
Article
Simultaneous representat
ion of multiple time
horizons by entorhinal grid cells and CA1 place cells
Graphical abstract
Highlights
d Grid and place cells tend to encode future locations a few

hundred milliseconds ahead

d These time horizons increase with grid scale and place field

size

d External and internal cues modulate time horizons

d Different time horizons are associated with distinct CA1 theta

phases
Chaudhuri-Vayalambrone et al., 2023, Cell Reports 42, 112716
July 25, 2023 ª 2023 The Authors.
https://doi.org/10.1016/j.celrep.2023.112716
Authors

Prannoy Chaudhuri-Vayalambrone,

Michael Everett Rule, Marius Bauza, ...,

Stephen Burton, Timothy O’Leary,

Julija Krupic

Correspondence
jk727@cam.ac.uk

In brief

Chaudhuri-Vayalambrone et al. show that

grid and place cells tend to encode an

immediate future trajectory over a few

hundred milliseconds. These time

horizons are proportional to the grid scale

and place field size. They also depend on

internal and external cues and are

associated with different CA1 theta

phases.
ll

mailto:jk727@cam.ac.uk
https://doi.org/10.1016/j.celrep.2023.112716
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2023.112716&domain=pdf


OPEN ACCESS

ll
Article

Simultaneous representation of multiple time
horizons by entorhinal grid
cells and CA1 place cells
Prannoy Chaudhuri-Vayalambrone,1,5 Michael Everett Rule,2,5 Marius Bauza,3,4 Marino Krstulovic,1 Pauline Kerekes,1

Stephen Burton,3 Timothy O’Leary,2 and Julija Krupic1,4,6,*
1Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
2Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
3Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London W1T4JG, UK
4Cambridge Phenotyping Limited, London NW1 9ND, UK
5These authors contributed equally
6Lead contact

*Correspondence: jk727@cam.ac.uk
https://doi.org/10.1016/j.celrep.2023.112716
SUMMARY
Grid cells and place cells represent the spatiotemporal continuum of an animal’s past, present, and future
locations. However, their spatiotemporal relationship is unclear. Here, we co-record grid and place cells in
freely foraging rats. We show that average time shifts in grid cells tend to be prospective and are proportional
to their spatial scale, providing a nearly instantaneous readout of a spectrum of progressively increasing time
horizons ranging hundreds of milliseconds. Average time shifts of place cells are generally larger compared
to grid cells and also increase with place field sizes. Moreover, time horizons display nonlinear modulation by
the animal’s trajectories in relation to the local boundaries and locomotion cues. Finally, long and short time
horizons occur at different parts of the theta cycle, whichmay facilitate their readout. Together, these findings
suggest that population activity of grid and place cells may represent local trajectories essential for goal-
directed navigation and planning.
INTRODUCTION

The firing patterns of spatially sensitive cells, such as grid and

place cells, are normally viewed as functions of an animal’s cur-

rent position. However, studies have shown that their firing is

often biased toward representing positions the animal has just

visited or is about to visit.1–8 In this way, activity in place cells

and grid cells represents the spatiotemporal continuum of an an-

imal’s past, current, and future locations. In rats, on average,

temporal biases in CA1 place cells tend to be positive, span

�120 ms,1,6,8 and are experience dependent.9 Previous work

suggests that inputs to CA1, representing an animal’s movement

in a particular direction, may be used for shifting spatial repre-

sentations slightly ahead of the animal by defining a small future

trajectory segment.5,8,10,11 Grid cells, notably, share a constant

temporal offset with co-recorded medial entorhinal speed cells.5

However, the spatiotemporal relationships between different

grid modules and between grid cells and place cells have not

been established. Alternatively, it has been proposed that posi-

tive time shifts may reflect an animal’s ‘‘true’’ position located

under its nose.8

Here, we investigated temporal biases in how locations are

represented by the medial entorhinal grid cells and CA1 place
This is an open access article und
cells. We found that both grid and place cells predominantly

represent space with a prospective bias in a two-dimensional

foraging task. Similar to the spatial organization of the entorhinal

grid and hippocampal place cells, which fundamentally depends

on the geometry of the enclosure,12–17 the time shifts of these cell

types are modulated by the animal’s trajectory in relation to the

enclosure boundaries. In addition, they are also non-linearly

modulated by the animal’s locomotion properties, such as

speed, angular velocity, and acceleration.

Importantly, the magnitudes of these time shifts correlate

with the spatial scale of grid cell and the size of the place-

cell field. Thus, simultaneously recorded grid cells of different

grid modules (a grid module is defined as a group of anatom-

ically neighboring grid cells with similar scale and orienta-

tion18–20) together with different-size place cells may, in

principle, provide a nearly simultaneous (occurring within

200 ms; see STAR Methods) readout of multiple time shifts

available at any given location. Notably, time shifts in place

cells are on average larger than in grid cells. Finally, we found

that both grid and place cells with different time shifts tended

to fire at different phases of the theta cycle, suggesting that

the time horizon of a given cell’s coding window may be orga-

nized by the theta rhythm.
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Figure 1. Grid cells and place cells encode space prospectively

(A) Rate maps of a typical grid cell (left column) and a place cell (right column) recorded in each of four differently shaped enclosures, S1–S4.

(B) Shifting a cell’s spiking location along the trajectory of the rat sharpens firing fields, as measured by the zero-lag autocorrelation (ZLAC).

(C) Time-shift distribution from all eight rats. This includes each cell’s median optimum time shift across all enclosures. Grid cells (n = 249, blue): median 133 ms

(IQR 116), Z = 13.4, p = 4.53 10�41. Place cells (n = 95, red): 180ms (IQR 133),Wilcoxon signed-rank test (WSRT), Z = 8.2, p = 2.83 10�16. On average, place cells

had significantly larger prospective time shifts than grid cells (Mann-Whitney U test (MWUT): Z = �2.8, p = 4.5 3 10�3). GC, grid cell; PC, place cell.

(D) The differences between trial-averaged grid and place-cell time shifts in each of the three animals with co-recorded grid and place cells (outliers indicated by

crosses). On average, recorded place cells showed more prospective time-shift values than grid cells. Three out of three significant (MWUT) after Bonferroni

correction for multiple comparisons, false discovery rate [FDR] a = 0.05. See also Figures S1 and S2.
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RESULTS

Place cells have larger time shifts compared to grid cells
To establish how temporal biases are distributed along the

dorsoventral axis of the medial entorhinal cortex (mEC) and

along the hippocampal-mEC network, we analyzed data from a

study published by Krupic and colleagues,12 in which grid cells

(n = 249, six rats) and place cells (n = 95, five rats) were recorded

while rats freely foraged in four geometrically distinct enclosures

(Figure 1A). Grid cells and place cells were simultaneously re-

corded in three of these rats. To investigate whether grid- and

place-cell firing was predominantly prospective or retrospective

(or encoding an animal’s current location), we shifted spike times

by up to ±2 s (in 20-ms steps) relative to the rats’ trajectories.

With each time shift, wemeasured the ‘‘sharpness’’ of the result-

ing rate map’s firing fields by calculating the spatial variance of

its rate map (zero-lag spatial autocorrelation [ZLAC]; see STAR

Methods; ‘‘lag’’ here refers to spatial lag). The position of the

ZLAC peak nearest 0 ms was taken as the recording’s optimal
2 Cell Reports 42, 112716, July 25, 2023
time shift (Figure 1B). In this study, positive time shifts indicate

prospective firing, while negative shifts indicate retrospec-

tive firing.

