulations for molecular systems has been proposed by
Reiher et al.34. Molecular active space methods have also been
explored in highly sophisticated implementations based on quantum
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information measures35,36 that have enabled automated protocols for
the choice of active space37,38. Finally, we note that active space
methods for periodic systems, described in the section below, have
been recently employed in the context of quantum computation for
the specific task of computing properties of spin defects in semi-
conductors using quantum embedding theory39.

Identifying the active space
Material systems specifically have a number of features which—as we
will demonstrate—may be leveraged to great effect. The most sig-
nificant feature is the translational symmetry of the Hamiltonian. This
symmetry allows for efficient approximate diagonalization in a band
(Bloch) basis. In this basis it is easier to identify a subspace of the
single-particle Hilbert space around the Fermi level wherein the
dominant dynamics occur. By truncating to this subspace, the number
of qubits required and the number of terms in the Hamiltonianmay be
reduced.

Specifically, the fermionic Hilbert space F is given by a tensor sum
over n-particle Hilbert spaces, each consisting of n-fold antisymmetric
products of single-particle Hilbert spaces F1. In order to reduce the size
of F we truncate F1 to a subspace, called an active space, which ideally
captures the dominant dynamics of our Hamiltonian H 9,10. As dis-
cussed in the “Active space andWannier function" section ofMethods,
we identify this subspace using density functional theory (DFT)40. In
DFT,H is approximated by an auxiliary Hamiltonianwhich replaces the
fermion-fermion interactions with an effective external potential,
turning the problem from a many-body problem to a single-particle
problem, which may be solved efficiently. The eigenstates of this
effective Hamiltonian are called Kohn-Sham (KS) states. In principle,
the latter have no strict physical interpretation and are just a tool to
obtain the ground state energy and density of the original Hamilto-
nian.However, one of the reasons behind the successofDFT is that, for
many weakly correlated materials, KS states also provide a good
description of the actual electronic structure and can therefore be
employed to compute a number of additional physical properties. This
picture breaks down for strongly correlated systems, in which KS
states should only be used to calculate ground state energy and
density41. Unfortunately, even the latter is a formidable task, due to
inconsistencies in the approximate exchange correlational functional,
and typically requires the introduction of ad hoc parameters beyond
the standard DFT formulation42. In spite of that, the recent success of
ab initio embedded approaches for describing materials and mole-
cular properties, i.e., DFT+DMFT43,44 and DFT+DMET45–49, have
demonstrated that KS states can be used as a good starting point for
building low-energy effective models of correlated materials. These
approaches then proceed to solve smaller, auxiliary problems within
given active spaces that cannot be addressed with single-particle
methods. Once solved, the results from the smaller active space are
combined with the rest of the system. All such active space-based
approaches have the potential to offer reliable corrections to the
underlying single-particle description of materials but do not in gen-
eral guarantee quantitative accuracy for all properties of interest,
across varying time scales. Crucially, the regime of validity for active
space approaches can be systematically improved on by assessing the
impact of including more physical orbitals50,51, inclusion of
screening9,52,53, as well as incorporating double-counting in an exact
way54. As our approach is also based on determining an active space, it
can be improved by using the same classical techniques mentioned
above, to account for potential inaccuracies and resolve them.

Assuming that all the relevant degrees of freedom are included,
these models provide a powerful tool to compute many low-energy
properties of correlated systems. This approach is particularly suitable
for materials with a few bands around the Fermi level, which retain a
strong atomic character, such as the ones emerging from d and f loca-
lized orbitals. Crucially, this situation is common in many strongly

correlatedmaterials. In this case, the active space can be identified with
the Hilbert space spanned by the KS states whose energy lie within a
judiciously chosen energy range around the Fermi level, chosen to
encapsulate the most relevant electronic degrees of freedom. This
procedure is illustrated in Fig. 1. Formoredetails about the choice of the
active space and the approximations introduced, see the “Active space
and Wannier functions" section of Methods and Supplementary
Note 2F. Despite the reduced complexity of these effective models,
their Hilbert space still grows exponentially with the systems’ size.
Hence, onlymodelswith a limitednumberof degreesof freedomcanbe
solved on a classical computer. This work shows that the resources
required to solve larger and more general instances, which are beyond
the capabilities of state-of-the-art classical solvers, on a quantum com-
puter, can be reduced significantly via tailored quantum algorithms.

Localized Wannier Representation
Having identified the single-particle active space, there remains an
additional choice of which basis is best suited to representing H in
second quantized form. In addition to the Bloch basis—which repre-
sents electrons in momentum space—crystalline solids possess a sec-
ond natural basis, theWannier basis, which represents electrons in real
space.Here, we leveragemaximally localizedWannier functions, which
are single-particle wave functions localized in real space around the
unit cell coordinates of the material8,55. In this basis, interactions can
become highly localized, further reducing the number of dominant
terms in theHamiltonian. An addedbenefit of operating in theWannier
basis is that highly localized interactions lend themselves well to effi-
cient representations on qubit devices. In particular, we find that for
the materials we consider the dominant interactions of the Hamilto-
nian expressed in the Wannier basis can be confined to act between
nearest and next-nearest neighbours. This has a twofold benefit. The
first and most significant is that the number of Hamiltonian terms
scales linearly with the size of the system Ncells. This is a significant
reduction in comparison to an expression in momentum space, where
particles with significantly different momenta may strongly interact,
leading to the number of quartic interactions growing as N3

cells. The
second is that local interactions are better suited to representation on
quantumdevices, due to the challenges inmapping fermions onqubits
and the overheadof implementing interactions between distant qubits
in hardware. For more details on the Wannier representation see
Methods and Supplementary Note 2C.

Hybrid fermionic encoding and fermionic swap networks
Any simulation of a fermionic system on a qubit-based QC requires a
mapping between the fermionic Hilbert space, and the multi-qubit
Hilbert spaceof theQC—most conveniently given by a correspondence
between fermionic and qubit operators11,12,56–62. In order to capture the
exchange statistics of the fermionic algebra, interactions acting on a
small number of modes in the fermionic system may be mapped to
interactions acting on a large number of qubits on the QC. This is
exemplified in the most commonly used mapping, the JW transform,
which maps fermionic creation and annihilation operators to string-
like qubit operators. Interactions acting on large numbers of qubits
introduce large circuit overheads inquantum simulation,making them
undesirable. For example, under the JW transform—which many naive
methods use to estimate algorithmic costs—simulating the dynamics
of one of the 2-mode hopping terms may require a quantum circuit
whose depth grows with the size of the system22. However if the
interactions are sparse such that each fermionic mode is involved in a
relatively small number of interactions, then these problems may be
avoided by a judicious choice of mapping11,57,58. By operating in the
Wannier basis and localizing the interactions we canmanifest this kind
of sparsity.

In theWannier basis each unit cell coordinateRmay be thought of
as a coarse-grained “site”, consisting of a number of densely interacting
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modes, which also interact densely with neighbouring sites, but spar-
sely with distant sites. In cases where there is a high degree of interac-
tion betweenmodes in theHamiltonian, it is simply not possible tomap
all interactions to low-weight operators, regardless of the choice of
mapping. Inevitably some interactions will be high-weight, in a similar
fashion to the JW transform. Typically in this case, in lieu of low-weight
representations, a JW transform is employed and a fermionic swap
(fswap)23 protocol is applied wherein fermionic modes are dynamically
re-ordered throughout the algorithm such that each interaction admits
a low-weight representation at some point in the protocol. In the
Wannier basis themixture of dense short-range interactionswith sparse
long-range interactions suggests ahybrid approachwherein a sparse set
of interactions between sites are represented with low-weight opera-
tors, and themodeswithin a site are representedby a JWstyle encoding,
to which a custom-designed fswap protocol is applied. We introduce a
family of encodings tailored to this approach which we call hybrid
encodings—they are a hybridizationof the JW transformon sites and the
compact encodings introduced in refs. 11,12. We believe this is the first
concrete example of the use of this kind of method, wherein two
encodings areused jointly to leverage their respective strengths, andwe
expect this strategy to become commonplace in the future design of
fermionic simulations. The fermionic encodings we consider may be
understood as having a graph geometry, wherein modes are adjacent
on the encoding when hopping terms between those modes admit a
low-weight representation. For more details on the hybrid encoding,
see the “Encoding" section of Methods and Supplementary Note 3.

Given the geometry of the encoding and the specific structure of
the particularHamiltonianunder consideration, it is not suitable to use
existing fswap protocols or devise a general-purpose fswap protocol.
Instead we introduce an algorithm that searches for a custom fswap
protocol that minimizes the number of fswap layers required to
implement all terms in a given target Hamiltonian. Our algorithm tar-
gets interactions, whichmay occur on two, three, or four modes, each
interaction having its own ideal adjacency conditions on the geometry
of the encoding—for example, two-mode interactions are ideally
adjacent, while four-mode interactions only require pairings of modes
to be adjacent. The search routine employs a steepest descent heur-
istic, wherein a layer of fswaps is chosen from a pool of candidates by
how much it reduces the distance of the remaining interactions from
their ideal adjacency configuration. Success of this strategy depends
on a carefully chosen notion of distance that leads to an efficient
protocol. When used in conjunction with the custom hybrid encoding
we find that the introduction of custom fswap protocols can have
substantial impact on the total circuit depth. For example, the depth of
implementing onsite and nearest neighbour terms for H3S is reduced
from 7000 to 1214 (see Supplementary Table 10). Further details about
the fswap protocol appear in Methods (section “Localized Wannier
Representation") and Supplementary Note 5A.