Overall, both grid cells and place cells were biased toward

prospective firing (Figure 1C; grid cells [n = 249, blue], median

133 ms [interquartile range (IQR) 116], Z = 13.4, p = 4.5 3

10�41; place cells [n = 95, red], 180 ms [IQR 133], Wilcoxon

signed-rank test [WSRT] Z = 8.2, p = 2.8 3 10�16), with place

cells on average having significantly larger prospective time

shifts compared to grid cells (Mann–Whitney U test [MWUT]

Z = �2.8, p = 4.5 3 10�3); note that there was no significant dif-

ference between the median field sizes of the grid (median 0.22

m2, IQR 0.25) and place cells (median 0.22 m2, IQR 0.12; MWUT

p = 0.67; Figure S1). Three rats with co-recorded place cells and

grid cells similarly showed significant differences between the

average time shifts of the two cell types, with place cells exhibit-

ing larger time horizons (Figure 1D; MWUTs, three out of three

significant after Bonferroni correction for multiple comparisons,

false discovery rate [FDR] a = 0.05). In addition to using ZLAC,
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Figure 2. Time shifts depend on external boundaries

(A) Changes in time shifts with enclosure shape. Time shifts significantly increased with enclosure size for grid, but not place cells (inner 95% confidence interval

for slope m, P2.5–97.5 = 3.1–14 ms/arena; cells from all subjects combined).

(B) Time shifts are consistently larger for eastward headings (modulation depth spanning d = 46–87 ms in all subjects for grid cells and d = 62–280 ms in three out

of five subjects for place cells, FDRTSBH a = 0.05). Log-polar plots show heading on the angular axis andDt on the radial axis (inner axis ring,Dt= 0; colored rings,

95% confidence intervals for polar least-squares regression; points, median Dt in 15� bins with [bars] 95% confidence). The exterior black bar indicates the

regressed direction of largest Dt (qmax). Gray-shaded regions on the exterior reflect a von Mises model of uncertainty in qmax. All plots reflect single-run time shifts

aggregated over cells from all subjects after removing per-cell variability.

(C) Schematics of a rat heading eastward. Grid fields (blue) close to the west wall shift westward in the rectangle compared to the trapezoid. These shifts are

consistent with time shifts becomingmore prospective when the rat is moving eastward. Gray represents room frame of reference. The shifts are shown not scale

to facilitate visualization.

(D) Schematics (left) and a plot (right) showing the timing of individual spikes (red dots) and median spikes (green dots) on all ‘‘valid’’ runs for a particular grid-cell

recording. Note that several median spikes represent the only spike fired on a given run.

(E) Scatterplot comparing ZLAC-estimated fixed time shifts with median single-field-run time shifts. Each point represents the mean measure for each cell (249

grid cells, 95 place cells). There is a significant positive correlation between the two measures (grid cells, Pearson’s r = 0.59, p = 2.3 3 10�23; place cells,

Pearson’s r = 0.61, p = 2.0 3 10�8). Crosses (3) mark outliers calculated from cells without enough valid runs.

(F) Left: each rate map was split into inner and outer zones of equal area (white line, solid) based on the relative occupation in each zone (peripheral ifR30% of its

area fell in the outer zone). Runs were deemed inward if they started on the outer half and ended on the inner half of each field and outward if vice versa. Black

(legend continued on next page)
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we calculated the optimal time shifts by maximizing spatial

information21 and peak firing rate, which are commonly used

properties for finding optimal time shifts in place cells.4,5,7 We

found that the resultant optimal time shifts were highly correlated

(Figure S2), ruling out the possibility that the results are due to a

hidden bias of the ZLAC method.

Enclosure boundaries modulate the optimal time shifts
If time shifts provide a horizon in which the animal’s past, pre-

sent, and future state is being represented, we might expect

time shifts to be influenced by boundaries and obstacles that

constrain behavior. Notably, it has been shown that spatial sym-

metry in grid cells fundamentally depends on the geometry of the

enclosure,12,13,16,17 and grid-cell firing resets at the walls,22–24

which may correct path integration errors and increase animals’

certainty about their current locations. It has been suggested

that the amount of information available to the animals may influ-

ence their predictive coding horizon: when local cues are abun-

dant, rats show consistent predictive coding, which degrades in

cue-deprived environments.1 We, therefore, hypothesized that

the time biasmay depend on enclosure shape and the rat’s prox-

imity to the walls.

To address this, we compared the time shifts in four geomet-

rically distinct enclosures, which have been shown to induce

local distortions in grid-cell firing patterns and local shifts in place

fields close to the walls.12 We reasoned that, if time shifts are

used to represent immediate future trajectories, which on

average, extend further in a larger rectangular (‘‘S4’’) enclosure

compared to a smaller trapezoidal (‘‘S1’’) enclosure, prospective

time bias should be larger in the former enclosure compared to

the latter.

To address this question, we regressed time shifts against

enclosure shape (Figure 2A; linear regression Dt = m n + b,

where n indexes enclosure shape from 1 [most trapezoidal]

to 4 [rectangular]). Consistent with our predictions, grid-cell

time shifts increased in the larger arenas (inner 95% confi-

dence interval for slope m, P2.5–97.5 = 3.1–14 ms/arena; cells

from all subjects combined). This effect was consistent in

direction and magnitude across all subjects (Figure S3).

For place cells, the inner 95% confidence interval for m

(P2.5–97.5 = from �16 to +9.0 ms/arena) included zero, with

no consistent effect across subjects (Figures 2A and S3).

Notably, in grid cells, the arena shape remained a minor

contributor to the overall time shifts, with the median time shift

remaining largely prospective even in the smallest arena (Dt:

median 140 ms, IQR 60–200 ms). This implies that arena

deformation effects are superimposed on a larger, fixed pro-

spective shift.
trajectory, an inward run; red dots indicate spikes fired along this run. Right: inwa

each run. Dashed green and black lines indicate grand median single-run time s

(G) Median spike times on inward and outward runs across all 73 grid cells with su

median 132 ms (IQR 167); WSRT, Z = 6.3, p = 2.83 10�10; outward runs had sign

and outward runs in eachmap), 130ms (IQR 214); WSRT, Z = 5.7, p = 1.43 10�8; a

Z = �1.6, p = 0.10). Place cells showed similar results: inward runs tended to hav

shifts of inward and outward runs in eachmap, 260ms (IQR 281), n = 29 place cells

and outward runs showed significant prospective time shifts (inward runs, median

[IQR 184]; WSRT, Z = 3.0, p = 2.6 3 10�3). See also Figures S2–S5.
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Next, we asked whether there was a bias in time shifts de-

pending on the animal’s running direction. We used the animal’s

movement direction (‘‘heading’’) as a correlate of the animal’s

past trajectory23 (i.e., the animal heading eastward approxi-

mates a recent encounter with the west wall, whereas the animal

heading southward suggests its recent encounter with the north

wall, etc.; note that heading and head direction are highly corre-

lated and show consistent results; Figure S4). We used a polar

regression Dt = d cos(q – qmax) + c, where d captures the depth

of directional modulation, and qmax captures the direction in

which time shifts are most prospective. For both grid cells and

place cells, time shifts showed significant prospective heading

modulation (modulation depth spanning d = 46–87 ms in all sub-

jects for grid cells and d = 62–280 ms in three out of five subjects

for place cells, two-stage Benjamini-Hochberg [TSBH] FDR

correction a = 0.05), with the largest time horizons consistently

reflecting eastward directions (Figures 2B and S5; qmax ranges

over all subjects; heading in grid cells, S82�E–S30�E; in place

cells, N56�E–N77�E). Further investigation revealed that direc-

tional modulation depended on the arena shape, showing a pref-

erence for eastward directions in the rectangular arena and

south-eastward directions in the trapezoidal arena. Such direc-

tional bias suggests that the animals may be using the frame of

reference associated with the external room instead of the inter-

nal walls of the enclosure to estimate the field locations. Namely,

the rat reaches fields sooner than expected when it travels from

west to east in the rectangular enclosure compared to the trap-

ezoidal enclosures. On the other hand, in the trapezoidal enclo-

sure, the fields, on average, may be ‘‘squeezed upward’’ as a

result of deformations and the animals will tend to show more

south-east-directed bias in time shifts (Figure 2C).

Finally, we asked whether the time shifts depended on the an-

imal’s trajectories in relation to the enclosure walls. We hypoth-

esized that time shifts in grid cells and place cells may be modu-

lated by proximity to the walls, which act as reset points for

updating the grid-cell firing22–24 to reduce the accumulation of

path integration errors (hence decreasing ambiguity about the

location, which is known to affect time shifts in place cells2).

Furthermore, such modulation should change depending on

whether the animal approaches or moves away from the wall.