Compiler
In order to understand the potential gains in circuit depth that can be
achieved from the strategy discussed above, we have built a compiler

 

Fig. 1 | Active space of SrVO3. a Unit cell of the SrVO3 with spacegroup Pm3m, 3d1
nominal electronic valence configuration, and octahedral coordination environ-
ment. b The ground state electronic bandstructure as predicted using DFT along
the high symmetry path in the Brillouin zone. The red line indicates the position of

the Fermi level. c An energy range (shaded blue) around the Fermi level is defined.
d The bands around the Fermi level (dark blue) contained in the previous energy
range are considered in the construction of the Hamiltonian.
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that incorporates these strategies along with additional optimizations
– such as small-scale circuit optimizations where possible for better
overall depth, and leveraging symmetries in the computation of basis
wave functions for faster compile times. The compiler takes as input
the atomic specification of the material, and produces an optimized
circuit for VQE and TDS via the following automated steps: identifying
an active space in the band basis; computing a maximally localized
Wannier basis; computing the coefficients of the Hamiltonian in this
basis using Monte-Carlo integration; specifying an appropriate
encoding for the Hamiltonian; optionally decomposing terms into
appropriate commuting groups for better Trotter error in TDS; finding
an optimal fswap protocol, consisting of alternating layers of fswaps
and interaction terms eiakhk ; decomposing interaction terms and
fswaps into circuit operations; costing and analyzing the resulting
circuits. The compiler can handle a fully populated finite lattice or,
given amaterial unit cell, it can compile a circuit that is infinitely tilable
(see Supplementary Note 5B), allowing a circuit depth independent of
the system’s size. We also introduce a routine for optimizing mea-
surement protocols targeted at fermionic systems in order to reduce
overheads in measuring energy for VQE. These measurements can be
implemented in constant depth – much more efficiently than general
commuting measurements – but provably require fewer rounds than
the commonly used qubitwise commuting measurements16,17 (see
Methods section “Measurement schemes" and Supplementary
Note 4D). The compiler is also able to optionally prioritize minimizing
Trotter error at the expense of circuit depth, and can produce an
estimate of the Trotter error of a given circuit for a given target
simulation time (see Supplementary Note 6C 2). A full-stack analysis of
SrVO3 using our compiler is discussed in Supplementary Note 6C 1.

Discussion
Selected results appear in Table 1, where we compare the circuit depth
obtained by our methods with a standard, generic method that does
not exploit the structure of the Hamiltonian (see Appendix A). To
simplify our analysis, we assume that the hardware has all-to-all con-
nectivity and that any two-qubit operation has circuit depth 1 while
single-qubit gates have cost zero. The materials analysed here repre-
sent a selection of systems whose behaviours are dominated by dis-
tinct underlyingmechanisms: they span aminimal but wide structural,
chemical, and technological range. Strontium vanadate (SrVO3) is a
strongly correlated material that serves as a benchmark for post-DFT
methods63, gallium arsenide (GaAs) is a fairly well-understoodmaterial
with many technological applications. Likewise, silicon (Si) is the cor-
nerstonematerial used inmodern electronics64 and is also important in
many other applications, such as solar technologies64. Recently,

hydrogen disulphide (H3S) has been found to host a high super-
conducting transition temperature at high pressures65. Finally, lithium
copper oxide (Li2CuO2) is a material used in advanced lithium-ion
battery technology66.

Since nopriorwork has beendone for estimating the costs of these
materials, we include in Table 1 estimates for the same materials in the
Bloch basis employing the JW transform. These are all standard
approaches used commonly in estimating simulation cost overheads of
material and chemical systems. These estimates are based on bounds
derived from term counting and qubit support, and include the
potential for fswap protocols (see Appendix A for details). It is evident
that our methods, which take advantage of the physics of the material
system, yield substantial improvements over these standard methods.

The improvements in circuit depths demonstrated in this work
bringmaterial simulationapplicationsoutof thedomainof impossibility
for near-term quantum computers and into a regime where, at least for
somematerials, the costs are potentially within touching distance of the
requirements of near-termdevices provided improvements in hardware
and algorithms continue at their current rate.

For example, IBM has reported two-qubit gate fidelities
approaching 99.9%67. Error mitigation experiments employing virtual
distillation by Google68 have demonstrated useful results at circuit
fidelities of 10%. Naive estimates of gate requirements to achieve a
target circuit fidelity of 10%, with 99.9% two-qubit gate fidelity yield a
2300 two-qubit gates budget. Furthermore, IBM has run accurate
Hamiltonian simulation experiments involving approximately 3000
two-qubit gates69. Thus even given skepticism about currently repor-
ted gate fidelities, or required circuit fidelities, wemay still accept that
a naive two qubit gate count budget on the order of 2000-3000 is
reasonable for a near-term application. SrVO3 has a two-qubit gate
count of 7507 for the system size we consider. This suggests that to
achieve a single circuit layer of the kind we consider for SrVO3 would
require an approximate 3 fold two-qubit gate count reduction. A
reduction of this type would make a single layer of HVA VQE poten-
tially feasible for SrVO3 – with even a very small number of layers of
VQE potentially being sufficient to observe qualitative features of the
model20. However this still leaves standard first-order Trotter dynam-
ics for long timescales out of reach, since many layers of Trotter are
typically required. We are optimistic that the requisite gate counts for
this kind of primitive can be reduced, that the algorithmic require-
ments of both TDS and HVA VQE can be further improved upon, and
that other interesting materials may exist with better gate count
requirements.