We reasoned that, if time shifts indeed reflect the look-ahead

predictive time horizon of the medial entorhinal-hippocampal

network, they should be shorter when the animal approaches

the wall compared to when it is leaving the wall. To investigate

this, we first divided each grid- and place-cell rate map into indi-

vidual firing fields and used these to segment the animal’s trajec-

tory into individual runs through single fields.25 For each spike

train associated with a single run, we calculated a single-run
rd and outward runs from the grid-cell rate map shown and the spikes fired on

hift and zero time shift: positive on the top and slightly negative in the bottom.

fficient runs. On inward runs, grid cells showed prospective time shifts (n = 73),

ificantly shorter time horizons (median difference between time shifts of inward

nd were neither prospective nor retrospective (median 25ms [IQR 156]; WSRT,

e larger prospective shifts than outward runs. Median difference between time

with sufficient runs;WSRT, Z = 3.7, p = 2.33 10�5. For place cells, both inward

300 ms [IQR 310]; WSRT, Z = 4.6, p = 4.83 10�6; outward runs, median 70 ms



Article
ll

OPEN ACCESS
time shift d as the time difference between themedian spike (Fig-

ure 2D, green dots) and the point on the run closest to the field

center (positive shifts = prospective coding; note that often the

median spikes can be the only spikes). We confirmed that, using

this alternative method, each cell’s grandmedian single-run time

shift (i.e., the median of each recording’s median single-run time

shift) was significantly correlated with the cell’s ZLAC-optimal

time shift (Figure 2E; grid cells [n = 242 excluding outliers], Pear-

son’s r = 0.59, p = 2.33 10�23; place cells [n = 92, excluding out-

liers], Pearson’s r = 0.61, p = 2.0 3 10�8).

We then compared these single-run time shifts on runs toward

and away from the walls (‘‘outward’’ and ‘‘inward’’ respectively)

in fields near the walls (Figures 2F and 2G; see STAR Methods).

On inward runs (away from thewalls), grid cells showed prospec-

tive time shifts (Figure 2G; n = 73 cells with sufficient runs, me-

dian 132 ms [IQR 167]; WSRT Z = 6.3, p = 2.8 3 10�10), as ex-

pected based on grid cells’ overall average time shifts.

However, outward runs (i.e., when the animal approached the

wall) had significantly shorter time horizons (difference between

time shifts of inward and outward runs in each map: median

130 ms [IQR 214]; WSRT Z = 5.7, p = 1.4 3 10�8) and were

neither prospective nor retrospective (median 25 ms [IQR 156];

WSRT Z = �1.6, p = 0.10). Place cells showed similar results: in-

ward runs tended to have larger prospective shifts than outward

runs (difference between time shifts of inward and outward runs

in each map, median 260 ms [IQR 281], n = 29 place cells with

sufficient runs; WSRT Z = 3.7, p = 2.3 3 10�5). However, for

place cells, both inward and outward runs showed significant

prospective time shifts (inward runs, median 300 ms [IQR 310];

WSRT Z = 4.6, p = 4.8 3 10�6; outward runs, median 70 ms

[IQR 184], WSRT Z = 3.0, p = 2.6 3 10�3).

Nonlinear modulation of time shifts by internal cues
To dissociate the influence of the wall from behavior correlated

with turning or stopping, we checked for systematic differences

in behavior between inward and outward runs near walls.

Consistent with rats slowing as they approach the wall, accel-

eration was more positive in inward runs for both cell types

(median difference: grid cells, 0.035 m s�2, IQR 0.054, n = 73

cells with >15 runs; place cells, median difference 0.044 m/

s�2, IQR 0.044, n = 29 cells with >5 runs), significant in both

cases (WSRT grid cells, p = 3.9 3 10�13; place cells, p =

2.6 3 10�6). The median angular velocity was similar between

inward and outward runs in the data for grid cells (WSRT p =

0.91) but significantly different for place cells (median differ-

ence 4.3�/s (IQR 18.2�), WSRT p = 7.7 3 10�4). In light of these

behavioral biases, we tested whether time shifts depended on

behavior more generally. We measured the rank correlation be-

tween per-run time shifts and acceleration, forward speed, and

angular speed (STAR Methods). We converted data to ranks on

a per-recording basis before combining to remove per-cell and

per-rat effects.

Acceleration was significantly (after a = 0.05 TSBH FDR

control) positively correlated with single-run time shifts for

both cell types in all subjects save one (not significant for

place cells in R2377), with correlations spanning r = 0.08–

0.12 (Figures 3A and S6); the plots show the result of the

rank regression after converting back to physical units by in-
verting the rank transform (STAR Methods). Positive accelera-

tions correspond with more prospective shifts and negative

accelerations to smaller (and sometimes negative) time shifts.

This effect saturated for the most extreme positive or negative

accelerations and showed an inflection point around zero.

This suggests an almost binary switch between more pro-

spective coding when accelerating and less prospective cod-

ing when decelerating.

Consistent with previous studies,4–6 correlations between

time shift and either forward or angular speed were small (for-

ward speed, grid cells r = �0.06–0.01, place cells r = �0.05–

0.00; angular speed, grid cells r = �0.07–0.02, PC r = �0.07–

0.02) and not significant in individual rats. However, these

correlations were negative in a majority of subjects and reached

significance when aggregating all runs across rats (forward

speed, grid cells r = �0.006, place cells r = �0.03; angular

speed, grid cells r = �0.02, place cells r = �0.04). A closer in-

spection revealed a nonlinear relationship (Figures 3B, 3C, and

S7), whereby the average forward speed (and angular speed)

was consistently higher on runs with time shifts closer to zero,

and runs with either very large positive or negative time shifts

were associated with slower average forward and angular

speeds. This finding is consistent with the idea that time shifts

may reflect the information about the future and past actions

usually occurring when the animal is relatively immobile.26,27

To check whether these behavioral correlations with time

shifts might be related to boundary effects or arena shape, we

compared rank correlations between three pairs of topographic

subsets of the data: arenas S1 (trapezoid) vs. S4 (rectangle), near

walls vs. interior regions, and the right vs. left halves of the enclo-

sure. For acceleration and speed, correlation coefficients never

differed more than expected by chance for more than one sub-

ject for any comparison (z-test; TSBH FDR a = 0.05). A more

detailed comparison found no consistent topographic depen-

dence for time-shift-acceleration correlations (Figure S8), and

differences in directional modulation d were never significant

for any comparison (both heading and head direction; two-tailed

test on the bootstrapped difference in d; TSBH FDR a = 0.05). No

significant regional differences in the correlations with accelera-

tion or speed emerged when aggregating cells from all rats.

Finally, we checked whether the tendency toward larger time

shifts in the larger arenas could be attributed wholly to behav-

ioral correlations. We measured the partial correlation between

arena shape (S1–S4) and time shift (ranks), conditioned on ac-

celeration (ranks) and heading angle (cos(q), sin(q)). This sum-

marizes the linear variation in (ranked) time shifts that can be

uniquely explained by, e.g., arena shape and no other variables

(note that, for simplicity, we omitted forward and angular speed

analysis due to their substantially lower nonlinear influence on

time shifts; see above). The positive trend in grid cells persisted

(rpartial = 0.029, p < 10�11; c.f. raw correlation r0 = 0.030; sin-

gle-field runs from all subjects aggregated). Likewise, signifi-

cant partial correlations between run direction (near walls)

and time shifts persisted (grid cells, rpartial = 0.105,

p < 10�27, c.f. r0 = 0.145; place cells, rpartial = 0.148,

p < 10�6, c.f. r0 = .221; single-field runs from all subjects

aggregated). Finally, significant (albeit smaller) partial rank cor-

relations persisted between time shifts and acceleration when
Cell Reports 42, 112716, July 25, 2023 5
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Figure 3. Nonlinear relationships between time shifts and behavior for grid (blue, top) and place cells (red, bottom)

(A) Positive accelerations correlate with more prospective time shifts (Dt), with correlation coeffients equal to r = 0.88, p = 53 10�90 (grid cells) and r = 0.116, p =

8 3 10�19 (place cells). Plots show the estimated linear rank regression of time shifts given acceleration after inverting the rank transform back to physical units

(shaded, 95% confidence of regressed fit; points, mean Dt within each decile; lines, 95% confidence).

(B) The largest positive and negative time shifts are associated with slower running speeds (consistent across subjects, see Figure S7; points, median within

histogram bins; bars, 95% confidence in the median; shaded, interquartile range within each bin). Faster running speeds are associated with more typical time

shifts (c.f. Figure 1C).

(C) The relationship between time shifts and the angular speed of head directions was similar to that of forward speed, albeit noisier. See also Figures S6–S8.
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conditioning on run direction near walls (grid cells, rpartial =

0.068, p < 10�11, c.f. r0 = 0.109; place cells, rpartial = 0.095,

p < 10�3, c.f. r0 = 0.175; single-field runs from all subjects

aggregated).

In summary, time shifts are generally more prospective in the

larger arenas when running inward from the wall, when acceler-

ating (vs. decelerating), and when moving eastward (vs. west-

ward). Acceleration and inward/outward run direction are

correlated but not wholly redundant. Heading and arena-

shape correlations potentially reflect the effects of room

distortion.1,23

Time shifts are correlated with the spatial scale of firing
patterns
Grid cells are topographically arranged into distinct gridmodules

along the dorsoventral axis of the mEC, with smaller scales

located dorsally and larger scales at ventral parts of the

mEC,18–20,28 and were shown to exhibit independent neural pro-

cessing.19,29 Hence, we asked whether place and grid cells’ time

shifts also varied with their spatial scale (Figure 4). We reasoned

that, if larger grids represent larger distances, they may also

exhibit longer time horizons. For this analysis alone, we added

a separate dataset recorded in larger enclosures (�2.8 3 3 m;

see STAR Methods), which included grid cells with much larger
6 Cell Reports 42, 112716, July 25, 2023
scales. We found a significant positive correlation between grid

scales and time shifts, with larger-scale grid cells having more

prospective time shifts (Figures 4A and 4B; n = 249 + 21 cells

from small + large enclosures respectively; Spearman’s r =

0.44, p = 5.3 3 10�14). Similarly, place-cell optimum time shifts

were positively correlated with their field sizes (Figures 4C and

4D, n = 74 + 24 cells from small + large enclosures, respectively;

Spearman’s r = 0.54, p = 1.3 3 10�8).

To exclude the trivial explanation that these correlations re-

sulted from a methodological bias toward estimating larger

time shifts in larger fields, we repeatedly simulated grid cells

and place cells of different scale and field sizes, respectively,

with zero underlying time shifts, matching the recorded datasets

(Figure S9; see STAR Methods). In simulated maps with larger

grid scales/place field sizes, we found that the optimum time-

shift estimates had a higher variance, but the means were not

significantly positive or negative. This suggests that our methods

do not introduce bias toward identifying more positive time shifts

in larger-scale firing-rate maps.

Grid modules provide multiple simultaneous time shifts
We next asked whether, on a moment-by-moment basis, over-

lapping fields of co-recorded grid cells from the same grid

module had similar time shifts, whereas cells from different
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Figure 4. Time shifts in grid and place cells are correlated with firing field size

(A) Three example grid cells with different scales (upper left, 0.45 m; upper right, 0.92 m; lower, 2.10 m, in the large trapezoidal enclosure described in STAR

Methods), before and after time shifting (Dt, applied time shift). Note that these examples, while representative of optimum time shifts at those scales, result in very

small visual changes to each firing-rate map.

(B) There is a significant positive correlation between grid scale and optimum time shift (n = 270; Spearman’s r = 0.44, p = 5.3 3 10�14).

(C) Three example place cells with different firing field sizes, before (left) and after time shifting (right). Top right field is outlined with a black line to facilitate

visualization of the decrease in the area with time shifts.

(D) There is a significant positive correlation between place-cell firing area and optimum time shift (n = 98, Spearman’s r = 0.54, p = 1.33 10�8). Linear regression

was used to draw a line of best fit (dashed black). The same scale bar is used for all the rate maps. See also Figures S9 and S12.
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co-recorded grid modules consistently showed larger time

shifts. This would suggest that the time shift is signaled at

the grid module level and that a spectrum of multiple time shifts

may be read out nearly simultaneously (within <200-ms time

window; see STAR Methods) from the outputs of different scale

grid cells. To address this, we again segmented the animal’s

trajectory into individual runs through single grid fields22 and

calculated the difference in d time shifts between overlapping

individual runs for all simultaneously recorded grid-cell pairs.

Indeed, we found that the difference between the optimal

time shifts was not significantly different from zero in co-re-

corded grid cells of the same grid module (Figure 5A; mean ±

SEM, �2.3 ± 5.0 ms, t6249 = �0.46, p = 0.64, Student’s t

test). However, the difference in time shifts was consistently

positive in larger grid modules (Figure 5B; mean ± SEM,

78.8 ± 6.9 ms, t10101 = 9.70, p = 3.64 3 10�22, two-sample t
test) indicating that multiple progressively increasing time hori-

zons within a range of a few hundreds of milliseconds can be

read out nearly simultaneously at any given point in the environ-

ment (note that the co-recorded grid fields of both larger and

smaller scales as well as place fields were distributed across

the entire enclosure).

Time shifts show differential distribution across theta
phase
Cell activity across the hippocampal formation is organized in

relation to the theta rhythm.30–34 Place cells in CA1 tend to fire

near the trough (phase 0�) of the LFP (local field potential) theta

oscillation in stratum pyramidale30,31,33 and continue spiking at

progressively earlier phases of each theta cycle as the animal

traverses a cell’s firing field (a phenomenon known as phase pre-

cession21,32). Both grid and place cells can show theta
Cell Reports 42, 112716, July 25, 2023 7



A B Figure 5. Distinct simultaneously active grid

modules provide a nearly simultaneous

readout of gradually increasing time shifts

(A) Time-shift differences between all grid cells from

the samemodules are not significantly different from

zero (mean ± SEM:�2.3 ± 5.0 ms, t6249 =�0.46, p =

0.64, Student’s t test).

(B) Time-shift differences of larger grid modules

have significantly longer time shifts compared to

smaller grid scales of co-recorded grid cells (mean ±

SEM: 78.8 ± 6.9 ms, t10101 = 9.70, p = 3.64 3 10�22,

two-sample t test). Dashed red lines show average

time-shift differences see also Figure S12.
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precession.21,32,35 In grid cells, theta modulation is layer depen-

dent,35 with mEC layer II grid cells often phase precessing and

layer III grid cells showing both theta precession as well as theta

locking activity (i.e., the tendency to fire at a specific theta

phase). Furthermore, experimental evidence shows that several

variables correlate with the LFP theta phase, including the rela-

tive inputs that CA1 receives from the medial entorhinal cortex

and CA3,30,33,36 the ease of inducing long-term potentiation/

depression at CA3 synapses to CA1,37,38 and the timing of fast

vs. slow gamma oscillations in CA1.30 Such observations sup-

port models in which the encoding and retrieval of spatial mem-

ories (e.g., associations between specific locations and food

reward) occur on separate phases of LFP theta.39 In such a

context, it is possible that each cell’s prospective bias during a

specific trial is correlated with the mean theta phase at which it

tended to fire, reflecting the balance between that cell’s involve-

ment in encoding and retrieval during the trial.