It is important to stress that our results do not constitute con-
clusive evidence that these applications will yield quantum advantage

Table 1 | Summary of resources needed to implement a single VQE layer that simulates the Hamiltonian of differentmaterials,
without accounting for initial state preparation

Bands Qubits Gates Depth
Material Applications Method

GaAs Semiconductors82, transistors83, solar cells84,
spintronics85

This work 4 1120 4.1E+05 7.9+E03

Baseline estimate 6 1500 3.0E+12 3.5E+09

H3S Superconductors65 This work 7 1870 2.4E+06 3.7E+04

Baseline estimate 6 1500 3.0E+12 3.5E+09

Li2CuO2 High-capacity battery cathode66 This work 11 1024 2.3E+05 8.4E+03

Baseline estimate 14 1260 1.5E+12 2.1E+09

Si Semiconductors86, solar cells64 This work 4 1120 4.5E+05 8.5E+03

Baseline estimate 3 750 1.8E+11 4.3E+08

SrVO3 Solar cells87, batteries88,89 This work 3 180 7.5E+03 8.8E+02

Baseline estimate 16 864 3.2E+11 6.7E+08

We considered a system consisting of a 3 × 3 × 3 supercell for SrVO3, 5 × 3 × 3 supercell for Li2CuO2 and a 5 × 5 × 5 supercell for all the other materials. Baseline estimates are based on standard
methods available in the literature – namely employing the Jordan-Wigner transform in the Bloch basis – without considering the structure of the Hamiltonian. See Appendix A for details.
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on near-term devices. First, although ab-initio embedding and active
space-based methods have shown the potential to improve the
description of certain properties ofmaterials, a rigorous quantification
of the trade-offs introduced by these approximations in the simulation
of large materials’ properties and dynamics is an open problem and
will require additional investigation. Further, thefiguresweobtained in
this work give a sense of scale but do not take into account native
availability of the required gates on hardware and do not constitute a
concrete proposal for a quantum advantage experiment. Rather, our
results demonstrate that material simulation on near-term devices is a
promising direction to pursue in earnest, and that a simulation of
this type may be feasible in the near future – whereas a naive estimate
would suggest that such simulations are well within the fault-tolerant
regime.

Simulating materials is a promising application for quantum
computers. The progress reported here incorporates a number of
complementary approaches across the full quantum materials simu-
lation stack that, when combined together, reduce the quantumcircuit
depth requirements by orders of magnitude compared to naive
baseline estimates. Crucially, the design process produces quantum
circuit depths for Trotter and VQE layers which are independent of the
material’s size by taking advantage of the locality of materials Hamil-
tonians. We expect that our proposed framework for materials simu-
lation on quantum computers can be enhanced further by continuing
to incorporate physically motivated structure into the choices of fer-
mionic encodings, basis representations, and fswap network proto-
cols. One consequence of this work is the identification of certain
materials, from the small set we have considered, which are particu-
larly well suited to quantum simulation due to the details of their
physics—such as SrVO3. Beyond reducing circuit depths and improving
error mitigation techniques, identifying the appropriate physical sys-
tems, which are best suited for simulation on NISQ devices is essential.
The development of the tools described in this work can be used to
allow the application of data-driven and high-throughput techniques
to understand the classes of materials most amenable to quantum
simulation. Our results show that considering seriously the structure
of the physical problem at hand and incorporating these considera-
tions into the design of quantum algorithms can accelerate progress
towards quantum advantage.

Methods
Electronic Hamiltonian
The second quantized Hamiltonian of the electronic degrees of free-
dom for a material with no spin-orbit interactions or magnetic fields is

H =
X
σ

X
λ1 ,λ2

tλ1λ2c
y
λ1 ,σ

cλ2,σ

+
X
σ,σ0

X
λ1 ,λ2,λ3,λ4

V λ1λ2λ3λ4
cyλ1 ,σc

y
λ2,σ0cλ3,σ0cλ4,σ :

ð1Þ

Here, cλ,σ (c
y
λ,σ) is the annihilation (creation) operator for an electron in

the state (λ, σ), where λ represents the collection of all the particles’
quantum numbers but the spin. In terms of the latter, the electronic
field operator is

ψσðrÞ=
X
λ

ϕλ,σðrÞcλ,σ , ð2Þ

where ϕλ,σ(r) =ϕλ(r)χσ is a spin-orbital state, with {ϕλ(r)} a single-
particle wavefunction basis set and χσ (σ∈ {↑,↓}) a two-component
spinor. In Eq. (1), we introduced the hopping matrix

tλ1λ2 =
Z

drϕ*
λ1
ðrÞ � _2∇2

2m
+ ~UðrÞ

" #
ϕλ2

ðrÞ, ð3Þ

and the Coulomb tensor

V λ1λ2λ3λ4
=
1
2

Z
dr
Z

dr0 ϕ*
λ1
ðrÞϕ*

λ2
ðr0Þ

×W ðr,r0Þϕλ3
ðr0Þϕλ4

ðrÞ:
ð4Þ

Here, ~UðrÞ represents the periodic external potential generated by the
ions in the lattice and is given by

~UðrÞ= qe
4πϵ0

X
I

Z I

jr� rI j
, ð5Þ

where ZI is the charge of the I − th ion and rI is its position. The con-
stants ℏ,m, qe and ϵ0, are Planck’s constant, the electronmass, electron
charge, and the vacuum permittivity of space, respectively. In the
Coulomb tensor, W ðr,r0Þ= 1=ð4πϵ0jr� r0jÞ denotes the repulsive Cou-
lomb interaction between electrons.

As we will discuss in the Methods section “Active space and
Wannier functions", in this work we focus on the electronic degrees of
freedom corresponding to the electronic bands {ϕλ(r)} contained in a
selected region around the Fermi level (the so-called active region). In
this case, both the single-particle potential ~UðrÞ and the Coulomb
interactionW ðr,r0Þ shall bemodified to take into account the effects of
the electrons outside the active regionon the activeones. In the caseof
the Coulomb repulsion, this results in an effective screening of the
interaction between electrons in the active space. Many sophisticated
approaches have been developed to compute the exact form of
W ðr,r0Þ9,10. The aim of this work is to design an efficient quantum
algorithm to reduce the complexity of simulations ofmaterials, andwe
will therefore consider the simplified case of an unscreened Coulomb
potentialW ðr,r0Þ= 1=ð4πϵ0jr� r0jÞ only. Note that, in general, this leads
to more, stronger, and longer-range interactions and, therefore, our
results represent an upper bound for the quantumcircuit complexities
for the simulation of realistic models.

Active space and Wannier functions
Many low-energy properties of materials are determined by a limited
number of electronic degrees of freedom around the Fermi level. To
identify them, we start by computing the material’s band structure
within the framework of density functional theory (DFT)70,71. The main
concepts of DFT are reviewed in Supplementary Note 2F. DFT allows
one to obtain estimates of many ground state properties of a fully
interacting many-body system by solving a set of auxiliary single-
particle problems72,

_2

2m
∇2 + ~Ueff ðrÞ

" #
ϕiðrÞ= ϵiϕiðrÞ, ð6Þ

where the terms in squarebrackets in the left hand side termconstitute
the Kohn-Sham (KS) Hamiltonian, HKS, ~UeffðrÞ= ~UðrÞ+VHðrÞ+VXCðrÞ is
the effective KS potential, ϵi are the single-particle KS eigenvalues, and
{ϕi(r)} are theKS states. Crucially, in addition to the ionic potential ~UðrÞ
of Eq. (5), ~UeffðrÞ contains two additional contributions, namely the
Hartree energy VH(r) and the exchange-correlation potential VXC(r),
which include the contribution of electron-electron interactions. In
this work, DFT calculations have been performed with Quantum
Espresso73,74 using pseudopotentials from the ONCVPSP library75.

KS states can be used as the starting point to build a more accu-
rate low-energy models of strongly correlated materials, for which
standard DFT usually provide unsatisfactory results41,43. Such a failure
is usually due to the presence of electronic bands with strong d or f
character in the neighbourhoodof the Fermi level. In this case,modern
embedding approaches, such as density matrix embedding theory
(DMET)45,49 and dynamical mean field theory (DMFT)43,44, have shown
that a more faithful description of these materials can be obtained
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from an effective model containing a limited number of electronic
bands within an active space around the Fermi level. See Fig. 1 for the
case of SrVO3. The critical aspect of this approach is to estimate how
the electrons outside the active space affect the interactions of the
electrons within the active space10. As anticipated in the “Electronic
Hamiltonian" section of Methods, in this work we assume that elec-
trons in the active space interact via an unscreened Coulomb inter-
actions and we leave the use of more accurate potentials to future
investigations.More details about the selection of the active space and
a specific example are provided in Supplementary Notes 2F 2 and 6B,
respectively.

Once the active space has been identified, the KS eigenstates
within the active space are used to generate maximally localized
Wannier functions (MLWFs), which will serve as the single-particle
wavefunction basis set for the electronic Hamiltonian of Eq. (1). The
s − thMLWF in the unit cell indexed by the lattice vectorR is defined by

WR
s ðrÞ=

X
k,n

e�ik�RUnsðkÞϕk,nðrÞ, ð7Þ

where ϕk,n(r) are the eigenstates of the KS Hamiltonian in reciprocal
space, i.e., HKS(k)ϕk,n(r) = ϵk,nϕk,n(r), and Uns(k) is a unitary matrix
whose coefficients are obtained via an iterative routineminimizing the
spread of the Wannier functions1. In our work, MLWF are generated
from the DFT output using the Wannier90 code76. The full workflow is
discussed in more details in Supplementary Note 2F. In the Wannier
basis, the electonic Hamiltonian of Eq. (1) becomes

HW =
P
σ

P
m,n

R1,R2

TðR1 � R2Þmnw
y
R1 ,m,,σwR2,n,σ

+
P
σ,σ0

P
s,l,m,n

R1,R2,R3,R4

~V
ðR1R2,R3,R4Þ
slmn

×wy
R1 ,s,σ

wy
R2,l,σ0wR3,m,σ0wR4,n,σ

,

ð8Þ

with wR,m,σ (wy
R,m,σ) destroying (creating) an electron in the

state WR
m,σðrÞ=WR

mðrÞχσ .