To explore this, we looked at place- and grid-cell firing with

respect to the theta rhythm in CA1. Previous studies have shown

that the trough (phase 0�) of the theta rhythm in stratum pyrami-

dale of CA1 aligns with the phase associated with the highest

probability of CA1 place-cell firing.30,31,33 Hence, for each rat,

we shifted the measured theta phase such that 0� corresponded
to this peak in CA1 activity (Figure S10). This accounted for dif-

ferences in recording location within each rat and enabled closer

comparison with previous studies. To allow a comparison of

place cells with grid cells, we also analyzed grid-cell firing in

terms of its relationship to the stratum pyramidale theta rhythm

rather than the entorhinal theta rhythm. After alignment, we

found that CA1 place cells spiked maximally at 0.0� ± 72.0� (cir-
cular mean ± circular standard deviation), while grid cells spiked

maximally at 268.4� ± 78.1�, with place-cell theta phases lagging

grid-cell theta phases (Figures 6A and 6B), consistent with cell

firing probabilities of principal cells in CA1 and mEC layer II.31

We next asked whether each cell’s preferred firing phase rela-

tive to the theta rhythm was correlated with the size of its pro-

spective time shift. Several place cells (28 out of 56) and grid

cells (29 out of 39) showed significant theta precession (STAR

Methods). We could not detect a significant difference between

the time shifts of precessing and non-precessing cells (Table S1;

MWUT, place cells, p = 0.23; grid cells, p = 0.31). Hence, to
8 Cell Reports 42, 112716, July 25, 2023
investigate the relationship between average time shift and theta

phase at a single-cell level, we limited this analysis to cells with

statistically significant theta-phase locking, regardless of

whether they showed phase precession (STAR Methods). We

found that both place and grid cells showed a significant positive

correlation between their average preferred theta phases and

their optimum time shifts (Figure 6C; place cells, n = 239 record-

ings, Kempter circular-linear correlation coefficient [CLCC] =

0.36, p = 3.6 3 10�6. Figure 6D; grid cells, n = 117 recordings,

CLCC = 0.65, p = 3.3 3 10�11). This was also true at the level

of cells from individual rats (Table S2). Curiously, grid-cell time

shifts showed a nonlinear relation with the theta phase, satu-

rating at small values for cells with earlier preferred theta phases

(Figure 6D). To summarize this trend, we regressed a piecewise

linear model Dt = max[ D0,m $ (q� q0) ] to the combined grid-cell

data from all animals. Bootstrap confidence intervals suggest

that grid-cell time shifts saturate around D0 = 19 ms (median,

IQR 8.8 ms), with the linear trend beginning around q0 = 220�

(median, IQR 11�). Overall, these findings suggest that the hori-

zon of a cell’s prospective coding may depend on the phase of

its coupling to the hippocampal theta rhythm in agreement

with previous studies.3,30,40 This could facilitate the readout of

multiple increasing time horizons from grid cells of different

scales (Figure S11) and place cells of different place field sizes.

It is important to note that this suggested correlation is not a

necessary consequence of theta precession. In theta preces-

sion, cells spike at progressively earlier phases of each theta cy-

cle as the animal traverses a cell’s firing field. At the level of an

individual cell, therefore, precession does predict that spiking

at later theta phases is technically more prospective. However,

precession only describes this gradient in phases for an individ-

ual cell.21,41 It does not constrain the mean phase at which each

cell fires. Hence, different cells can display firing locked to

different mean phases (although these mean phases are usually

clustered around 0�), regardless of whether they precess.

DISCUSSION

Here, we show that time horizons (i.e., the average look-ahead

time range) of the grid and place cells positively correlate with

their scale and field size, respectively, enabling nearly
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Figure 6. Time shifts in place and grid cells are correlated with their preferred CA1 pyramidal theta phase

(A–D) Histogram showing normalized spike counts of place cells (A) and grid cells (B) with respect to stratum pyramidale theta phase. Scatterplot showing each

place-cell (C) and grid-cell (D) recording’s preferred theta phase against its optimum time shift. PC, place cell; GC, grid cell. Grid cells showed a nonlinear

relationship saturating at lower preferred theta phases. Trend lines (black) reflect a circular-linear regression for place cells (C, Kempter circular-linear correlation

coefficient [CLCC] = 0.36, p = 3.63 10�6) and a cubic-spline regression for grid cells (D; four basis functions spaced equally over 0�–360�). Shaded regions show

the 2.5–97.5th percentile confidence intervals (bootstrap, 1,000 samples). Only cells showing significant theta-phase coupling are included. See also Figures S10

and S11, and Tables S1 and S2.
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simultaneous readout of a spectrum of progressively increasing

time horizons over a few hundred milliseconds. Distinct grid

modules, whose scales increase along the dorsoventral mEC

axis,18–20,28may provide a nearly instantaneous readout of future

positions at multiple time horizons to hippocampal place cells. In

line with this hypothesis, our findings suggest that place cells

tend to be more prospective than their field-size-matched grid

cells, potentially reflecting the contribution of inputs from larger

grid-cell modules.42–44 Furthermore, in our dataset, the firing of

CA1 place cells appears to lag that of mEC grid cells in the theta

cycle (Figure 6), which may reflect the flow of information from

grid cells (likely mostly recorded in mEC layer II/III based on

post hoc histology1) to CA1 place cells.

Previously it has been suggested that observed prospective

time shifts may reflect the animal’s ‘‘true’’ location, positioned

under its nose.2 In contrast, our data show that place and grid

cells simultaneously encode a continuum of locations, which

range from the center of a rat’s head to slightly more forward

from its nose (see Figure S12 for median speed distribution)
and are determined by the scale and the field size of grid and

place cells, respectively, as well as modulated by multiple

external and internal cues such as boundary conditions, heading

direction, acceleration, and forward and angular speeds. The

range of simultaneously encoded locations hints that these

time shifts may not simply represent the rat’s true single location

but, instead, theymay reflect ongoing computations by the ento-

rhinal-hippocampal network, which take into account past, pre-

sent, and future states. We found that, similar to spatial grid

structure, the time horizon fundamentally depends on the

external boundaries of the enclosure.1,13,16 In the most polarized

trapezoid, the time horizon shrinks compared to a rectangular

enclosure, suggesting that the time horizon expands when ani-

mals expect a longer run path. This is further corroborated by

time shifts showing a significant positive bias in a direction to-

ward the unchanging part of the environment (eastward).

Furthermore, information from the boundaries may reduce the

overall uncertainty of the rat’s whereabouts, resulting in

shorter time horizons as the rat approaches the boundaries. In
Cell Reports 42, 112716, July 25, 2023 9
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addition to the effects of external cues, internal cues also play

a role in modulating the time horizons with a nonlinear relation-

ship. Namely, time shifts show sigmoidal dependence on

acceleration. Previously, positive acceleration was associated

with an increase in theta frequency.45 Theta frequency is

associated with the pacemaker of entorhinal-hippocampal

computations,3,21,30,33,34,39,41,46,47 thus this increase would sug-

gest that larger time horizons (i.e., further look-aheadmode) may

be used in more rapid entorhinal-hippocampal computations

during accelerated movements andmay provide a more efficient

way for error correction due to rapid acceleration. At the same

time, larger time shifts at lower angular and forward speeds

are consistent with the idea that time shifts may reflect the infor-

mation about the future and past actions usually occurring when

the animal is relatively immobile.26,27,48 It is important to note that

our data suggest that these internal and external factors are not

entirely redundant andmay be shaping time shifts independently

of each other. Moreover, the combined influence of all these fac-

tors cannot fully explain the observed positive time-shift bias,

suggesting that it may be an intrinsic property of the entorhi-

nal-hippocampal network.

Our second major finding provides compelling evidence that

hippocampal theta oscillations may coordinate the readout of

the spectrum of locations encoded by multiple place and grid

cells. We found that spiking at later stratum pyramidale theta

phases is associated with more prospective time shifts in both

grid cells and CA1 place cells. While in place cells, this associa-

tion appears to be linear, in grid cells, it is strongly nonlinear, hint-

ing at the possibility that distinct grid modules may be providing

inputs at different theta phases (Figure S11). Furthermore, it has

previously been suggested that information processing by the

entorhinal-hippocampal network is organized with respect to

theta and gamma oscillations.3,21,30,33,34,39,41,46,47 Namely, the

prospective coding in CA1 place cells tends to be accompanied

by slow gamma oscillations, whereas fast gamma oscillations

are associated with more retrospective coding.3 Fast and slow

gamma were shown to occur at different theta phases associ-

ated with distinct modes of communications between the

CA1-mEC and CA1-CA3,30 which may correspond to memory

encoding and retrieval modes respectively.39 Hasselmo and

Eichenbaum49,50 explicitly predicted a nearly simultaneous rep-

resentation of sequential activity in the hippocampus and the su-

perficial layers of the medial entorhinal cortex, with the timing of

such activity based on the hippocampal theta phase. Moreover,

subsequent computational models predicted that such se-

quences should include place cells with multiple place field sizes

in order to support ‘‘flexible’’ navigation to the goals48 (including

distal goals). Our findings provide some compelling evidence

supporting such models and further extend them. Namely, the

multi-size-field sequences were primarily modeled for place

cells. We show that this applies to grid cells as well. We argue

that grid cells may represent a more robust system than place

cells since they maintain their ‘‘canonical’’ scales invariable

across different experimental conditions28 and, therefore, may

be read out using a consistent relationship to theta phase. More-

over, we found that grid cells may encode the time shifts on a

module basis, which may help to decrease the accumulation of

noise. Specifically, each module has many colocalized ‘‘iden-
10 Cell Reports 42, 112716, July 25, 2023
tical’’ grid cells, whose sum input would be less noisy, while mul-

tiple grid scales of each module would ensure that the distribu-

tion of these look-ahead representations is sufficiently dense.

Both of these features were identified as crucial for reliable nav-

igation to distal goals.48

Finally, it is important to stress that, in these computational

models, ‘‘decision points’’ during navigation to a goal spanned

much wider look-ahead ranges.48,49,51,52 Place cells’ replay ac-

tivity,53–55 which occurs when the animal is relatively immobile,

was suggested to correspond to such look-ahead se-

quences.48,52 Here, we show another type of sequential firing

in place cells and grid cells, which is continuously present,

including when the rat ismoving and spansmuch shorter ranges,

which depend on the rat’s acceleration, angular and forward

speeds, as well as the rat’s relations to the boundaries and the

shape of the enclosure. It is possible that introducing a goal

wouldmodulate time horizons in linewith observations that goals

may significantly influence place56,57 and grid58,59 fields. The

successor representation hypothesis60 predicts that one role of

grid cells may be to transform distal goals into immediate move-

ment commands. This requires information about both the posi-

tion and the desired changes in position (position derivative). By

dynamically combining inputs from different grid modules with

progressively longer time horizons, hippocampal place cells

may be able to generate smooth future trajectories ahead of

the animal, which may provide the basis for goal-directed navi-

gation and planning.57,60

Limitations of the study
We were able to record from a maximum of two grid modules at

the same time with sufficient grid-cell numbers. This limits our

conclusions regarding the largest time horizons presented by

grid-cell populations. Furthermore, functional lossmanipulations

should be carried out when appropriate techniques become

available to investigate the potential causal link between time ho-

rizons in grid cells and place cells. Systematic manipulation of

theta frequency would be important to further probe how it re-

lates to time horizons. Finally, introducing a reward would

directly address whether the presence of the goal location can

modulate time horizons, and hence their functional role would

be further elucidated.
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d Data on grid and place cell recordings in smaller enclosures12 have been deposited at Figshare and are publicly available as of
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d All original code has been deposited at Github and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
17 adult male Lister Hooded rats were used in these experiments. Rats were housed in large clear plastic cages and maintained on a

12h reverse light/dark cycle (lights on at 21:00) in a temperature and humidity-controlled room. The rats were chronically implanted in

the left and/or right hemisphere with amicrodrive (Axona) loadedwith eight tetrodes (9 rats), or Neuropixels probes61 (8 rats). Of these

rats, ten were recorded in smaller rectangular and trapezoidal enclosures.1 Tetrodes/Neuropixels were aimed at the superficial layers

of themedial entorhinal cortex (mEC, 6 rats: 4.3–4.5mm lateral to themidline; 0.2–0.5mmanterior to the sinus; angled forwards in the

sagittal plane at 0–10� and 1.5mmbelow the pia) and/or CA1 region (2.5mm lateral to themidline; 4mmposterior to bregma and 1.4–

1.8 mm below the pia). See Figure S1 in12 for more details and histology results. In short, in most of the cases the recordings were

done from layer II or layer III of mEC.

Experimental procedures and animal use were performed in accordance with UK Home Office regulations of the UK Animals (Sci-

entific Procedures) Act 1986, following ethical review by the University of Cambridge Animal Welfare and Ethical Review Body

(AWERB). All animal procedures were authorized under Personal and Project licences held by the authors.

METHOD DETAILS

Data collection/experimental setup
Neural data was collected using Neuropixels probes and tetrode recordings using OpenEphys or Axona platforms. Neural activity

was recorded while the rats foraged for food in four familiar polygonal enclosures (Figure 1A), which varied in shape from a rectangle

(poly180�, S4; 1.8 m 3 1.0 m) to a left trapezoid (poly129�, S1) and were presented in random order.1
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To analyze the relationship between firing scale and time shifts over a larger range of grid cell scales (Figure 4), we included elec-

trophysiological data collected from 7 rats during a separate series of experiments in larger enclosures. During these experiments,

rats foraged in two polygonal enclosures, which differed only in the configuration of their western wall: a 2.8 m3 3 m (north-south3

east-west) rectangular enclosure (Figure 4C) and a right trapezium (Figure 4A; the northwestern corner is displaced by 1.2 m hori-

zontally between the two enclosures). The rats were trained for 3–4 weeks to forage for sweetened rice randomly scattered

throughout these enclosures. During a trial, each rat would forage in one of the two enclosures for at least 60 min; each experimental

session consisted of two trials in different enclosures.

The rat’s position was determined based on an array of two infrared light-emitting diodes (LEDs) fixed to the rat’s head and re-

corded with an overhead infrared camera (sampled at 50 Hz). The LEDs were fixed to the plastic screw post cemented to the

head of the animal�3 mm posterior from the bregma and�3 mm lateral (always on the left-hand side) from the midline. The position

of the plastic screw post corresponds to the position of the rat at zero time shift. Speed was smoothed using a moving average (box)

filter with a span of 20 samples (400 ms).

It should be noted that the large-arena datasets were included only in the analysis relating to field scale and time shifts to include

grid and place cells with as large scale/field sizes as possible (Figure 4). These large-arena recordings did not include simultaneously

recorded grid cells of multiple scales or the hippocampal LFP; hence this new data could not be used for the analysis in Figures 5

and 6. Furthermore, in Figures 1 and 2 we restricted our results to the data recorded in smaller enclosures1 to avoid substantial dif-

ferences in field sizes between the grid and place-cell populations and to enable direct comparison between the prospective tem-

poral properties and local spatial deformations.1

Single-cell isolation from multi-unit recordings
Neural recording data was concatenated across an entire recording day and the data was median subtracted to remove extraneous

artifacts. Putative single units were extracted using Kilosort (github.com/cortex-lab/KiloSort)61,62 and manually curated using a

custom software written in MATLAB (https://github.com/KrupicLab/grid_place_timeHorizons). Single units were manually curated

to ensure that less than 0.1% of spikes violated the cell refractory period of 2ms and spike waveforms within a unit were consistent.

Waveforms and crosscorrelograms of all nearby units were compared to verify that units were not unduly split or merged. Same data

processing and analysis methods were used for both Neuropixels and tetrode data.

Rate maps and smoothing
Wedivided each enclosure area into 2.63 2.6 cm bins and then used the recordings tomakemaps of (a) the number of spikes fired in

each bin and (b) the time spent in each bin (‘‘dwell time’’). We smoothed each of these maps by convolution with a Gaussian kernel

and produced each smoothed rate map by dividing binned spike counts by dwell times. We defined the kernel width as s = l /2p,

where l was the position of the first trough in the radial average SAC. Place cells were smoothed with a fixed kernel width of s = 3

bins (7.9 cm). Smoothed rate maps were used for all subsequent methods unless specified otherwise. Unvisited bins within the

bounds of the map are shown in white in Figure 1A. For all ZLAC calculations, these bins were assigned rates by interpolating be-

tween adjacent bins.

Cell classification
Grid cells were identified as cells with a gridness score of > 0.27.1,63 Only non-directional grid cells were used in the current study to

make sure that the results are not due to directional bias. Only CA1 cells with clearly defined fields were classified as place cells1 and

included in this analysis.

We identified conjunctive grid cells64 and similar direction-sensitive place cells by calculating the head direction (HD) score of each

recording.65 We produced a polar histogram showing each cell’s firing rate as a function of HD, using 1� bin and smoothing the re-

sulting counts with a rolling 25-bin box filter. To assess the directionality of this distribution, we calculated the Rayleigh vector as

follows:

D =

P360
q = 1

rq$e
iq

P360
q = 1

rq

where rq represents the polar firing rate as a function of HD in the bin [q-1, q].