Encoding
The goal of an efficient encoding is to map each interaction in the
fermionicHamiltonian to low-weight operators acting on amulti-qubit
Hilbert space. In the MLWF basis, the electronic Hamiltonian of Eq. (8)
has a local structure we can leverage in the mapping of fermionic
operators into qubit operators. In particular, the hopping matrix and
Coulomb tensor coefficients involving modes with lattice sites R1 and
R2 decay rapidly as a function of ∣R1 −R2∣. On the other hand, inter-
actions between modes on the same site (i.e., with the same site index
R) are usually dense and strong. In general, regardless of the choice of
the mapping, the latter interactions cannot be mapped to low-weight
operators. The best strategy is then to map all the modes sharing the
same lattice site index R to qubits using the Jordan Wigner (JW)
transform and use a fermionic swap (fswap) protocol to reduce the
weight of the resulting qubit operators (see Methods section “Algo-
rithms" and Supplementary Note 4)23,77,78. Within this framework, fer-
mionic creation (cyi ) and annihilation (cyi ) operators are mapped to
strings operators acting on qubits via

cyi $
Y
j<i

Z j

 !
ðXi + iY iÞ

2
ð9Þ

ci $
Y
j<i

Z j

 !
ðXi � iY iÞ

2
: ð10Þ

On the other hand, the sparse interactions between modes belonging
to different lattice sites can be implemented more efficiently by
mapping these modes via the compact encoding11. This suggests the
useof a hybrid encoding inwhich allmodes sharing the same site index
R are associated with a collection of qubits laid out in a JW style string.
In turn, each string is connected to nearest-neighbour string using the
compact encoding design. See Fig. 2.

In this encoding, the recipe for mapping each fermionic term of
the electronicHamiltonian into a string of qubit operators is expressed
in terms of “edge” and “vertex” operators, which are defined as

Ejk := � iγjγk , Vj := � iγj�γj, ð11Þ

respectively, with Majorana operators

γj :=wj +w
y
j , �γj := ðwj �wy

j Þ=i, ð12Þ

where j (and k) is a multi-index over the site index R, mode
index m, and spin index σ. The rules to map these operators
into Pauli strings are shown in Supplementary Figures S12 and S14
for the 2D and 3D hybrid encodings, respectively. The qubit
Hamiltonian can be obtained by first decomposing each term of
the fermionic Hamiltonian in Eq. (8) into the operator basis of
Majorana monomials,

HM :=
X

b2f0,1g2M
αb

Y
j

γ
b2j

j
�γ
b2j + 1

j , ð13Þ

with ∣b∣∈ {2, 4}, and by applying the encoding instructions to each
monomial. Here,M is the total number of complex fermionmodes and
is given byM =Nmodes/cellNcells, with Nmodes/cell and Ncells the number of
modes per unit cells and unit cells in Eq. (8), respectively.

a

b

c

Fig. 2 | Comparisonbetween encodings. (a) JW encoding, (b) hybrid encoding on
a 2D lattice of sites, (c) 3D variant of the hybrid encoding. Sites (shaded ellipses)
contain the modes/data qubits (black circles) with ancillary qubits (red) involved
in intersite interactions. Pairs of adjacent modes in the linear ordering of modes/
data qubits within each site, as well as those modes at the ends of the linear
orderings between sites connected by black lines, have an efficient qubit repre-
sentation. Interactions between modes, either within a site, or between neigh-
bouring sites, aremediated by fermionic swap networks applied according to the
graph topology, with fswaps applied on black edges. See Supplementary Note 3
for more details.
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Algorithms
The main goal of this work is to minimize the overall circuit depth for
implementing one layer of both the Variational Quantum Eigensolver
(VQE) and Time Dynamics Simulation (TDS) algorithms.

Given a Hamiltonian HM =∑khk and assuming that HM =HA +HB

and that an efficient quantumalgorithm to prepare the ground state of
HA is known, the VQE algorithm allows to find an approximation to the
ground state of HM via a parameterized circuit ansatz consisting of a
sequence of repeated layers. Within the Hamiltonian variational
ansatz19 framework, the steps of a VQE simulations are the following:

1. Prepare the ground state of HA.
2. For each layer l, implement the operation

Y
k

eitlkhk ,

for some parameters tlk, to produce a state ψ
�� �.