This vector’s magnitude, |D|˛[0,1] was used as the HD score. Cells with |D| > 0.5 during any of the trials were excluded from sub-

sequent analysis.65

Spatial autocorrelation and cross-correlation
Let l1 and l2 denote two unsmoothed firing rate maps, where l (x, y) is the value of rate map l at the coordinates (x, y). The normalised

spatial cross-correlation (SCC) between these maps is calculated for each possible discrete spatial lag (tx, ty) (measured in bins) as

follows, as defined by25:
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R
�
tx; ty

�
=

n$
P�

l1ðx; yÞ$l2
�
x � tx; y � ty

�� � Pðl1ðx; yÞÞ$
P�

l2
�
x � tx; y � ty

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n$
P�

l1ðx; yÞ2
�
� P ðl1ðx; yÞÞ2

r
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n$
P�

l2ðx; yÞ2
�
� P ðl2ðx; yÞÞ2

r
where each summation S is over all n bins for which rates were estimated in both l1 and l2. Setting l1 equal to l2 makes the above an

equation for spatial autocorrelation (SAC). Spatial cross-correlograms were smoothed with a Gaussian kernel (s = 2 bins, or 5.2 cm),

before subsequent analysis.

Zero-lag autocorrelation (ZLAC)
The formula defined above is equivalent to calculating Pearson’s correlation coefficient of a rate map with a copy of itself at different

spatial lags; hence, R (0, 0) = 1. To measure the ‘sharpness’ of each rate map, we used the following simplified version of the auto-

correlation equation:

R
�
tx; ty

�
=

1

n

X�
lðx; yÞ$l�x � tx; y � ty

��
This version of autocorrelation removes the normalisation usually applied to a spatial autocorrelogram. This means that the auto-

correlation value at zero spatial lag, i.e. Rsim (0, 0), is no longer guaranteed to be equal to 1. Instead, when the time-shifted version of a

rate map has a higher Rsim (0, 0) than the original, it can be inferred that the map’s fields are sharper than before. This is equivalent to

the mean squared value of each rate map. Each map’s optimum time-shift was determined as the position of the ZLAC peak nearest

0 ms. These correlograms were smoothed with the same Gaussian kernel used for normal SACs (s = 2 bins, or 5.2 cm).

Radial average SAC
We determined each grid cell rate map’s scale by calculating its radial average SAC. These were calculated by averaging of all bins

within shells of increasing radius l from the smoothed autocorrelogram:

RradialðlÞ =
1

n

X
tx ;ty ˛Rl

R
�
tx; ty

�
cl = 0; 1;2.

where each summation is over the setRl of all n binswhere ðl � 1Þ<
ffiffiffiffiffiffiffiffiffiffiffiffi
t2x+t

2
y

q
% l. To find the grid cell’s scale,Rradial (L) was smoothed

using a moving average (box) filter over a span of 9 bins; the grid cell’s scale was taken as the position of the first peak at l > 0.

Spatial information
We calculated the spatial information S21:

S =
Xn
i = 1

pi

li

L
log2

li

L

whereL is themean firing rate of the cell; li is themean value of bin i in the smoothed firing ratemap; and pi is themean value of bin i in

the smoothed map of dwell times. Each map is divided into spatial bins i = 1;.n. Note that we use bin values from the smoothed

versions of each map.

Time shifting
We used the following procedure to ‘‘time shift’’ recording data. During each trial, the rat’s position and head direction were recorded

at 50 Hz. Hence, we organised the spikes fired by each cell into a vector of spike counts, also sampled at 50 Hz. This spike count

vector was shifted by a given number of samples to lead or lag the position and head direction vectors (leading = ‘‘positive’’, lagging =

‘‘negative’’ time shifts). Each sample corresponds to a shift of 20ms; recordingswere time-shifted by up to ±2 s. Ratemapswere then

recalculated from these vectors as normal, using the original smoothing parameters.

Validation of ZLAC analysis of time shifts
We observed a significant correlation between cells’ optimal time shifts and the size of their firing fields. To identify any methodolog-

ical bias, we generated grid- and place-cell activity patterns with scales/field sizes matching the real data (Figures S9A and S9B; see

sections below).We combined thesewith randomly selected trajectories from the actual dataset to simulate several spike counts and

the resulting rate maps (Figures S9C and S9D; see sections below). We then used the same ZLAC analysis applied to the experi-

mental data to test whether identified ZLAC peaks showed any consistent deviation from the correct time shift of 0 (Figure S9E).

We found that the median identified time shift was more variable with increasing field size (Figures S9F and S9G). However, there

was no evidence to suggest that the ZLAC analysis showed a bias towards non-zero median shifts when firing fields were larger

(Benjamini-Hochberg test, a = 0.05).
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Choosing place cells with single fields
When analysing the relationship between place-field size and time shifts, we restricted our analysis to cells with single fields to

simplify interpretation. We found the rates (l) and positions of all local maxima on the place cell’s rate map after smoothing, including

the bin with the highest overall rate (lmax). If any of the other local maxima had rates l > 0.4$lmax, we classified that map as containing

multiple potential fields and excluded it from this particular analysis. Each field area was defined as the area of pixels with rates

l > 0.2$lmax surrounding the highest-rate bin.

Simulating grid cell activity functions
We modeled grid-cell firing fields as three overlapping 2D plane waves oriented at 60� offsets to each other (Figure S9A). First, we

calculate the total wave vector, k:

k =
�
kxky

�
=

1

L

X3
i = 1

½cos qi sin qi�

Each wave has wavelength L = 1
2p

ffiffi
3

p
2 $l, where l is the grid scale. For a given point ðx; yÞ; the grid cell’s activity fx;y is calculated as

follows:

fx;y = exp

 
cos

	
x$kx+y$ky

2


2s
!

� 1

The parameter s determines the ‘sharpness’ of the resulting grid; higher values decrease the width of each firing field. For all simu-

lated grid cell rate maps, s = 0.5.

Simulating place cell activity functions
We modeled place cell firing fields as 2D Gaussian functions (Figure S9B), i.e. for a given point x = [x,y], the place cell’s activity is

calculated as

fx;y = exp

	� 1

2
ðx � mÞTS� 1ðx � mÞ



where the vector m represents the coordinates of the place field center, and S = ½s00s�. The parameter s controls the width of the

resulting place field, which is circular.

Spike vectors from simulated rate maps
The activity functions described above specify the probability that a grid cell will spike in a particular position (as the rate parameter of

an inhomogeneous Poisson distribution). To simulate a grid cell’s firing, we specified its activity function, selected a trajectory taken

by a rat during a randomly selected trial, and used the function to assign a probability of spiking to each point along this trajectory. We

then assigned a fixed number of spikes to points along this trajectory in line with said probabilities (grid cells: 2000 spikes, place cells:

500 spikes) (Figures S9C and S9D).

We simulated grid cell rate maps that varied in their scale (0.3–1.2 m, in 0.3 m steps) and place cell rate maps that varied in the size

of the (single) firing field (covering 0.1 to 0.4 m2, in 0.1m2 steps). Grid cell rate maps varied in their phase offset, so all possible hor-

izontal and vertical phase offsets of each specifiedmap were uniformly sampled. Similarly, we randomised the position of the field on

each place cell rate map. Each combination of scale and time shift was sampled 2000 times.

Firing fields and runs through fields
To study time shifts on single runs through grid cells’ firing fields, we segmented each rate map into fields by applying MATLAB’s

inbuilt watershed function to the negative rate-map. This identifies each minimum’s ‘‘drainage basin’’; each identified basin corre-

sponds to a field surrounding a peak in the original rate map. To avoid over-identifying spurious peaks as potential field centers,

we applied MATLAB’s extended minima transform to remove minima whose depth was less than s/5, where s is the standard de-

viation of all of the image’s pixels. We excluded fieldswhose peakswere less than 15 cm from the edge of the enclosure.We removed

pixels on the edges of each field whose firing rates were <20% of its peak firing rate. This 20% threshold was also used for defining

each place cell’s total firing field area.

The rat’s trajectory was divided into segments, or ‘‘runs’’, passing through each field. We assigned each spike on this run (Fig-

ure 2D, red dots) an individual, ‘single-run’ time shift relative to the point on the run passing closest to the field center. Spikes fired

before (after) this point were assigned positive (negative) time shifts. The overall time shift for the run was defined as the median of

these time shifts (Figure 2D, green dots). We only considered runs that (a) had an associated spike train and (b) passed within half the

field radius of the field’s center.
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Time shifts when approaching or leaving walls
We divided each enclosure into inner and outer zones of equal area (Figure 2F). We focused on fields whereR30% of each field fell

within the outer zone (called peripheral fields).Wemeasured the distance between each bin on the edge of the peripheral field and the

closest bin on the enclosure boundary and used these distances to divide these bins into ‘‘inner’’ and ‘‘outer’’ groups of equal size,

where the ‘‘outer’’ group represents the half of the field’s circumference closest to the wall (Figures 2F and 2G). We then isolated valid

runs (see criteria above) that started in the inner group and ended in the outer group or vice versa and labelled these runs ‘‘outward’’

or ‘‘inward’’ runs, respectively. For eachmap, we collated the time shifts of inward and outward runs across all valid peripheral fields.

We excluded grid-cell maps with fewer than 15 inward or 15 outward runs in total. As place cell fields covered a smaller proportion of

each arena, we reduced the minimum numbers of inward and outward runs to 5 each.

In each recording with sufficient runs, we looked at the median time shift on inward and outward runs and the difference between

them. The final value assigned to each cell was the grand median of these values for all trials in which said cell was recorded during a

given session.

Time shifts from co-recorded grid cells
To estimate the difference between time shifts in overlapping grid fields, we calculated all the median time shifts of all individual laps

through the fields. The runs from different cell pairs were considered overlapping if they occurred within 200 ms from each other and

the distance between the average respective field centers was less than 5 bins (i.e. < 13 cm). We then calculated the time-shift dif-

ferences between all co-recorded runs of all co-recorded grid-cell pairs. We split these differences in time shifts (larger field - smaller

field) into intra-module (grid scale ratio <1.1) and inter-module (grid scale ratio R1.4), which were compared using a two-sample t

test. We also used Student’s t-test to test whether the time shift differences of inner-grid modules differed significantly from zero.

External and internal cues’ effects
When regressing time-shift (Dt) against enclosure shape (Figure 2A) and heading (Figure 2B), we removed per-cell (and per-subject)

effects by standardising time-shifts across cells. We replaced the per-cell median Dt with the population median Dt before aggre-

gating. We regressed time-shift (Dt) against direction q by fitting Dt = a cos(q) + b sin(q) + c using least-squares. This is equivalent

to the model Dt = d cos(q – qmax) + c, where the modulation depth ‘‘d’’ is given by d2 = a2 + b2, and qmax = tan�1(b/a) is the direction

in which time shifts tended to be the largest. We assessed significant tuning by re-fitting the model on shuffled q, and calculated con-

fidence distributions for d and (differences therein) by bootstrap resampling (1000 samples).

We calculated per-run acceleration (angular speed) as the change in forward speed (head direction) during a run through a single

field divided by the run’s duration. We calculated per-run heading (head directions, forward speeds) as the average heading (head

direction, forward speed) throughout every single run. We calculated Spearman’s rank correlations between time shifts and per-run

acceleration, forward speed, and angular speed. To remove per-cell effects, we converted time shifts to ranks before aggregating. To

remove per-subject effects, we converted acceleration and speed data to ranks per-subject before aggregating. To invert the rank

transform when plotting Figure 3A, we took the average time-shift (over aggregated cells) corresponding to each rank (in bin sizes of

2% points), and smoothed the resulting function with a Gaussian (s: 2% percent) to remove further variance. To calculate partial cor-

relations, we used the Python package "Pingouin".66,67

Theta analysis
The LFP signal was recorded in the hippocampus using one of the tetrode wires. It was amplified 2000–8000 times, bandpass filtered

at 0.34–125 Hz and sampled at 250 Hz. The LFP signal was only available for analysis frommulti-tetrode recordings. The signal phase

was calculated as the argument of the Hilbert transform H (t) (MATLAB).

Pairwise phase consistency
We restricted our analyses of theta phase-precession to cells that showed significant coupling to the theta rhythm, as assessed by

phase-locking statistics. The theta phase-locking value for a given recording was calculated as the magnitude of the average com-

plex-valued phase-vector (‘‘phasor’’):

��z �� =

�����1N XN
j = 1

ei4ðtjÞ
�����

where tj is the time at which spike j was fired, N is the number of spikes fired by the cell during the trial, and 4ðtÞ is the theta phase in

radians. To decrease the bias induced by finite sampling, we calculated the pairwise phase consistency (PPC, or bg;68,69), which

corrects for this bias:

bg =
N
��z ��2 � 1

N � 1

For large N, bgz��z ��2. We assessed each recording’s degree of theta phase locking by comparing bg to a shuffled distribution, pro-

duced by circularly shifting the recorded LFP signal 2000 times before recalculating bg (minimum offset 10 s in either direction). Any
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recordings with a bg value that exceeded the 99th percentile of their respective shuffled distributions were deemed to display signif-

icant phase locking, and subsequent in analyses correlating preferred theta phase with time shifts.

Assessment of correlations
Unless otherwise stated, we evaluated correlations using Spearman’s rank correlation coefficient (r), which is appropriate when the

underlying correlation is not necessarily linear. There were three major exceptions to this. We used Pearson’s correlation coefficient

to evaluate the correlation between optimum shifts and the inverse of the running speed and the correlation between single-run time

shifts and ‘fixed’ time shifts estimated by ZLAC (Figure 2C), since any correlations were expected to be linear in both cases. We

calculated correlations between preferred theta phases and time shifts using Kempter’s circular-linear correlation coefficient

(CLCC),70 since the phase is a circular variable.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior and neural activity were quantified as specified in Krupic et al.1 All analyses were performed at 20 ms temporal resolution

and 2.6 cm spatial resolution, with filtering and and preprocessing as described elsewhere in STAR Methods. The order of trials for

each of the four arena shapes (Figure 1A) was randomized on each recording session, and subjects were familiar with all arena

shapes before data collection began.

All statistical analyses were performed using MATLAB (Mathworks) and Scipy,71 and specific tests are annotated throughout the

Results. To test for differences in medians, we used the Wilcoxon Signed-Rank Test (WSRT) for matched (paired, i.e. dependent)

samples, and the Mann–Whitney U test (MWUT a.k.a. Wilcoxon rank-sum test) for non-matched samples. To address limited statis-

tical power when assessing the correlation between grid scale and time-shifts on single runs, we used a two-tailed Student’s t-test.

Unless otherwise stated, confidence intervals are computed via bootstrap (1000 samples). We used shuffle tests to assess the sig-

nificance of theta phase locking (2000 samples) and the effect of heading-direction on single-run time shifts (1000 samples).

We treated each cell (grid or place) recorded on a given day as an independent sample when pooling cells from all subjects. Unless

otherwise stated, we report uncorrected p values and all tests used a two-tailed alternative (i.e. we made no assumptions about the

direction of any effects). Where stated, we corrected for multiple hypothesis tests at a false discovery rate of a = 0.05 using either the

Two-Stage Benjamini Hochberg (TSBH) procedure or Bonferroni correction.

Unless otherwise stated, we evaluated correlations using Spearman’s rank correlation coefficient (r), which is appropriate when

the underlying correlation is not necessarily linear. There were three major exceptions to this. We used Pearson’s correlation coef-

ficient to evaluate the correlation between optimum shifts and the inverse of the running speed and the correlation between single-run

time shifts and ‘fixed’ time shifts estimated by ZLAC (Figure 2C), since any correlations were expected to be linear in both cases. We

calculated correlations between preferred theta phases and time shifts using Kempter’s circular-linear correlation coefficient

(CLCC),70 since the phase is a circular variable. We used the *Pingouin* python package67 to perform partial correlation analyses,

and tested for significant differences in correlation coefficients using a z-test assuming Gaussian residuals.
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