3. Measure the energy of ψ
�� � with respect to HM.

4. Classically optimise over the parameters tlk to find the ground
state (or a good approximation).

On the other hand, the goal of the TDS approach is to find an
approximation of the unitary e�itHM for some time t. The standard
method for executing this operation is by Trotterisation, wherein
e�itHM is approximated, for example, by a product of short time steps
ðQke

�iδthk ÞL, with δt = t/L.
The algorithms above requires three type of operations: time-

evolution step according toMajorana operators, fermionic swaps, and
Givens rotations. Below we will discuss the bounds on the complexity
associated with each of them. In doing that, we will assume all-to-all
interactions between qubits, arbitrary 2-qubit gates having unit gate
cost, and 1-qubit gates having zero gate cost.More details areprovided
in Supplementary Note 5C.

Time-evolution step. Whichever fermionic encoding is used, each
termof theHamiltonianwill ultimately be representedon thequantum
computer as a string of Pauli operators. As 1-qubit gates are modelled
as free and all Pauli operators are equivalent up to unitary conjugation,
implementing a term reduces to implementing the operation eiθZ

�k
,

acting on k ≥ 1 qubits, for arbitrary θ. This can be done in depth
2dlog2ke � 1 via a circuit which uses a binary tree of CNOT operations
to put the parity of the input state in the last qubit; performs a Z
rotation on that qubit; and then performs the CNOT operations in
reverse to uncompute the parity. We save depth 1 by combining the
last two CNOTs and the Z rotation in one 2-qubit gate. See Fig. 3 for an
example for the case k = 4.

Fermionic swaps. In the JW transform, fermionic swaps across adja-
cent modes are 2-qubit gates with cost 1. In the compact encoding,
across most pairs of adjacent modes, the same holds. The exception is
when a fermionic swap acts across different material sites, where an
ancilla qubit is involved. In terms of the fermionic algebra, the fswap

operator between modes i and j can be written as

FSWAPij = exp i
π
4
Vi

� �
exp i

π
4
Vj

� �
× exp

π
4
EijV j

� �
exp

π
4
ViEij

� �
:

ð14Þ

The circuit depth may be computed by decomposing each of the
terms in terms of Pauli matrices. However, for the 2D hybrid encoding,
an efficient decomposition for weight 3 edge operators can be
obtained, as explained in Supplementary Note 3B. This makes it pos-
sible to implement a fermionic swap by a circuit of 2-qubit depth 4. For
the 3D encoding, in which the edge operators are weight 4, we will use
the naive TDS decomposition.

Givens rotations. A Givens rotation is a unitary operation whichmixes
pairs of fermionic operators in the following way79:

Gijðθ,ϕÞcyi Gy
ijðθ,ϕÞ

Gijðθ,ϕÞcyj Gy
ijðθ,ϕÞ

0
@

1
A=

cosðθÞ �eiϕ sinðθÞ
sinðθÞ eiϕ cosðθÞ

 !
cyi
cyj

 !
: ð15Þ

The cost to implement a Givens rotation can again most easily
determined by writing it in terms of fermionic edge and vertex
operators, which may then be translated into qubit operations using
the chosen mapping:

Gijðθ,ϕÞ= exp �i
ϕ
2
Vj

� �
× exp i

θ
2
½Eij � ViV jEij �

� �
, ð16Þ

In the JW transform, when acting on adjacentmodes this operator
corresponds to a 2-qubit operation. In the compact encoding, it is
usually a 2-qubit operation, except when acting across sites. As shown
in Supplementary Note 4A, in this case a Givens rotation corresponds
to a 3-qubit operation in the 2D encoding, which can be implemented
in 2-qubit gate depth 4, and to a 4-qubit operator in the 3D case, which
can be implemented in 2-qubit gate depth 6.

State preparation
A requisite of the VQE algorithm is preparing the ground state of HA,
which is a part of the original material’s Hamiltonian, HM =HA +HB. The
procedure to prepare a Fock state and a fermionic Gaussian statewithin
the hybrid compact enconding and their cost are discussed in details in
SupplementaryNote 4B. Countingonly two-qubit gates,a Fock state can
be prepared with a circuit with 2-qubit gate depth 12 in the 2D case and
estimated 50 in the 3D case. On the other hand, a fermionic Gaussian
state requires a circuit whose overall depth is at most 2 * 4⌈(M − 1)/
2⌉ + ⌊(M− 1)/2⌋ ≈4.5M for the 2D hybrid encoding and 2 * 6⌈(M − 1)/
2⌉ + ⌊(M− 1)/2⌋ ≈6.5M for the 3D hybrid encoding, with M the total
number of modes in the material’s Hamiltonian of Eq. (13).

Time-evolution protocol
A common step in both the VQE and TDS algorithms is to find an
efficient implementation of the time evolution according to each term
hk of a material’s Hamiltonian, HM. We assume the ordering of the
product to be arbitrary. This is always the case for VQE and for first-
order Trotterization. To implement this step in the most efficient way
wedevise a generalized protocol based on fswapnetworks23 consisting
of alternating layers of the following form:

1. Fswap gates across modes that are adjacent with respect to the
graphof the fermionic encoding thatwe are using. For example, in
the JW transform, fswaps across qubits of the form (i, i + 1) would
be allowed.

2. Time-evolutionby all terms that are efficiently implementable given
the current permutation of the graph of the fermionic encoding.
Here,weconsider a term tobeefficiently implementable if there is a

Fig. 3 | The quantum circuit implementing eiθZ
�k

in the case k = 4 in terms of
CNOTs and single-qubit rotations. The three middle gates can be combined into
one 2-qubit operation, given total cost (2-qubit gate depth) 3 in our model.
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split of the modes on which it acts into pairs such that all pairs are
adjacent within the encoding graph. For the fermionic encodings
we use, such terms correspond to low-weight Pauli operators.

The sequence of fswap gates implemented in the first step is
determined with the help of a greedy protocol. At each layer, we look
at the set T of interactions t which have not yet been implemented,
and define a distance function which measures the difficulty of
implementing these interactions. Here we focus on ℓp distance func-
tions of the form

D=
X
t2T

dðtÞp
 !1=p

, ð17Þ

where p >0 and d(t) is the “distance” of a term t. This is defined as the
minimum, over all splits of themodes into pairs, of the distance within
the encoding graph of those modes. Empirically, we obtain good and
consistent results by setting p =0.5. We consider swapping each pos-
sible adjacent pair of modes in the interaction graph, and compute D
for each choice. If there exists a pair of modes which reduces D upon
being swapped, we then fswap the pair and mark it as used. We repeat
this process until all modes have been used, or there is no choice of
modes to fswap that reduces D.

After the fswaps layer, the sequence in which all the efficiently
implementable terms of HM for the current encoding graph are
implemented is determined by the solution of a graph colouring
problem. The vertices of the graph are terms that should be imple-
mented in the current layer and two vertices are connected if they can
be implemented simultaneously. Herewe take the simple view that two
terms canbe implemented simultaneously if they act ondisjoint sets of
qubits. Then the minimal number of colours required to colour this
graph such that no two adjacent vertices have the same colour is the
same as the minimal number of sublayers required to implement all
the terms. To efficiently determine an upper bound on the minimal
number of layers we use a greedy colouring algorithm with the DSA-
TUR heuristic as implemented in the NetworkX package80.

As an additional optimisation, we implement as the first step of
our protocol the fswap network of Kivlichan et al.23. This allows us to
implement all quadratic terms using M layers of fswaps, for a system
withMmodes. During this process, we can also implement some other
terms, if they happen to become efficiently available. As we expect the
overall complexity to be significantly greater than M, this is a lower-
order cost that can reduce the number of terms used substantially.

Our protocol is discussed in more detail in Supplementary
Notes 4C and 5.

Measurement schemes
We consider three different measurement strategies, focusing in par-
ticular on the measurement of energy in VQE circuits. We assume that
the operators to be measured are expressed in the JW transform. This
also allows us to handle the case of the hybrid encoding with nearest-
neighbour interactions between sites, though terms acting on next-
nearest neighbours and beyond do not necessarily have this property.
Then, a quadratic fermion term corresponds to Pauli strings of the
form AZZ … ZB, where A,B∈ {X, Y}, and the quartic case is either a
product of two such strings on disjoint sets of qubits, or the product of
a quadratic string and a Z operator elsewhere.

To minimize the number of measurement rounds, we consider
three strategies to decompose a set ofMajorana operators into groups
that can be measured simultaneously:

• (QWC) Measuring qubitwise commuting terms simultaneously.
These are Pauli terms which commute when restricted to indi-
vidual qubits. This family of measurement strategies is easy to

implement by measuring each qubit in the correct X/Y/Z basis,
so requires only additional single-qubit gates16,17.

• (NC)Measuring a familyof non-crossing terms simultaneously. A
pair of distinct quadratic Majorana operators acting on modes
i≤j and k≤l is non-crossing if either:

1. j < k, or l < i, or i < k≤l < j, or k < i≤j < l;
2. or i = k, j = l, and the endpoints of the two operators are

picked from the set {XX, YY}, or the set {XY, YX}.
A setTofMajorana operators is non-crossing if there exists a set
S of non-crossing quadratic Majorana operators such that all
operators in T are equal to a product of terms from S. Operators
in such a set can be measured simultaneously with a simple
protocol, discussed in detail in Supplementary Note 4D.

• (COM) Measuring a family of commuting operators simulta-
neously. This is the approach resulting in the fewest measure-
ment rounds we considered. However, the quantum circuits
required to simultaneously diagonalise a set of measurement
operators may be relatively difficult to implement (requiring
depth Θ(M)).

In all the three cases above, the decomposition of Majorana
operators into groups canbe foundby exploiting amapping to a graph
colouring problem. Analytical lower and upper bounds for the various
strategies are summarised in Table 2, and derived in Supplementary
Note 4D.

Data availability
Data supporting the figures and tables in this manuscript, including
data for the Hamiltonians, fermionic encodings and quantum circuits
presented, is available at81.

Code availability
DFT data have been obtained using Quantum Espresso73,74 using
pseudopotentials from the ONCVPSP library75. Maximally localized
Wannier functions have been generated via the Wannier90 code76.
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